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The relocation of the national capital from DKI Jakarta to the East Kalimantan
region and its people migration requires energy escalation. This project will
require an additional 1,555 MW of electricity from existing conditions. In
line with Indonesia's clean energy transition, this need can be addressed by
developing renewable energy infrastructure, particularly hydropower. This study
evaluates the hydropower potential in the Mahakam River using a run-of-
river scheme. Given the limited availability of hydro-climatological ground
stations, satellite data such as CFSR-TRMM, SRTM DEM, DSMW, and land-
cover data were utilized, supported by the SWAT rainfall-runoff model for
hydrological analysis. Data calibration was applied, and discharge results
were analyzed using a new diversion algorithm to estimate potential power
output. Innovative resampling of headrace arrangements was introduced to
mitigate potential hydropower conflict sites. Social factors, including protected
areas and water transportation routes, were also incorporated to minimize
land disputes. The study identified 25 mini-hydropower sites and 16 micro-
hydropower sites with a total capacity of 105.4 MW and 9 MW, respectively.
These small-scale hydropower systems could supply 3.4% of the projected
electricity demand for the new capital city called Nusantara (IKN), and potentially
reduce annual carbon emissions by approximately 480,000 tons. The use of
satellite data requires meticulous attention to ensure that data acquisition and
processing yield reliable results while accurately reflecting field conditions.
This research position also provides an initial overview of energy transition
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strategies in the IKN area through hydropower development and the subsequent
potential assessment.
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the Nusantara capital city (IKN), energy transition, hydropower, potential, diversion
algorithm, SWAT

1 Introduction

Indonesia has been gradually relocating its capital from Jakarta
to theNorth PenajamPaser area since the enactment of LawNumber
3 of 2022.Thismove is driven by several factors including population
density, economic contributions, land use, environmental
degradation, and water issues (Kementerian PPN/Bappenas, 2021).
The relocation will shift the governmental and administrative
centers to the new location, while Jakarta will remain the economic
hub of Indonesia. The population in the new capital is projected to
reach 1.7–1.9 million by 2045 due to urbanization, significantly
impacting the sustainability of energy resources, particularly
in the electricity sector (Alsaleh et al., 2023). Currently, East
Kalimantan’s power supply capacity stands at 1,765.91 MW,
requiring an additional 1,555 MW to meet the initial demands
of the relocation.

Furthermore, Steam Power Plants (SPPs) contribute to
over 60% of Indonesia’s electricity production, a trend also
observed in East Kalimantan where they produce 834.13 MW
or 47.23% of the region’s total output. This region holds the
highest national coal potential, accounting for 83% of Kalimantan
Island’s total coal reserves (Afin and Kiono, 2021). However, the
environmental impact of these SPPs is significant, contributing
to greenhouse gas emissions, diminishing air quality, and
increasing the frequency of extreme weather events globally
(Intergovernmental Panel On Climate Change, 2023). Coal-fired
power plants produce between 675 and 1,689 gCO2-eq/kWh
of emissions, significantly higher than other types of electricity
generation, which are generally below 100 gCO2-eq/kWh
(Whitaker et al., 2012; Amponsah et al., 2014). In Europe, the
use of fossil fuels has been linked to increasing water resource
pollution (Alsaleh and Abdul-Rahim, 2022a).

Under the Paris Agreement, which aims to limit global warming
to 1.5°C, reducing carbon dioxide emissions is crucial. One strategy
is through the development of renewable energy sources (IRENA,
2023). Indonesia’s Net Zero Emission (NZE) 2060 initiative aims to
shift energy supply towards more efficient and sustainable sources
by phasing out coal-fired power plants and reducing greenhouse
gas emissions by 29% by 2030. By 2025, renewable energy is
expected to contribute 23% to the energy mix, increasing to
26.5% by 2030, with a significant role played by hydropower,
geothermal, and solar energy (Ministry of Energy and Mineral
Resources (ESDM), 2021).

