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The investigation of stress field and plastic zone distribution at the closed
crack tip provides a fundamental basis for failure analysis and life prediction
of geotechnical materials. Closed crack is a common crack in geotechnical
materials. Studying the distribution of stress field and plastic zone at the tip of
closed crack can provide theoretical basis for stability evaluation of geotechnical
structures. In this study, we employ the superposition principle to obtain
complex function solutions for the stress field and displacement field at the
crack tip. Furthermore, we analyze the plastic zone distribution at the crack
tip based on the Mohr Coulombs criterion. We investigate how factors such
as crack angle, confining pressure, and material properties influence the stress
field, displacement field, plastic zone size, and crack propagation direction. Our
results demonstrate that this method effectively characterizes the distribution of
stress field and displacement field at closed crack tips. Moreover, we elucidate
that wing cracks are primarily formed due to tension-shear coupling effects. The
solutions for the stress field and displacement field at the crack tip are obtained
using the superposition principle. The distribution of the plastic zone at the
crack tip is analyzed based on theM-C (Mohr-Coulomb) criterion. Subsequently,
an analysis is conducted to investigate the influence of crack angle, confining
pressure, and material properties on stress field, displacement field, plastic
zone, and crack propagation direction. Lower crack angles and higher confining
pressures effectively suppress slip between crack surfaces by reducing tension-
shear coupling effects and inhibiting wing foil crack development. The results
further indicate that the rock cohesion and internal friction angle exert negligible
influence on the stress field, displacement field, plastic zone shape at the crack
tip, as well as the growth direction of new cracks. The results demonstrate the
effective representation of stress field and displacement field at the closed crack
tip using this method. The stress distribution at the crack tip reveals that the
tension-shear coupling effect primarily contributes to wing crack formation.
Lower crack angles and higher confining pressures effectively suppress surface
slip, reduce tension-shear coupling effects, and inhibit wing crack propagation.
Furthermore, material properties do not influence the crack propagation angle,
stress field, or displacement field.
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Highlights

• A method is proposed for calculating the stress field and the
angle of crack extension at the tip of a closed crack.

• The tensile-shear coupling effect is shown to be the main cause
of wing crack initiation.

• The crack propagation direction is unaffected by changes in
cohesion and internal friction angle.

• Stress invariance and displacement invariance exist around
closed cracks.

1 Introduction

The Jiaopingdu Ferry serves as a crucial crossing point for the
Red Army over the Jinsha River, embodying immense significance
in upholding our national spirit. Situated within the inundation
area of Wudongde Reservoir, both the ferry and cave site have
been submerged to depths ranging from 60 to 90 m following the
completion and operation of Wudongde Power Station. The slope
of the cave site primarily consists of weakly consolidated gravel
soil, characterized by numerous cracks. These cracks induce stress
concentration, leading to a deterioration in mechanical properties
and subsequently reducing site stability.Without effective protective
measures, there is a risk of flooding, destruction or even collapse
at this location. Therefore, studying stress field distribution and
plastic zone behavior near crack tips can provide essential insights
for designing an optimal protection plan for this site.

Fracture mechanics is an important branch of solid mechanics.
The study of crack propagation modes and material failure modes
has been a hot topic in the industry (Wang et al., 2021a; Ju et al.,
2022). The study of the stress field at the crack tip is crucial for
failure analysis. However, most of the existing research results focus
on open cracks and do not consider the contact between crack
surfaces (Zhou et al., 2021). In geotechnical engineering, structures
are often subjected to compressive loading, which can result in
closed cracks. This hinders the application of fracture mechanics
in geotechnical engineering (Ming et al., 1996; Zhu et al., 1997;
Chen et al., 2003). Therefore, it is of great theoretical value to study
the stress field at the crack tip of closed cracks. This will allow for
further analysis of the distribution law of the plastic zone at the
crack tip and prediction of the expansion direction of new cracks.
The aforementioned statement provides a theoretical foundation
for the design and construction of the Jiaopingdu reinforcement
project, thereby offering novel insights into the failure mechanisms
of geotechnical materials.

In terms of theoretical research, scholars began their studies
by examining the behavior of an infinitely large flat plate
under uniform tensile stress. They developed fruitful calculation
methods, including the Green’s function method (Erdogan et al.,
1974; Hasebe et al., 2003) and the Legendre series expansion
method (Isida, 1966; Isida, 1970), among others. Subsequently, the
interactions between multiple holes and multiple cracks gradually
became a popular field of research. For example, Tang (Renji
and Yinbang, 1986) calculated the stresses resulting from these
interactions by applying an artificial load on the surfaces of the
cracks and considering the strength factor of the round holes.
This approach led to the derivation of a system of Cauchy-type

integral equations. Finally, the displacement discontinuity method
(Yan and Miao, 2012), the dislocation density method (Hu et al.,
1993), and the boundary integral method (Wang and Chau, 1997)
were introduced one after another. For example, Wei et al. (Yi et al.,
2020) proposed a formula for calculating the stress intensity factor of
multiple holes and cracks under the influence of far-field stresses and
surface stresses using the superposition principle. Peng (Peng et al.,
2022) calculated the stress intensity factor at the tip of a closed co-
linear crack, but the physical significance of the coefficients was not
explained, and further analysis of the stress and displacement fields
at the crack tip was missing.

