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The low permeability of the methane hydrate-bearing sediment limits the
methane gas extraction. To enhance methane hydrate extraction, hydraulic
fracturing can be a promising approach to improve the hydrate reservoir
permeability by creating a fracture network in the reservoir. In this study,
a coupled thermo-hydro-mechanical-chemical mathematical model and its
numerical implementation based on finite element technology are introduced
to analyze the methane hydrate extraction through fractured methane hydrate-
bearing sediment considering methane hydrates dissociation, gas-water two-
phase flow, heat transfer, dynamic changes of the sediment permeability,
and deformation of both sediment matrix and fractures as well as capturing
the interplay between them. The coupled thermo-hydro-mechanical-chemical
numerical model is verified by reproducing a methane hydrates dissociation
laboratory test. Finally, we conduct a series of simulations for the methane gas
depressurization extraction through the sediments with the DFNs assigned as
diverse geometrical characteristics. The influence of hydraulic fracture network
geometrical and hydraulic characteristics on methane hydrate extraction are
discussed. The results can offer a reference for enhancing the methane hydrate
extraction efficiency.

KEYWORDS

hydraulic fracture, THMC coupling model, methane hydrate, finite element method,
numerical modelling

1 Introduction

Nature gas hydrate (NGH) is a solid ice-like substance formed by water and methane in
a low-temperature and high-pressure environment (Jiang et al., 2022a) and is regarded as a
promising clean fuel source with high energy density (Guo et al., 2022). To exploit the NGH
stored in the deep-sea sediments, different exploitation strategies are proposed (Zhu et al.,
2021) and divided into the following four steps, namely drilling a deep well into the NGH
reservoirs, increasing the reservoir permeability by hydraulic fracturing, hydrolyzing the
NGH into gas and water, and pumping the decomposed natural gas. The depressurization
method (Li et al., 2015) is the most commonly adopted to hydrolyze the NGH into gas.
However, during the process of depressurization production, the hydrolysis process can
lower temperature and lead to stress redistribution in the reservoir, which in turn inhibits
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this hydrolysis process (Ye et al., 2022). These changes can decrease
the hydrolysis rate and affect the production efficiency. More
seriously, the change in the mechanical properties of the reservoir
can lead to deformation of the reservoir and even cause irregular
subsea subsidence and landslide (Sun et al., 2021; Xiong et al., 2021;
Sun et al., 2022).

To uncover the complex response mechanisms of NGH
reservoirs, many laboratory (Kwon et al., 2013; Han et al., 2018)
and/or field tests (Uddin et al., 2014; Konno et al., 2017) have been
conducted. However, due to the complex environment, laboratory
testa are usually conducted in closed reactors and the field test
is usually conducted under subsea formations, which means the
direct depressurization production process is difficult to control and
observe directly. In addition to the experimental method, many
theoretical laws (Yu et al., 2014; Wang et al., 2018) or empirical
models (Clarke and Bishnoi, 2000; Haligva et al., 2010) are proposed
to conclude the test observations based on these obtained test
data. However, due to the limitations in representing complex
conditions of the NGH reservoir, these theoretical laws or empirical
formulas heavily rely on many simplifications, and can hardly be
used to investigate the depressurization production process. As an
alternative, the numerical simulation method has been adopted
to investigate mechanisms of NGH depressurization production
(Ruan et al., 2012).

In the past decades, numerous numerical simulations have
been made to understand depressurization production from
NGH reservoirs (Uchida et al., 2016; Sun et al., 2018). Liang et al.
(2022) proposed a fully coupled thermos-hydro-chemo-mechanical
(THCM) model and investigated the influence of phase equilibrium
pressure and reservoir dynamic pressure on the process of hydrate
depressurization production. Sun et al. (2019) simulated Masuda’s
core-scale gas production experiments using a fully coupled THCM
model and investigated the influence of effective permeability
and downhole pressure on the hydrolysis process. Li et al. (2022)
elaborated a numerical framework for describing hydrate formation
at equilibrium conditions and then investigated the mechanical
response of NGH solids during the depressurization production
process. Liang et al. (2021) uncover the mechanism of production
pressure, initial absolute permeability, phase equilibrium parameter,
and initial water saturation in effecting gas production rate.
Wan et al. (2022) proposed a THMC-coupled model to simulate
the fluid flow in hydrate-bearing sediments and the geo-mechanical
behavior of NGH and the effect of the pore pressure and hydrate
dissociation on the solid mechanical behavior is investigated.
Ye et al. (2022) developed a THMC model, which can reasonably
consider the effect of gravity and investigated the behavior of NGH
during the hydrolysis process. Wang et al. (2022) used a coupled
THMmodel to investigate the driving forces of hydrate reformation
during the dissociation process induced by depressurization, and its
results show that the cooling driving force is the main controlling
factor of hydrate reformation.