Since the first hydropower plant was built in 1771, hydropower
has become a significant global energy source, contributing
over 15% of the world’s electricity in 2022 with a total installed
capacity of 1,397 GW (International Hydropower Association,
2023). Indonesia, with its vast potential alongside countries like
Colombia, Myanmar, and Madagascar, ranks sixth among over
20 countries in East Asia and the Pacific for hydropower capacity

at 6,602 MW—much lower than the potential capacity of about
75,000 MW (Erinofiardi et al., 2017). With an average surface water
potential of 2.78 trillion m3/year (Radhika et al., 2018), hydropower
in Indonesia offers a clean energy solution, producing low
greenhouse gas emissions between 2 and 75 gCO2-eq/kWh. It serves
as a bridge between other renewable technologies like wind, tidal,
wave, and geothermal energy (Amponsah et al., 2014; Ubierna et al.,
2022). In the EU, hydropower supports the decarbonization of the
economy and enhances the sustainability and security of the energy
mix (Alsaleh andAbdul-Rahim, 2022b; 2023b).Given these benefits,
further development of hydropower technology in Indonesia is
essential.

An extensive study of hydropower potential was conducted
in the Mahakam River area to support its development in the
IKN area. Besides the potential for large-scale hydropower, which
depends on sediment deposition, Indonesia also has opportunities
to develop smaller-scale hydropower projects throughout
the country based on run-of-river schemes (Soekarno, 2020;
Ardiansyah, 2022).

Numerous studies have explored hydropower potential globally,
encountering various limitations. For instance, the assessment of
hydropower in the Indian region utilized historical hydrological
models (Kusre et al., 2010), while global assessments often employ
composite discharge data through climate water balance models
(Hoes et al., 2017). Additionally, a recent study in Indonesia
used a diversion algorithm to identify potential sites in two
provinces, revealing that viable locations are often limited to
one side of the river, leading to potential conflicts in usage
(Kardhana et al., 2017; Wahab et al., 2023).

Moreover, the scarcity of observational data poses a significant
challenge. According to World Meteorological Organization
standards, the minimum coverage area for a manual rain gauge
station in flat and hilly areas should be 575 km2, and for discharge
stations, 1,875 km2 (World Meteorological Organization, 2008). In
the study area, there are only 32 rainfall stations with an average
density of 2.636 km2 per station and five discharge stations covering
16.870 km2 each. This limitation necessitates the use of satellite data
as an alternative method for accurate assessments.

Open-source satellite climate data has become a valuable
tool in exploring potential resources and studying water-related
hazards (Burnama et al., 2023). The diversion algorithm, enhanced
by the SWAT hydrological model and SRTM DEM, has been
pivotal in calculating hydropower potential (Kardhana et al., 2017),
according to the utilization of Information, Communication, and
Technology (ICT) could lead to hydropower growth as well in
the European area (Wang et al., 2024). SWAT is one of the
most used hydrologic models in the world for eco-hydrologic
modeling (Tan et al., 2019), provides spatial discharge data for
each subwatershed with high accuracy, closely reflecting actual
conditions (Farid et al., 2011). Combined with regional and river
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FIGURE 1
Mahakam River Area and its elevation.

DEM data and SWAT flow accumulation results, this approach
helps identify optimal hydropower sites by evaluating both sides of
the river. Additionally, headwater resampling minimizes conflicts
within river reaches. A holistic approach that considers existing land
use and water transportation routes is crucial to preserving natural
resources and mitigating the potential environmental impacts of
hydropower projects (Alsaleh et al., 2021; Alsaleh and Abdul-
Rahim, 2021a; 2023a).This study offers preliminary insights into the
potential of hydropower tomeet Indonesia’s future energy needs and
supports the country’s energy transition strategy.

2 Study area

This study focuses on identifying potential hydropower
sites within the Mahakam River region, as illustrated in
(Figure 1). The region encompasses diverse basins that traverse

various regencies and cities across the island of Kalimantan,
situated between longitudes 114⁰53′49″-117⁰57′43″ and latitudes
0⁰31′30″-1⁰31′33”. Covering an area of 85,236 km2, most of
this region 93.84% lies within East Kalimantan, encompassing
six districts and two cities, with the remainder in Malinau
Regency, North Kalimantan. The region includes 85 rivers,
comprising main rivers and their tributaries, with gradients
ranging from 0.0002 to 0.0077. The Mahakam River, the longest
river in the area, stretches approximately 980 km southeast
before discharging into the Makassar Strait, covering a basin
area of 77,100 km2 (Hadibarata et al., 2020). The topography
of the country is predominantly flat, with steeper areas
located on the northwestern side of the river basin near the
Indonesia-Malaysia border.