Due to the compressive loading in the far field, there is contact
between the surfaces that are cracked.This causes somedifficulties in
stress analysis at the crack tip. In this regard, scholars have gradually
adopted Computer-Aided Engineering (CAE) methods for further
research. For example, Dolbow (Dolbow et al., 2001) and Khoei
(Khoei and Nikbakht, 2007) utilized different iterative algorithms
to investigate the problem of contact friction. In addition, Elguedj
(Elguedj et al., 2007) employed the extended finite element method
in conjunction with augmented Lagrangemultipliers to simulate the
expansion process of contact friction cracks. It provides a basis for
stress analysis and extension prediction of closed cracks.

In the theoretical study of the plastic zone at the crack tip,
scholars firstly explored the distribution of the plastic zone at
the crack tip in pure Mode I cracks (Xin et al., 2010; Ban and
Yao, 2023). It was shown that in Mode I cracks, the plastic zone
at the crack tip was distributed in a “butterfly” pattern. Then,
the distribution pattern of the plastic zone at the crack tip in
pure Mode II cracks was gradually explored. For example, Peihua
(Jing et al., 2003) investigated the evolution of the crack tip plastic
zone under different criteria, and proposed that the distribution of
the crack tip plastic zone has a complex dependence on Poisson’s
ratio under plane strain. As the research in this field continues
to advance, important breakthroughs have also been made in the
plastic zone distribution of composite cracks (Sousa et al., 2013;
Huang, 2023). For example, Huang (Huang, 2023) proposed an
analytical solution for the plastic zone of composite cracks and
derived a linear relationship between the constraint parameter and
fracture toughness.

Researchers in the field of geotechnical engineering are more
interested in experimental aspects than in theoretical and simulation
studies. Acoustic emission experiments [(Jiang et al., 2021; Liu et al.,
2021; Wu et al., 2021)] and nuclear magnetic resonance (NMR)
methods (Bi et al., 2023) are commonly used experimental
techniques. The effects of various environmental factors, such
as chemical corrosion (Pan et al., 2022), temperature (Xiao et al.,
2021), and filling state [(Zhang et al., 2021; Sharafisafa et al.,
2021)], have been studied in relation to crack propagation modes.
Meanwhile, the number [(Wang et al., 2021b; Yang et al., 2021)]
and Mode (Ma et al., 2022) of cracks have also been studied more
extensively.

The aforementioned studies provide a simulation and
experimental foundation for stress analysis and growth prediction of
enclosed cracks. However, there is a lack of theoretical explanation
in mechanics. Therefore, it is particularly urgent to study the stress
field and plastic zone distribution at the tip of closed cracks in order
to explain the cause of crack extension. In this study, firstly, based on
the principle of superposition, the bidirectional compressive load is
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FIGURE 1
Schematic diagram illustrating the superposition principle.

equivalent to the combination of three individual load effects. The
stress function applicable to the single load is constructed, and then
the stress and displacement fields at the crack tip are solved. The
Mohr Coulombs criterion (M-C criterion) is used to calculate the
plastic zone at the crack tip. The minimum plastic radius theory is
used to calculate the crack extension angle, which reveals the reason
for the formation of the wing crack. Finally, the effects of crack angle,
confining pressure magnitude, and material properties on the stress
field, displacement field, and plastic zone are analyzed. To establish
a theoretical foundation for the analysis of failures in geotechnical
structures.

2 Methods

2.1 Stress field

To calculate the stress field at the closed crack tip caused
by bidirectional compressive loading, the superposition principle
can be applied. This principle involves calculating the stress
distribution at the crack tip for each individual loading condition
and then algebraically combining the stresses from each loading
to determine the actual stress distribution at the crack tip. A
schematic representation of the superposition principle is shown in
Figure 1.

In the figure, σX is the lateral load, MPa; σY is vertical load, MPa;
σ∞x is the far field vertical stress, MPa; σ∞y is the far field transverse
stress, MPa; τ∞xy is the far-field shear stress, MPa.

An infinite plate containing a central crack is subjected to
compressive loading at both ends, as shown in Figure 1. A relative
coordinate system, xoy, is established at the center of the crack,
with the x-axis aligned in the same direction as the length of the
crack. In the relative coordinate system xoy, the rectangular cell
located far from the crack is chosen as the subject of study. In this
case, the original problem can be considered as a compression-shear
combined loading problem for a horizontally cracked plate. Among
them, the far-field stress can be expressed as Eq. 1.