Besides the NGH hydrolysis process under the depressurization
method, many simulations have also been made to investigate the
response ofNGHreservoirs during depressurization production and
improve the exploitation strategy. Jiang et al. (2022b) established a
THMC multi-field coupling theoretical model based on COMSOL

to simulate the processes of depressurization production and
uncover the influence of temperature and pressure conditions on
the NGH reservoirs. Merey and Sinayuc (2017) simulated the
NGHdepressurization production by theHydrateResSim numerical
simulators (Moridis et al., 2005), and the original production
strategies were optimized based on the obtained simulation results.
Sun et al. (2019) embedded aMohr-Coulomb geomechanical model
into a fully coupled THM model and systematically investigated
the mechanical behaviors of the NGH reservoir during 1 year
of depressurization production. As analyzed in the above test,
current numerical investigations have a great contribution to better
understanding the mechanism of the NGH hydrolysis process
in the reservoir and improving the efficiency and safety of the
NGH production. However, in these studies, the influence of the
hydraulic fractures, which has a direct and significant impact on
the permeability of the reservoir and the production rates, is rarely
considered, and this limitation may lead to some difference between
the numerical results and the real case.

Therefore, to better consider the change of the reservoir
permeability induced by the hydraulic fracture, this study
first introduces a coupled thermo-hydro-mechanical-chemical
mathematical model and its numerical implementation based
on finite element technology to analyze the methane hydrate
extraction through fractured methane hydrate-bearing sediment
considering methane hydrates dissociation, gas-water two-
phase flow, heat transfer, dynamic changes of the sediment
permeability and deformation of both sediment matrix and
fractures as well as capturing the interplay between them. Then
the coupled thermo-hydro-mechanical-chemical numerical model
is verified by reproducing a methane hydrates dissociation
laboratory test. Finally, we conduct a series of simulations for the
methane gas depressurization extraction through the sediments
with the DFNs assigned as diverse geometrical characteristics.
The influence of hydraulic fracture network geometrical and
hydraulic characteristics on methane hydrate extraction are
discussed.

2 Mathematical model

2.1 Fundamental assumptions

Several assumptions are made to obtain the THMC coupling
model used in this study. (1) All phases are in local thermal
equilibrium. (2) The hydrate dissociation follows Kim-Bishnoi
kinetics model. (3) The fluids flow very slowly, controlled by
Darcy’s law. (4) Different phases do not interact with each other.
(5) The liquid is pure water, and the influence of salinity is
ignored. (6) Dissolution and precipitation are not considered
(Sun et al., 2019).

2.2 Governing equations

Theprocesses ofmethane hydrates phase change, gas-water two-
phase flow, heat transfer, and deformation of both sediment matrix
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FIGURE 1
Comparisons between the numerical predicted and experimental (A) total gas production and (B) temperature evolution.

and fractures duringmethane hydrate dissociation are dominated by
Eq. (1) as follows (Sun et al., 2019):

{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{
{
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(1)

where ρ, S, P, c, kT , μ, and M are the density, saturation, pressure,
specific heat capacity, heat conductive coefficient, dynamic viscosity,
and molar mass of each phase, respectively; the subscript i = w, g, h
for water, gas, and hydrate, respectively; 𝑁h is the hydrate number
in the phase change equation CH4 ⋅NhH2O→ CH4 +NhH2O;
k is intrinsic permeability; ϕ is porosity; g is gravitational
acceleration; u is a displacement of solid phase; krw and krg
are the relative permeability of water and gas, respectively; ΔH
is the enthalpy change; and qT is heat sink/source term. The
intrinsic permeability of a fracture is controlled by the parallel plate
model ask f =

a2

12
, where a is hydraulic aperture. In addition, gas

density ρg =
PgMg

RT
, where R is the gas constant. Rh is the reaction

rate per mole and can be calculated by the Kim-Bishnoi kinetics
model (Kim et al., 1987) as Rh = ϕShAhsKd0 exp(−

ΔE
RT
)(Peq − Pg),

where ΔE is the activation energy, Kd0 is the kinetic dissociation

constant, the specific area Ahs = √
ϕ3(1−Sh)

3

2k
, and phase equilibrium

pressure Peq = exp(a1 −
a2
T
)with two regression constants a1 and a2

(Jiang et al., 2022b).

2.3 Evolution of sediment hydraulic
properties

Complex interactions occur between methane hydrates
dissociation, gas-water two-phase flow, heat transfer, and
deformation of both sediment matrix and fractures, especially
the effect on the effective saturation, sediment matrix porosity,
and fracture aperture, thereby influencing their hydraulic
characteristics such as relative permeability, capillary pressure,
and permeability. Specifically, the permeability revision of
fracture is achieved through the update of fracture opening.
In addition, the relative permeability krw and krg mentioned
above are evaluated by Eq. (2) as follows (Brooks and
Corey, 1966):

{{{{{{{{{
{{{{{{{{{
{

krw(Ŝw) = Ŝ
2+3λ
λ

w

krg(Ŝw) = (1− Ŝw)
2(1− Ŝ

2+λ
λ

w )

Ŝw =
[Sw − Swr(1− Sh)]

(1− Swr − Sgr)(1− Sh)