The upland area of East Kalimantan significantly influences the
Mahakam River region. Meteorological data from the Temindung
area, spanning 2019 to 2021, indicates an average annual rainfall
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FIGURE 2
Precipitation-discharge-climatology data with influence area of observed precipitation.

of 3,108 mm and an average of 241 rainy days per year. The
region experiences an average monthly temperature of 27.64°C
with humidity levels at 85%, atmospheric pressure at 1,009.97 mb,
solar irradiation of 48.52%, and wind speeds average between 2.1
and 3.8 m/s.

Currently, East Kalimantan has a hydropower capacity
of 0.34 MW (Ministry of Energy and Mineral Resources, 2021).
However, detailed data on the location, scheme, and other relevant
factors remain unavailable for this research. The region has plans
for three hydropower projects: Kelai, Tabang, and Lambakan. The
Kelai Hydropower project, expected to be operational by 2025, aims
for a capacity of 55 MW. The Tabang Hydropower project, with
a planned capacity of 90 MW, is still in the preliminary stages of
development and is expected to commence operations in 2028.
The Lambakan Hydropower project is also slated for completion
in 2025, with a capacity of 18.2 MW. Unfortunately, detailed site
information for these projects is lacking, which limits their inclusion
in this study.

3 Datasets

3.1 Digital Elevation Model (DEM)

This research utilizes the NASA Shuttle Radar Topographic
Mission (SRTM) Digital Elevation Model (DEM) to represent the
Earth’s topographic surface. SRTM DEMs, which are available free
of charge, are renowned for their homogeneous quality across
various fields such as geology, geomorphology, water resources, and
hydrology (Yang et al., 2011). The resolution of the DEM used
is three arc seconds, approximately 90 m horizontally, providing a
more accurate topographic representation compared to the ASTER
GDEM (Lahsaini et al., 2018). This data is crucial for initially
identifying potential hydropower locations across extensive areas.
The vertical accuracy of the SRTM DEM is noted to be 16 m
(Rodríguez et al., 2006), and it is instrumental in analyzing
basin areas, slopes, discharge rates, stream power, erosion rates,
and more. (Preety et al., 2022).
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TABLE 1 Land cover SWAT classification.

No. Type of land cover Area (km2) SWATname SWATid

1 Airport/Port 5.16 UTRN 26

2 Primary dryland forest 20,356.65 FRSD 41

3 Secondary dryland forest/Former logging 22,933.08 FRSD 41

4 Primary mangrove forest 23.39 WETF 91

5 Secondary mangrove forest/Former logging 283.01 WETF 91

6 Primary swamp forest 203.49 WETF 91

7 Secondary swamp forest/Former logging 957.40 WETF 91

8 Plantation forest 2,385.17 FRSE 42

9 Open land 1,392.04 FLAX 1

10 Plantation 7,632.35 ORCD 61

11 Settlements/Built-up land 449.47 URML 21

12 Mining 771.95 SWRN 32

13 Dryland farming 311.40 AGRL 85

14 Dryland farming with bushes/Mix plantation 2,185.17 AGRL 85

15 Swamp 856.05 WATR 11

16 Rice field 163.34 RICE 2

17 Shrubs 17,759.41 RNGB 51

18 Swamp shrubs 4,218.62 WETN 92

19 Ponds 326.53 WATR 11

20 Transmigration 153.13 UTRN 26

21 Water body 986.77 WATR 11

Total Area 84,353.55

3.2 Hydro climatology data

Hydroclimatological data utilized in this study encompasses
precipitation, climate, and runoff data. Precipitation data is
sourced from the Tropical Rainfall Measurement Mission (TRMM),
specifically the seventh version of TRMM 3B42, which offers
daily precipitation records from 1998 to 2015 with a spatial
resolution of 0.25⁰ x 0.25⁰, covering latitudes from 50⁰N to 50⁰S
(Michot et al., 2018). For this study, data from 2004 to 2013
are used to meet the Indonesian standard requirement of a 10-
year baseline for mainstay discharge data. However, TRMM data
tends to overestimate precipitation in both light and heavy rainfall
conditions, and its accuracy varies across different seasons (Guo
and Liu, 2016). Therefore, more reliable ground-based rainfall
data is needed to calibrate the satellite data. Rainfall observation
data, sourced from the Directorate of Water Resources Engineering

(Bintek SDA), vary in duration and are collected from 32 rain
measurement stations. Applying bias correction to TRMM and
rain gauge data reduces errors and enhances their correlation with
extended rainfall records (Mohd Zad et al., 2018).