{{{{
{{{{
{

σ∞x = σX cos2φ+ σY sin2φ

σ∞y = σX sin2φ+ σY cos2φ

τ∞xy = τ∞yx =
σY − σX

2
sin 2φ

(1)

Where, φ is the angle between the crack and the X-axis, (°).
According to the principle of superposition, the original

problem can be further subdivided into three types of stress effects:
vertical load, parallel load and pure shear.

2.1.1 Vertical load
When a cracked surface is subjected to vertical loading, there is

normal contact and no relative sliding on the cracked surface. The
stress boundary conditions can be expressed as Eq. 2.

{
{
{

σy1 = −σ∞y ,σx1 = τxy1 = 0||x2 + y2| →∞

σy1 = −σ∞y ,σx1 = τxy1 = 0|y = 0, |x| < a
(2)

Where, z is the arbitrary point position, z = x+ iy (The symbol
“i” represents the imaginary unit, while “x” denotes the real part and
“y” signifies the imaginary part.); a is the crack half length, mm.

From the stress boundary conditions, it can be observed that
when subjected to compressive loading perpendicular to the crack
surface, the stress field near the crack remains unchanged and the
stresses near the crack are uniform throughout.

2.1.2 Parallel load
Under parallel compressive loading, the crack surface tends to

open, and the crack develops into a pure Mode I crack. The stress
boundary conditions are given in Eq. 3.

σx = −σ∞x ,σy = τxy = 0||z| →∞ (3)

In the case of a pure Mode I crack, a stress function of the
following form will be chosen.

ϕΙ = −
1
2
yIm ̃ZΙ (4)

Where, ̃ZΙ is the primary integral of ZΙ, ZΙ =
σ∞x z
√z2−a2

.
Two partial derivatives of Eq. 4 yield the corresponding stress

components. The expression for the stress component at the crack
tip is given by:

{{{{{{{{{{
{{{{{{{{{{
{

σx2 =
∂2ϕΙ
∂y2
= −ReZΙ +

1
2
yImZ′Ι

σy2 =
∂2ϕΙ
∂x2
= −1

2
yImZ′Ι

τxy2 = −
∂2ϕΙ
∂x∂y
= 1
2
ImZΙ +

1
2
yReZ′Ι

(5)

A new physical quantity is introduced to describe the position
of an arbitrary point relative to the crack tip. As shown in Eq. Eq. 6.

ς = z− a = reiθ (6)

The function ZΙ is reformulated using the variable ς, resulting in
the following function expression.

{{{{{{{{
{{{{{{{{
{

ZΙ(ς) = σ∞x ς−
1
2√a

2
= σ∞x r−

1
2 (cos θ

2
− i sin θ

2
)√a

2

Z′Ι(ς) = −
σ∞x
2
ς−

3
2√a

2
= −

σ∞x
2
r−

3
2 (cos 3θ

2
− i sin 3θ

2
)√a

2

̃ZΙ(ς) = 2σ∞x ς
1
2√a

2
= 2σ∞x r

1
2 (cos θ

2
+ i sin θ

2
)√a

2

(7)
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Introduction of a stress intensity factor expression for Mode I
cracks.

KΙ = σ∞x √πa (8)

Note: The stress intensity factor mentioned here refers to the
stress intensity factor for the parallel loading condition, not the
actual stress intensity factor.

Combining Eqs 5, 7, 8 gives an expression for the stress
component in terms of the stress intensity factor.

{{{{{{{{
{{{{{{{{
{

σx2 =
KΙ

√2πr
cos θ

2
(1
2
sin θ

2
sin 3θ

2
− 1)

σy2 = −
KΙ

2√2πr
cos θ

2
sin θ

2
sin 3θ

2

τxy2 =
KΙ

2√2πr
sin θ

2
(1− cos θ

2
cos 3θ

2
)

(9)

The stress along the crack plane direction is consistently negative
under parallel loading, as indicated by Eq. 9. This results in sliding
between the crack surfaces, known as shear effect. Perpendicular to
the crack, stress distribution depends on the position of any point
at the crack tip. Stress in opposite directions is generated on both
sides of the crack, causing significant separation between the crack
surfaces, referred to as stretching effect. In summary, when subjected
to transverse compression load, tensile stress concentration occurs
at the crack tip while joint tensile shear effect arises in non-crack
plane direction.

2.1.3 Shear load
Under pure shear loading, relative slip occurs at the crack

surface, causing the crack to develop into a pure Mode II crack. For
pure Mode II cracks, Eq. 10 was chosen as the stress function.

ϕΙΙ = −yRe ̃ZΙΙ (10)

Where, ZΙΙ =
τ∞xyz
√z2−a2

.
The complex function expression for the stress component is

obtained as follows.

{{{{
{{{{
{

σx3 = 2ImZΙΙ + yReZ
′
ΙΙ

σy3 = −yReZ
′
ΙΙ

τxy3 = −yImZ′ΙΙ +ReZΙΙ

(11)

Introduction of a stress intensity factor expression for Mode II
cracks.

KΙΙ = τ∞xy√πa (12)

The simplified stress components were obtained from Eq. 12.

{{{{{{{{
{{{{{{{{
{

σx3 =
KΙΙ

√2πr
sin θ

2
(−2− cos θ

2
cos 3θ

2
)

σy3 =
KΙΙ

√2πr
sin θ

2
cos θ

2
cos 3θ

2

τxy3 =
KΙΙ

√2πr
cos θ

2
(1− sin θ

2
sin 3θ

2
)

(13)

According to the principle of superposition, the crack tip stresses
under the three loads are algebraically added to obtain the crack tip
stress field under bidirectional compressive loading.

{{{{
{{{{
{

σx = σx1 + σx2 + σx3
σy = σy1 + σy2 + σy3
τxy = τxy1 + τxy2 + τxy3

(14)

The stress components calculated by Eq. 14 form the stress field
at the tip of the closed crack.

2.2 Displacement field

Assuming that the crack tip satisfies the assumptions of small
deformation and elasticity, the relationship between displacement
and stress can be derived from the geometric and physical equations
as shown Eq. 15.

{{{
{{{
{

u = ∫ 1
E
(σx − υσy)dx

v = ∫ 1
E
(σy − υσx)dy

(15)

Where, u is the displacement-x, mm; v is the displacement-
y, mm; E is the modulus of elasticity, MPa; υ is the Poisson’s
ratio.

Combined with Eq. 5, the expression for the complex function
of displacement under parallel compressive loading can be obtained
as shown Eq. 16.

{{
{{
{

u2 =
1
2E
[(1+ υ)yImZΙ − 2Re ̃ZΙ]

v2 =
1
2E
[(1+ υ)yReZΙ − (1− υ)Im ̃ZΙ]

(16)

Combined with Eq. 11, the expression for the complex function
of displacement under shear loading can be obtained as shownbelow
Eq. 17.

{{
{{
{

u3 =
1
E
[2Im ̃ZΙΙ + (1+ υ)yReZΙΙ]

v3 = −
1
E
[(1+ υ)yImZΙΙ + (1− υ)Re ̃ZΙΙ]

(17)

By combining equations. In Eqs 9, 13, the complex
function form is replaced by the polar coordinate form. The
expression for the displacement component is obtained as
Eqs 18, and 19.

{{{{{{{
{{{{{{{
{

u1 =
1
E
υσ∞y r cos θ

u2 =
KΙ

E
( r
2π
)
1/2

cos θ
2
[(1+ υ) sin2 θ

2
− 2]

u3 =
2KΙΙ

E
( r
2π
)
1/2

sin θ
2
[2− (1+ υ) sin2 θ

2
]

(18)

{{{{{{{
{{{{{{{
{

v1 = −
1
E
σ∞y r sin θ

v2 =
KΙ

E
( r
2π
)
1/2

sin θ
2
[(1+ υ)(cos2 θ

2
+ 1)− 2]

v3 =
2KΙΙ

E
( r
2π
)
1/2

cos θ
2
[(1+ υ)(sin2 θ

2
+ 1)− 2]

(19)

According to the principle of superposition, the distribution of
the displacement field at the tip of a closed crack can be obtained
by algebraically adding the displacement components under each
individual load.

2.3 Finite element validation

To verify the correctness of Eq. 14 for calculating the stress field
at the crack tip. Finite element software was used to validate the
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FIGURE 2
Comparison of finite element and analytical solutions. (A) σx. (B) σy. (C) τxy.

FIGURE 3
Comparison of the two guidelines.

problem. In the validation example, the crack angle ranges from 0°
to 90°. And a = 4 mm,σX = 1 MPa,σY = 2 MPa. The CAE analysis
was conducted using the ABAQUS2020 software, and cracks were
introduced using the XFEM method. The crack surface approach
was defined in the contact module with hard contact and tangential
frictionless conditions. The stress intensity factor and stress field
at the crack tip were evaluated through cloud map integration.
To account for the stress singularity at the crack tip, quarter-
node elements were employed as integral points. A comparison
between the finite element and analytical solutions is shown
in Figure 2.

As the crack angle increases, the stress along the crack direction
continuously increases, while the stress perpendicular to the crack
direction continuously decreases. Additionally, the shear stress at
the crack tip is symmetrically distributed at an angle of 45°. The

FIGURE 4
Schematic of crack expansion direction.

evolution law of the stress field at the crack tip with respect to
the crack angle is consistent with that of the stress evolution law
in the oblique section. This consistency proves the correctness of
the equation in describing the evolution of stress. Meanwhile, the
discrepancy between the analytical solution and the CAE solution
is small, which confirms the accuracy of the equation in describing
the magnitude of stress. In summary, the accuracy of the calculation
method used in the thesis has been verified.