Global hydroclimatological data from the Climate Forecast
SystemReanalysis (CFSR) by theNationalOceanic andAtmospheric
Administration’s National Center for Environmental Prediction are
also employed. CFSR provides a resolution of 0.3125⁰ or about
38 km, which is useful for simulating watershed runoff (Fuka et al.,
2014). Besides rainfall, CFSR data include daily maximum and
minimum temperatures, relative humidity, wind speed, and solar
radiation for each grid satellite (Dile and Srinivasan, 2014). Widely
used in the SWAT hydrological model, CFSR data are formatted
to meet SWAT’s requirements (Zhu et al., 2016). This data was
notably evaluated in areas like the Karuvannur River in India,
where observational data are scarce (Tomy and Sumam, 2016).
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FIGURE 3
Land cover data.

However, caution is advised as CFSR tends to overestimate rainfall,
particularly noted in regions like Bolivia (Blacutt et al., 2015),
necessitating calibrated temporal runoff values for accurate rainfall-
runoff modeling.

Discharge data is crucial for calibrating the rainfall-runoff
hydrological model (Mengistu et al., 2019), were obtained from the
Research and Development Center of Water Resources (PUSAIR)
at five locations: Sei Mahakam Kota Bangun, Sei Mahakam-Melak,
Sei Kedang Kepala-Muara, Sei Belayan-Tambang, and Sei Klinjau-
Lg Nah, spanning from 2005 to 2012. Some datasets contained
discrepancies, such as mismatched coordinates and quality issues
labeled “should not be used.” Thus, the data from Sei Belayan-
Tambang in 2009 was selected as the most reliable for this
study. See Figure 2 for a detailed visualization of the precipitation-
discharge-climatology data.

3.3 Land cover data

Land cover data, a critical parameter in the SWAT hydrologic
model, influences the model’s output in a watershed. For instance,
land cover changes towards built-up areas in Brantas have been
shown to increase water runoff values (Astuti et al., 2019). The
land cover data for this study, sourced from the Ministry of
Environment and Forestry of the Republic of Indonesia (KLHK),
is mapped at a 1:250,000 scale from 2018. This data forms the
basis for defining Hydrologic Response Units (HRU), which are
then converted into Curve Number (CN) values. Due to the local
origin of this data, it is necessary to reclassify land cover definitions
to align with the SWAT model’s standards. Table 1 outlines the
land cover classification process, and Figure 3 displays the resulting
classifications.
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TABLE 2 Descriptions of soil type data.

No
Name Dominant soil Texture Associated

soils
Inclusions Slope class

1 Af11-2/3a Ferric Acrisols Medium to fine - Xanthic Ferralsols
and Dystric
Fluvisols

Level to undulating

2 Ah25-2c Humic Acrisols Medium - Orthic Acrisols,
Humic Ferralsols,

and Lithosols

Steeply dissected to
mountainous

3 Ah27-2/3c Humic Acrisols Medium to fine Lithosols Dystric Nitosols Steeply dissected to
mountainous

4 Ao104-2/3c Orthic Acrisols Medium to fine Humic Acrisols and
Dystric Cambisols

Chromic Cambisols
and Gleyic Acrisols

Steeply dissected to
mountainous

5 Ao70-2/3b Orthic Acrisols Medium to fine Dystric Cambisols Dystric Fluvisols,
Gleyic Acrisols, and

Ferric Acrisols

Rolling to hilly

6 Bf13-2/3b Ferralic Cambisols Mediun to fine Humic Acrisols and
Orthic Ferralsols

Rolling to hilly

7 Gh20-3a Humic Gleysols Fine Dystric Fluvisols Dystric Histosols
and Thionic
Fluvisols

Level to undulating

8 Jd9-2/3a Dystric Fluvisols Medium to fine Dystric Gleysols Dystric Cambisols,
Dystric Regosols,

and Dystric
Histosols

Level to undulating

9 Lo66-2/3c Orthic Luvisols Medium to fine - Chromic Luvisols,
Eutric Fluvisols, and

Lithosols

Steeply dissected to
mountainous

10 Nh10-3b Humic Nitosols Fine - Humic Andosols
and Eutric
Cambisols

Rolling to hilly

11 Od19-a Dystric Histosols - - Dystric Fluvisols
and Humic Gleysols

Level to undulating

12 Qc59-1 ab Cambic Arenosols Coarse Dystric Cambisols Humic Acrisols and
Dystric Fluvisols

Level to undulating
and Rolling to hilly

13 WAT Water - - - -

3.4 Soil type data

The Food and Agriculture Organization and the United Nations
Educational, Scientific and Cultural Organization (UNESCO)
provide the Digital Soil Map of the World (DSMW), freely
available online. Updated in 2007, the DSMW offers a vast scale of
1:5,000,000, representing most soil types across various countries in
soil map polygon units (Grunwald et al., 2011). Streamflow results
from DSMW usage in the SWAT model are competitive with those
derived from local soil data, despite the DSMW’s relatively coarse
resolution (Busico et al., 2020). Table 2; Figure 4 illustrate the soil
condition identification in the study area.

4 Methods

This research commences with the collection of various data
types, including DEM topographic data, CFSR climatology, land
cover, soil type, precipitation, and observed runoff. These datasets
are processed using the SWAT hydrological model to generate
spatial discharge values. These values, along with topographic data
and flow accumulation, are utilized in a diversion algorithm to
identify potential hydropower sites. The selection of these sites also
considers social aspects, such as land cover conditions and existing
water transportation routes, which are identified through satellite
imagery. Refer to Figure 5 for more details.
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FIGURE 4
Soil type data.

4.1 Soil and Water Assessment Tool (SWAT)

The data processing starts with the creation of subwatershed
delineations using the SWAT software integrated with ArcMap.
SWAT, a daily continuous-time hydrologic model, manages water
resources within a watershed or large river basin (Arnold et al.,
1998). Watershed delineation is informed by topographic data,
administrative boundaries, existing river networks, and streamflow
gauging stations. Additionally, themodel generates essential outputs
like flow accumulation, streamflow, and outlet points for each sub-
basin.

Land use data are classified according to SWAT model
standards, as they are initially defined based on Indonesian
guidelines. Meanwhile, soil type data from DSMW are already
classified to fit SWAT standards. The model also requires slope
discretization, categorized by the Ministry of Environment
and Forestry into five levels based on steepness (0%–8% flat,
8%–15% gentle, 15%–25% reasonably steep, 25%–45% steep,

and >45% very steep), which are crucial for determining the
Hydrologic Response Units (HRU) in each sub-watershed
(Abbaspour et al., 2007).

Weather data processing begins with aligning global rainfall
data to observational data using the Quantile-Weibull calibration
method. This calibration, performed on 150 CFSR grid data against
data from 32 observation stations for 2009, produces correction
factor equations based on rainfall intensity, applicable to other years.
Calibration is evaluated on a probabilistic basis, aiming to minimize
discrepancies. The calibrated precipitation data, along with CFSR
climatology data, are then formatted to be compatible with SWAT.

The model’s output includes runoff values for subwatersheds,
which are further calibrated against observational data using
two methods: SWAT-CUP software and manual adjustments.
SWAT-CUP employs a Sequential Uncertainty Fitting Version two
optimization algorithm for sensitivity analysis andmodel calibration
(Yang et al., 2008; Abbaspour et al., 2015; Hosseini and Khaleghi,
2020). Parameters such asCN2,AlphaBF,GWDelay,GWQMN, and
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FIGURE 5
Research methodology.

GW Revap are optimized during this process (Singh et al., 2013).
The hydrological model’s calibration is evaluated using the Nash-
Sutcliffe Efficiency (NSE) method, which is adaptable to various
model types but requires careful sample distribution to achieve
optimal NSE values (McCuen et al., 2006). Based on various studies,
the annual minimum flow for run-of-river hydropower is typically
75% (Kuriqi et al., 2019a; 2019b). However, this study has chosen
to use 80% to better accommodate environmental considerations.
The discharge values were then converted into an ASCII file for
processing in the diversion algorithm.

4.2 Diversion algorithm and resample
headrace

The diversion algorithm inputs include DEM data, river
elevation, and flow accumulation (Kardhana et al., 2017). The
algorithm begins by identifying grids defined as rivers with specific
discharge values, known as headraces. The route of the headrace is
traced by selecting grids with the smallest elevation difference to
minimize head loss, while also considering certain elevation limits
for excavation or landfill efforts (Farid et al., 2021). This parameter
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FIGURE 6
Diversion algorithm and resample headrace.