2.4 Plastic zone

From the analysis of the stress field at the crack tip, it can be
observed that the stress-strain increases infinitely and a singularity
occurs at the crack tip. For a cracked body under actual loading
conditions, it is inevitable that a plastic zone will appear near
the crack tip as the external load increases. To investigate the
distribution law of the plastic zone at the crack tip, this section
solves the same problem using the Von Mises criterion and the
M-C criterion.

In the example of comparative analysis of the plastic zone,
the crack angle is assumed to be 45°, and the crack half-length is
assumed to be a = 4 mm,σX = 1 MPa,σY = 2 MPa.
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FIGURE 5
Variation curve of stress field with crack angle. (A) σx. (B) σy. (C) τxy.

2.4.1 Principal stress at crack tip
The principal stress at the crack tip is a crucial physical

parameter for analyzing the plastic zone. To study the distribution
of the plastic zone at the crack tip, it is necessary to first solve for the
principal stress at the crack tip. For the planar problem.The formula
for calculating the principal stress is given in Eq. 20.

σ1
σ3

}
}
}
=
σx + σy

2
±√(

σx + σy
2
)
2
+ τ2xy (20)

The calculation equation is simplified by Eq. 21.

{{{{{{
{{{{{{
{

A = −(KΙ cos
θ
2
+ 2KΙΙ sin

θ
2
)

B = sin θ(1
2
KΙ sin

3θ
2
−KΙΙ cos

3θ
2
)−KΙ cos

θ
2
− 2KΙΙ sin

θ
2

C = − sin θ(1
2
KΙ cos

3θ
2
−KΙΙ sin

3θ
2
)+KΙ sin

θ
2
+ 2KΙΙ cos

θ
2
(21)

Where, A represents the average stress coefficient, B represents
the bias stress coefficient, and C represents the shear stress
coefficient.

A simplified expression for the principal stresses is obtained as
shown below.

σ1
σ3

}
}
}
= A
2√2πr
−
σ∞y
2
±√B

2 +C2

8πr
+
(σ∞y )

2

4
+

Bσ∞y
√8πr

(22)

Substituting the obtained principal stresses into the
corresponding yield criterion yields the corresponding plastic
zone distances.

2.4.2 Von Mises criterion
The Von Mises criterion is derived from the strain energy

density, which closely matches experimental results and is a
commonly used yield criterion in the mechanics of materials. The
expression is given below.

(σ1 − σ2)
2 + (σ2 − σ3)

2 + (σ3 − σ1)
2 = 2σ2n (23)

Where, σ2 is the mean principal stress, For the planar problem,
set σ2 = 0; σn is the uniaxial breaking strength, MPa.

Substituting Eq. 23 into Eq. 22 to get Eq. 24.

A2 + 3(B2 +C2)
8πr

+ (σ∞y )
2 +

σ∞y
√8πr
(3B−A) = σ2n (24)

To simplify the calculation.The term containing√r is neglected.
The expression for the plastic zone at the crack tip under the Von
Mises criterion is obtained as Eq. 25.

rm =
A2 + 3(B2 +C2)

8π[σ2n − (σ∞y )
2]

(25)

Where, rm is the radius of the plastic zone based on the Von
Mises criterion, mm.

2.4.3 M-C guidelines
The M-C criterion is a commonly used damage criterion

in geotechnical engineering that effectively reflects the
mechanical response of brittle materials, such as rock and soil,
when subjected to compression. The criterion expression is
shown below.

1
2
(σ1 − σ3) −

1
2
(σ1 + σ3) sin ψ− c cos ψ = 0 (26)

Where, ψ is the internal friction angle, (°); c is cohesion, MPa.
Substituting Eq. 26 into Eq. 22.The yield equation is obtained as

Eq. 27.
1
8πr
[B2 +C2 −A2 sin2ψ] + 1

√8πr
[Bσ∞y + 2Aσ∞y sin2ψ−AC sin 2ψ]

= [

[
c2 −
(σ∞y )

2

4
]

]
cos2 ψ−

cσ∞y
2

sin 2ψ (27)

Again, to simplify the calculations, the term containing √r is
ignored. The expression for the plastic zone at the crack tip, based
on the M-C criterion, is obtained as Eq. 28.

rc =
[B2 +C2 −A2 sin2ψ]

[c2 −
(σ∞y )

2

4
]cos2 ψ−

cσ∞y
2

sin 2ψ
(28)
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FIGURE 6
Variation curve of displacement field with crack angle. (A) u. (B) v.

FIGURE 7
Crack surface slip curve.

Where, rc is the radius of the plastic zone based on the M-C
criterion, mm.

To compare the variability in the distribution of the plastic
zone at the crack tip between the two codes. The same
problem is analyzed using two plastic zone formulas. Take
σn = 10 MPa,c = 28 MPa,ψ = 30∘. The distribution of the plastic
zone under the two guidelines is shown in Figure 3.

In the first quadrant, the difference between the Von Mises
criterion and the M-C criterion is small. The crack extension angles
are mostly concentrated in the first quadrant. This indicates that the
prediction of crack extension by the two codes tends to agree. The
crack extension angle has little correlation with material properties.

In the remaining quadrants, the plastic zone has a smaller radius
for the Von Mises criterion, indicating that the Von Mises criterion
is more aggressive, while the M-C criterion is more conservative
when assessing material properties under the same conditions.
Meanwhile, the shapes of the two plastic zones are more similar, but
the M-C criterion is more pronounced at the extremes, indicating a
higher level of stress sensitivity.

2.5 Crack expansion angle

As the distance from the crack tip increases, the stress
concentration phenomenon gradually diminishes and decreases.
Therefore, it is more reasonable to select the angle of the smallest
plastic radius as the angle for crack extension.

The minimum plastic radius determination rule is used to
predict the direction of crack propagation. The crack propagation
Angle is calculated by Eq. 29.

θe = θ|[rc]min +φ (29)

Where, θe is the crack expansion angle, (°).
In the example analyzed in the plastic zone, the direction of

expansion for a 45° crack is shown in Figure 4.
As can be seen in Figure 4, the crack extension is not in the same

direction as the crack. There is a specific angle between the new
crack and the old crack. This crack is called a wing crack, which is a
common type of crack in geotechnical experiments.

Pure Mode I cracks should propagate perpendicular to the
direction of tensile stress. Pure Mode II cracks propagate along
the direction of the crack. The analysis shows that the actual crack
extension is somewhere in between. This indicates that the wing
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FIGURE 8
Influence of crack angle on the plastic zone. (A) Distribution of plastic zones. (B) Plastic Zone Distance Curves.

FIGURE 9
Schematic of crack extension angle.

crack is a result of the combined tensile-shear effect rather than the
influence of a single load.

3 Results and discussion

3.1 Influence of crack angle

In order to investigate the effect of crack angle on the
stress field, displacement field, plastic zone, and the angle of
new crack extension at the crack tip. Five examples with crack
angles of 0°, 30°, 45°, 60°, and 90°, and a crack half-length of
a = 4 mm,σX = 1 MPa,σY = 2 MPa are analyzed.

3.1.1 Stress field
Five examples were analyzed, and the variation curve of the

stress component at the crack tip with angle was obtained, as shown
in Figure 5.

As the crack angle increases, the stress along the x-axis in the
direction of the crack gradually increases. Meanwhile, the stress

TABLE 1 Crack expansion angle.

Crack angle 0° 30° 45° 60° 90°

θ|[rc]min (°) −51.08 74.96 74.96 66.37 −51.08

θe (°) −51.08 104.96 119.96 126.37 48.92

field between a 0° crack and a 90° crack has a similar shape. It is
symmetrically distributed along the x-axis and has amaximumvalue
in the direction of the crack.This is because the cracks at both angles
are exposed to a single type of stress and are not subjected to shear
stress. The crack is a pure Mode II crack at 0° and a pure Mode I
crack at 90°. While the other angled cracks are subjected to shear
stress, the maximum stress does not occur along the crack direction
but at an angle to the crack direction.

For the stress on the y-axis, the stress level continues to decrease
as the crack angle increases. This is because σy is set to be smaller
than σx in the example.The crack creates a stress concentration near
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FIGURE 10
Stress field distribution curve with confining pressure. (A) σx. (B) σy. (C) τxy.

FIGURE 11
Displacement field distribution curve with confining pressure. (A) u. (B) v.

its tip, which is depicted as a “pointy” shape on the graph. This
feature becomes more noticeable as the crack angle increases.

For shear stress, the level of shear stress gradually increases
as the crack angle increases. In the direction parallel to the crack,
the shear stress of a 0° crack and a 90° crack in Eq. is maintained
at 0. Therefore, in practice, ensuring a perpendicular relationship
between the crack and the main compressive load can effectively
inhibit crack extension.

3.1.2 Displacement field
Five examples were analyzed, and the curve of the displacement

component of the crack tip with respect to the crack angle was
obtained, as shown in Figure 6.

In the x-direction displacement, the crack surface experiences
shear stresses, leading to uneven displacements above and below the
crack surface, and causing the crack surface to slide relative to each
other. This is depicted in the figure as a graphical non-closure. The
0° crack and the 90° crack remain closed as they are not subjected
to shear stress. In the direction along the crack, the displacement in
the x-axis gradually increases as the crack angle increases. This is
because the stress level in the x-axis gradually increases as the crack
angle increases.