FIGURE 7
Protected areas with water transportation route.
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FIGURE 8
Comparison of satellite-observation rainfall data.

significantly impacts energy output, with other studies indicating
a range of 1800–2000 m (Larentis et al., 2010; Yi et al., 2010).
In contrast, this study has opted for a maximum of 30 iterations
to reduce construction costs, corresponding to a maximum
headrace length of 2,700 m. Additional technical considerations
include avoiding river crossings to reduce the complexity of water
infrastructure and maintaining angles less than 45⁰ to minimize
head loss along the headrace route.

Each grid is assessed to determine the potential hydraulic head
(Larentis et al., 2010), calculated as the difference in elevation
between the intake and the nearest river, within a two-grid radius
to avoid barriers, minimize penstock length, and optimize tailrace
points. This process continues until a forebay point is identified
that offers the maximum head with the shortest headrace. The flow
accumulation value, representing the river order in the downstream
section, must exceed that of the upstream section (Yi et al., 2010).

A resample headrace technique was developed to prevent
overlay in hydropower applications, where one site might impinge
on another’s water use path (see Figure 6). This technique involves
storing and sorting power data from the river network from
highest to lowest, prioritizing the hydropower plant with the
highest potential. The path from intake to tailrace is then traced,
removing any overlapping hydropower sites and those with power
levels below 500 kW to prevent overestimation of the model’s
runoff potential.

4.3 Land cover and existing water transport
route filter

In determining potential hydropower sites, factors such as
land cover and existing water transportation routes are considered.
Areas unsuitable for development, such as protected forests, peaty
and coastal areas, nature reserves, and zones prone to natural
disasters, are excluded based on Presidential Regulation No. 32 of
1990. Existing water transportation routes are identified using 2022
Google satellite imagery, noting the presence of boats and other
watercraft along river segments or docks (see Figure 7 for locations
of protected areas and ports).

5 Results and discussion

5.1 Hydro climatology analysis

Before inputting data into the hydrological model, a
consistency assessment was conducted, particularly focusing on
hydroclimatology data.This data includes satellite-observed rainfall,
runoff, and climatology. The Sei Kedang Kepala-Muara area was
selected for verification due to its proximity of data points within
a grid scope. TRMM satellite precipitation data were compared
with data from the Muara Ancalong Observational Rain Station
and the Sei Kedang Kepala-Muara Observational Discharge Station,
using 2009 as the reference year, aligned with the availability of
discharge data.

The correlation check was conducted at daily intervals, as shown
in Figure 8. The correlation between satellite rainfall data and
ground observations resulted in an NSE value of −0.19, indicating
a weak correlation with notable discrepancies. This is evident in
several rain events where the satellite data either failed to capture the
rainfall or significantly overestimated it. Furthermore, satellite data
frequently overestimate rainfall when no precipitation is recorded
at observation stations, which can lead to overestimation in the
hydrological model during dry conditions. This issue is consistent
with findings from other studies, which indicate that the correlation
between satellite and rain gauge data in East Kalimantan is low
to nonexistent (Prasetia et al., 2013) and that the TRMM rainfall
product shows a weak correlation in the flat areas of Kalimantan
compared to ground data (Giarno et al., 2018).

Visual comparisons were conducted between satellite-recorded
rainfall data, observed rainfall data, and field-measured discharge
data. Typically, rainfall events in a region should lead to increased
runoff in streams. However, as illustrated in Figure 9, some field
runoff events did not coincide with increased rainfall observed
or recorded by satellites, particularly in June and September. This
discrepancy may occur if the rainfall occurs upstream, where
conditions differ from those at the assessment location. Conversely,
there were periods, such as from October to December, where
field-recorded rainfall did not align with increased discharge.
These inconsistencies underscore the lack of synergy between
observational and satellite data, necessitating careful consideration
when utilizing these datasets. Similar inconsistencies have been
observed in other regions of Indonesia, including Java Island, where
only five out of thousands of watersheds meet the consistency
requirements (Yanto et al., 2017). Consequently, this research will
focus on aligning conditions as closely as possible with field realities.