The y-axis displacement exhibits a distinct pattern of change.
Along the direction of the crack, the displacement along the y-axis
reaches itsmaximumat a 45° crack distribution and is symmetrically
distributed with respect to the axis of symmetry at 45°. Near the
crack tip, the displacement increases as the crack angle increases.
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FIGURE 12
Crack surface slip curve with confining pressure.

This indicates that the concentration of tensile stress at the crack tip
becomes more pronounced as the angle of the crack increases. It is
worth noting that the y-axis displacement has higher values in the
second quadrant than in the fourth quadrant. This implies that the
crack tends to propagatemore towards the boundary directionwhen
the stress environment is uniform.

To further analyze the rule of change in sliding displacement
of the crack surface with respect to crack angle. The relative
displacement of the upper and lower surfaces of the crack is
obtained, as shown in Figure 7.

From Figure 7, it can be observed that the sliding displacement
between the surfaces of the crack reaches its maximum value
when the crack angle is 45°. Furthermore, this displacement is
symmetrically distributed along the 45° angle, which serves as the
symmetry axis. This phenomenon further confirms that ensuring
a perpendicular relationship between the crack and the main
compressive load can effectively inhibit crack extension.

3.1.3 Plastic zone
Five examples were analyzed, and the curve of the plastic zone at

the crack tip was obtained as a function of crack angle.This is shown
in Figure 8A.The curves for the plastic zone distance along the crack
direction and perpendicular to the crack direction are obtained, as
shown in Figure 8B.

The shape of the plastic zone is similar for 0° and 90° cracks, but
it is much larger for 90° cracks compared to 0° cracks. Except for
these two types of angular cracks, the plastic zone increases as the
crack angle increases.

In the y-direction, as the crack angle increases, the plastic zone
exhibits a decreasing and then increasing pattern of change. In the
x-direction, as the angle of the crack increases, the change rule
demonstrates a gradual increase. This is essentially in line with the
rule of displacement change.

3.1.4 Crack expansion angle
Five cases were analyzed to obtain the new crack extension

scheme shown in Figure 9. The crack extension angles are obtained
as shown in Table 1.

The crack propagation in the wing can be clearly seen in the
figure. It is noteworthy that both the 0° crack and the 90° crack, also
known as the wing cracks, are equally generated and have the same
minimum plastic zone distance angle. For the 90° crack, the crack
tip experiences a significant concentration of tensile stress, while the
M-C criterion favors shear damage.Therefore, in practice, the crack
should be more vertical.

3.2 Influence of confining pressure

The magnitude of the confining pressure is equally important
for crack propagation. For example, let’s consider a 45° crack with
a crack half-length of a = 4 mm,σY = 8 MPa. The effects of five
different confining pressure states were investigated.

3.2.1 Stress field
The variation of the crack tip stress field with confining pressure

is shown in Figure 10.
For the x-axis stress, when the confining pressure equals the

vertical pressure, the stress is symmetrically distributed along the
crack.The stress along the direction of the crack gradually increases
as the confining pressure increases. The stress near the crack tip
continuously decreases. The stress curves have the same phase in
quadrant 4 compared to the same point. This shows that there is
an invariant stress around the crack that is solely influenced by the
vertical pressure and not by the confining pressure.

By combining Eqs 9, 13, it is deduced that the relationship
between the direction angle of stress invariant and the crack angle
can be expressed by the Eq. 30.

cot2φ = tan θ
2

cos θ
2
cos 3θ

2
+ 2

1
2
sin θ

2
sin 3θ

2
− 1

(30)

The stress invariants reveal the existence of a specific location
near the crack tip, where the stress parallel to the crack plane is solely
influenced by the vertical load and independent of lateral pressure.
Moreover, this position is correlated with the orientation of the
crack angle. Notably, when the crack inclination is 0°, this position
aligns with 180°; whereas for a crack angle of 90°, it corresponds to
0° direction.

For the y-axis stress, the stress level gradually increases as the
confining pressure increases. At the same time, the stress gradually
converges to a symmetrical direction and the curve transition
becomes smoother.

When the confining pressure is equal to the vertical pressure, the
level of shear stress gradually increases with the increase in angle.
In addition, the shear stress follows a pattern of initially decreasing
and then increasing with the increase in angle. Meanwhile, within
the range of ±45°, the shear stress value gradually decreases with an
increase in confining pressure. Outside this range, the shear stress
increases as the confining pressure increases. In the fourth quadrant,
the shear stress remains constant.

3.2.2 Displacement field
The variation of the crack tip displacement field with confining

pressure is shown in Figure 11.
The displacements in the x direction also show a break point,

indicating relative sliding of the cracked surface. It is worth noting
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FIGURE 13
Influence of confining pressure on the plastic zone. (A) Distribution of plastic zones. (B) Plastic Zone Distance Curves.