An additional assessment was conducted on temperature, one
of the climatological parameters. Using CFSR satellite climatology
data, a comparison was made with data from the Kota Bangun
groundobservation climatology station.The evaluation covered data
from January to November 2009, with 3 days of missing data. The
NSE (Nash-Sutcliffe Efficiency) value calculated from these datasets
was −0.69 for the maximum condition and −0.16 for the minimum
condition, indicating an unsatisfactory correlation (see Figure 10
for the maximum condition illustration). More comprehensive
satellite data tend to show higher maximum temperatures and
lower minimum temperatures. This discrepancy may affect the
evapotranspiration values calculated by the hydrologic model,
potentially resulting in higher values than actual field events.
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FIGURE 9
Satellite-observation precipitation and observation discharge data consistency comparison in July-September.

FIGURE 10
Maximum temperature comparison of satellite and observation in 2009.

Although these discrepancies have minimal impact on the
hydrological data, the field approach will prioritize model runoff
results. Climatological satellite data will still be used as the
foundation for the model due to its longer time parameter
availability and broader maximum-minimum temperature ranges.

5.2 Discharge calculation with SWATmodel

The TRMM rainfall data approach was applied to observation
data spatially, based on the grid and influence of observation stations
in the study area. This approach helps mitigate issues related to the
uneven distribution of observation stations and incomplete rainfall

data. Observation stations often face disruptions, such as equipment
damage, repair periods, or manual recording errors, like missed rain
measurements. Calibration was performed on 2009 data, resulting
in an NSE (Nash-Sutcliffe Efficiency) value of 0.97 (see Figure 11).
This high value indicates a very strong correlation between the
datasets. However, this result was influenced by the fact that many
observations recorded zero or no rainfall. In the 2009 dataset, zero
rainfall values were found starting from the 127th data point out
of 365 daily entries. Satellite data also indicated that rainfall values
below 9 mm were adjusted to be close to or equal to zero, based
on comparisons with observation data. A correction factor derived
from each adjustment was applied as a multiplier to the original
satellite rainfall value for other satellite data.
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FIGURE 11
Probability distribution of rainfall calibration process in grid p3.

FIGURE 12
Sei Belayan-Tambang Point: Flow duration curve in 50–100
percentage.

In addition to rainfall calibration, the discharge values generated
by the SWAT hydrological model were also calibrated. This was
done daily for 2009, using the Sei Belayan-Tambang site as the
calibration point, which correlated with the 416th sub-basin data.
Calibration involved trial and error adjustments on five SWAT
parameters: CN2, ALPHA_BF, GW_REVAP, GW_DELAY, and
GWMQN, using SWAT-CUP. Additionally, manual calibration was
performed by adjusting CN2 values. The best discharge calibration
was achieved by manually reducing the CN2 value by 3, resulting
in an NSE of 0.57 (see Figure 12). In contrast, calibration using
SWAT-CUP yielded an NSE of 0.51. In this case, the SWAT-
CUP iteration could not adequately align model runoff with
observed runoff.

Furthermore, some limitations were generated by the model.
First, the model struggled to account for high discharge areas,
particularly at probabilities below 60%. This issue may arise
in small watersheds with high infiltration, where significant
water absorption reduces discharge. Second, the calibration
site in Sei Belayan-Tambang spans a large area of 5,600 km2,

the discharge observation data indicating a high base flow
influence. Upstream rainfall events may not significantly impact
discharge fluctuations in this area, as evidenced by stable, less
fluctuating graphs.

It is recommended that discharge measurement points in the
field be evenly distributed across both small and large basins. This
approach enhances the reliability of the hydrological model by
providing more comprehensive data. Additionally, the calibration
parameters used in this study are only valid for large basins, as
the calibration was based on large basin data. This raises concerns
about the model’s applicability if these parameters are used for
smaller basins.

5.3 Hydropower potential locations

This analysis identified 79 potential hydropower sites with a total
potential power of 240 MW. When classified by scale, 55 sites are
identified as mini-hydropower, with a total power of 227 MW, and
24 sites as micro-hydropower, with a total power of 13 MW.

Considering these values, it is important to account for
existing land use conditions to minimize potential social conflicts
arising from hydropower development. Areas to be excluded
include airports or ports, primary dry forests, primary mangrove
forests, primary swamp forests, settlements or built-up areas,
swamps, ponds, and transmigration areas. After these exclusions,
73.48% of the total land area remains as potential sites for
hydropower development (see Figure 13). Following this filtration,
there are 25 mini-hydropower sites with a total capacity of
105.4 MW and 16 micro-hydropower sites with a total power
potential of 9 MW.

In comparison, a World Bank study shows that there are 69
hydropower sites with a total capacity of 10,817 MW, the largest
in East and North Kalimantan (The World Bank, 2017). Based on
this value, a potential site will likely have a value of more than
100 MW. On the contrary, this study provides an upper limit to this
value considering the technical capabilities of implementing small
hydropower.

The World Bank did not provide detailed information on their
search methodology, making it difficult to directly compare their
process with this study. But interestingly, both the World Bank
results and this study show a tendency for potential locations to
cluster in the western upstream area. This suggests that the region
likely has significant elevation differences compared to other areas,
making it a promising area for further study.

Another aspect considered in this study is water transportation.
The Mahakam River, known for its width, serves as a vital
transportation channel for local communities (Effendy, 2022). This
presents a limitation for hydropower development, as the river’s
depth must be maintained, preventing damming or tapping that
would obstruct planned ship passage. Transportation routes were
identified using Google Earth satellite imagery, which showed ports
along the riverbanks and captured images of ships in transit. This
identification revealed 13 ports or crossings in the river channel,
from the Sungai Kapal and Barang ports on the Kunjang River
to the Batu Majang port upstream. Based on our results, no
potential power plant sites were found that would interfere with
navigation channels.
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FIGURE 13
Run-of river hydropower potential in Mahakam River Area.

5.4 General hydropower contribution in
IKN relocation and energy transition

With a total projected hydropower potential of 114.4 MW, if
fully utilized, it can contribute to the projected electricity system
by 3.4% (including existing and additional). This could have an
impact on the local energy transition process. Although it cannot
replace the still dominating position of coal-fired power plants,
this study emphasizes that the government plays an important role
in hydropower planning, because weak governance organizations
could drive inadequate hydropower development (Alsaleh and
Abdul-Rahim, 2021b).

In addition to its contribution to total electrification,
hydropower can also benefit the environment. Based
on the maximum emission values of hydropower
(Amponsah et al., 2014; Ubierna et al., 2022), hydropower can
reduce carbon emissions that would be released if coal-fired power

plants continued to operate in East Kalimantan. The total emissions
from coal-fired power plants (PLTU) with the same amount of
energy generation can reach 540 thousand tons of CO2 per year.
Meanwhile, hydropower only produces about 60 thousand tons
of CO2, which is even 1/9 of that amount. This can significantly
reduce emissions and mitigate the environmental impact of power
generation activities.

6 Conclusion

Identifying potential hydropower locations can be accomplished
through the development of rainfall-runoff hydrological models
and the application of diversion algorithms. Using TRMM rainfall
data addresses the limitations of CFSR data, while the Quantile-
Weibull grid calibration method improves the spatial distribution
of rainfall. However, this approach requires support from several
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evenly distributed observation stations covering the entire
study area.

The limitations of the model in generating discharge present
a challenge. The discharge values obtained in this study are
generally valid for large basin conditions, but reliability decreases
as the basin area becomes smaller. Therefore, we used 80%
as the minimum flow for hydropower utilization to reduce
overestimation and improve reliability. In cases where themodel and
observations align, an approach that considers periodic discharge
and flow duration curves above 55% is needed to maximize
energy values.

Additionally, the use of diversion algorithms, leveraging
SRTM DEM and runoff discharge, can identify initial potential
hydropower location points. The resolution and vertical accuracy
of the DEM are crucial in determining the calculated potential
height difference. Higher values of these factors enhance model
reliability, though the algorithm process becomes longer and
demands higher hardware specifications. In this research, due
to the limitations of the resulting discharge model, the potential
height difference value serves as a benchmark parameter defining
hydropower potential.

This study provides an overview of energy potential and
emission reduction. The potential generation capacity of mini
hydropower is 25 sites with a total power of 105.4 MW, and
micro-hydropower is 16 sites with a total power of 9 MW. These
values were determined after considering potential locations against
social aspects of land use and water transportation flows. Further
verification is needed to refine model results using improved
elevation data, observation data, and field surveys, which can
provide a comparison between the model and existing conditions.
Moreover, these findings contribute 3.44% to the electricity
supply and reduce CO2 emissions by 480,000 tons compared to
fossil fuels, positioning this research as a pre-feasibility study
for hydropower’s role in the IKN energy plan. Future research
should include assessing climate change impacts on hydropower
infrastructure, conducting economic analyses to enhance reliability,
and integrating hydropower energy into the energy mix network
of the IKN area.
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