FIGURE 14
Variation curve of crack extension angle with confining pressure.

that, just as the stress curves intersect at the same point in quadrant
4, the x displacements intersect at the same point in quadrant 1.
This indicates the presence of an invariant displacement around the
crack which is related only to the vertical pressure and not to the
magnitude of the confining pressure.

The Eq. 31 for the displacement invariant can be derived based
on Eq. 18.

θ = 2 arctan(1
2
cot2 φ) (31)

Similar to the stress invariant, when the crack inclination is held
constant, there exists a specific position at the crack tip where the
displacement parallel to the crack plane remains unaffected by lateral
pressure. Notably, for a crack inclination of 0°, this position lies in

the direction of 180°; whereas for a crack angle of 90°, it lies in
the direction of 0°. Remarkably, this position coincides with that
identified by the stress invariant.

The rule for changing the y-direction displacement is the same
as that for the shear stress. In the range of ±45°, the displacement
in the y-direction gradually decreases as the confining pressure
increases. At the same time, the displacement is constant in the
fourth quadrant.

To further investigate the impact of the confining pressure
magnitude on the sliding displacement of the cracked surface, we
obtained the indicated sliding displacements above and below the
crack, as shown in Figure 12.

It can be observed from the figure that the sliding phenomenon
between the crack faces decreases linearly with the increase in
confining pressure. This indicates that the confining pressure can
effectively prevent the relative sliding of the crack faces.

3.2.3 Plastic zone
The variation curve of the plastic zone at the crack tip with

confining pressure is shown in Figure 13A. The curves depicting
the distance of the plastic zone along the crack direction and
perpendicular to the crack direction in relation to the confining
pressure are presented in Figure 13B.

The plastic zone at the crack tip exhibits an opposite change
pattern compared to the crack angle. As the confining pressure
increases, the plastic distance along the crack direction follows
a pattern of initially decreasing and then increasing. And in the
direction perpendicular to the crack, the plastic zone increases with
the increase in confining pressure. The main reason is that as the
confining pressure increases, the overall stress level in the plate
also increases significantly. This results in a more pronounced stress
concentration at the crack tip, which in turn leads to an expansion
of the plastic zone.
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FIGURE 15
Influence of rock properties on the plastic zone. (A) ψ. (B) c.

3.2.4 Crack expansion angle
The variation of the crack extension angle with confining

pressure is shown in Figure 14.
As the confining pressure increases, the angle of crack extension

gradually decreases and approaches 90°. This is because as the
confining pressure increases, the sliding between the surfaces of
the crack weakens, and the tensile-shear coupling effect gradually
diminishes. Therefore, the crack extension tends to be closer to the
point of tensile damage.

3.3 Influence of material properties

To investigate the effect of rockmaterial properties on the plastic
zone. Keeping the other variables constant in the analyzed example,
the angle of internal friction and cohesion were varied. This is
because the change in material properties does not affect the stress
field at the crack tip. For a given modulus of elasticity and Poisson’s
ratio, the stress field and displacement field at the crack tip remain
unchanged. The curves depicting the impact of the internal friction
angle and cohesion on the radius of the plastic zone are obtained, as
illustrated in Figure 15.

The shape of the plastic zone is similar for different angles of
cohesion and internal friction, further confirming that the angle
of crack propagation is independent of material properties. As
the cohesive force increases, the yield strength of the material
improves and the plastic zone decreases. However, Figures 15A,
B shows that the plastic zone actually increases as the internal
friction angle increases, which is clearly contrary to the expected
pattern. The reason for this phenomenon is that the effect of lower
order terms is neglected. Therefore, in high-precision analysis,
the low-order terms cannot be neglected. Furthermore, as the
internal friction angle increases, the rock’s brittleness gradually
intensifies, leading to a more pronounced tensile failure effect.

Consequently, the plastic zone radius in the direction of tensile
stress at the crack tip progressively expands. In comparison to
the influence of cohesion force on the plastic zone radius, the
impact of internal friction angle is relatively minor. Therefore,
in practical engineering applications, enhancing particle bonding
and increasing material cohesion can effectively address crack
propagation issues and significantly reduce the plastic zone radius at
the crack tip.

4 Conclusion

To investigate the stress field distribution at the tip of a closed
crack and the failure mode of rock under biaxial load, we derive
calculation methods for the stress field and displacement field at the
closed crack tip based on the superposition principle. Analysis of
the stress field distribution reveals that tension-shear coupling plays
a crucial role in wing crack formation. A smaller inclination angle
and higher confining pressure effectively prevent surface sliding,
reduce tension-shear coupling, and inhibit wing crack initiation.
The internal friction angle and cohesion force do not alter crack
propagation direction as they have no impact on plastic zone
shape. Furthermore, when maintaining a certain crack angle, there
are stress invariants and displacement invariants at the crack tip
that are solely influenced by vertical load. This study presents
a theoretical framework for conducting failure mode analysis of
geotechnical materials.
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