(2)

where λ is the pore-size distribution index; Swr is the residual water
saturation; Sgr is the residual gas saturation; and Ŝw is the effective
water saturation.Thedynamic evolution of sedimentmatrix porosity
is described by leveraging the porosity-mean stress relationship.
This relationship provides a framework for expressing the dynamic
changes in sediment matrix porosity in response to fluid pressure-
induced deformation by Eq. (3) as follows:

ϕ = α+ (ϕ0 − α)exp(−
Δσ′m
K
) (3)

where σ′m = (σ′x + σ′y)/2 is effective mean stress; K is sediment
bulk modulus; α is the Biot coefficient and ϕ0 is initial sediment
porosity. Accordingly, the dynamic changes in matrix permeability
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FIGURE 2
Geometry and boundary conditions of simulated sediment area with (A) HFN-1 (B) HFN-2 (C) HFN-3.

are calculated by Eq. (4) a cubic relationship with porosity
(Masuda et al., 1999):

k = k0[
α
ϕ0
+
ϕ0 − α
ϕ0

exp(−
Δσ′m
K
)]

3
(1− Sh)

N (4)

where k0 is the initial permeability of the hydrate-free
sediments; and N is a permeability reduction exponent.
Furthermore, the capillary pressure evolves with porosity
and permeability, controlled by Eq. (5) as follows
(Leverett, 1941):

Pg − Pw = Pc = Pe(Ŝw)
− 1

λ
√k0/ϕ0

√k/ϕ
(5)

where Pe is the initial entry pressure.

3 Numerical implementation and its
verification

3.1 Numerical model implementation

The mathematical model mentioned above is discretized
based on the FEM method using the COMSOL Multiphysics
platform which is a widely adopted multi-physical coupling
simulation software. Especially, one-dimension element controlled

by coefficient form boundary PDE (partial differential equation) is
introduced to describe the two-phase flow and heat transfer of the
fractures, and the matrix-fracture coupling is captured by setting
the physical quantity exchange between the matrix element and the
fracture element. All governing equations, auxiliary equations, and
equations of state are solved simultaneously to ensure the accuracy
of the simulation results.

3.2 Model Validation using Masuda’s
experiment data

The THMC numerical model implemented by COMSOL
Multiphysics is verified by reproducing a methane hydrates
dissociation laboratory test done by Masuda et al. (1999). The
sandstone core bearing the methane hydrates is a cylinder with a
diameter of 5.1 cm, a length of 30 cm, and porosity of 0.182, and
a circumstance temperature Tc = 275.45 K, producing a heat flux
with a heat transfer coefficient h = 25 W/(m2·K) (Sun et al., 2019),
is applied to its side and right bottom which are fixed boundaries
without fluid flux. The left bottom is the outlet boundary with a
constant pressure Pout = 2.84 MPa. In addition, the phases (gas,
water, and hydrate) are evenly distributed in the sandstone core
with an initial pressure P0 = 3.75 MPa and temperature T0 =
275.45 K, where water saturation Sw0 = 0.206 and gas saturation
Sg0 = 0.351. The comparison between the numerical predicted and
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TABLE 1 Physical and mechanical parameters.

Parameter Value

Mechanical parameter

 Rock density, ρ (kg/m3) 2,150

 Young’s modulus, E (MPa) 204 + 875∗ Sh

 Poisson’s ratio, ν 0.3

 Hydrate density, ρh (kg/m3) 917

 Biot coefficient, α 1

Hydraulic parameter

 Water viscosity, μw (Pa⋅s) 3.6×10−4

 BC model parameter, λ 0.45

 Initial permeability, k0 (mD) 7.5

 Matrix porosity, ϕ0 (%) 0.32

 Initial pore pressure, Pg0 (MPa) 14.97

 Initial gas saturation, Sg0 0.25

 Initial water saturation, Sw0 0.3

 Water density, ρw (kg/m3) 1,000

 Residual saturation of gas, Srg 0.01

 Residual saturation of water, Srw 0.01

 Entry pressure of matrix, Pe
m (MPa) 0.1

Thermodynamic parameter

 Reservoir temperature, T (K) 353.15

 Boundary thermal conductivity, h (W/m2/K) 65

 Reaction heat absorption, ΔH (J/mol) 56599+16.74T

 Specific heat of water, cw (J/kg/K) 4,200

 Specific heat of gases, cg (J/kg/K) 2,180

 Specific heat of hydrate, ch (J/kg/K) 2,220

 Specific heat of sediments, cs (J/kg/K) 750

Chemical parameter

 Hydrate number, Nh 6

 Molar mass of water, Mw (g/mol) 18

 Molar mass of gas, Mg (g/mol) 16

 Molar mass of hydrate, Mh (g/mol) 124

experimental total gas production given by Masuda et al. (1999) is
illustrated in Figure 1A. The gas production rate gets smaller due
to the decrease of methane hydrate. Figure 1B shows the numerical
predicted and experimental temperature evolutions at the three
monitoring points (A, B, and C) 0.375 cm, 15 cm, and 22.5 cm from
the left bottom of the sandstone core. Since hydrate decomposition
absorbs heat, the temperature initially decreases and then increases
due to the heat supply from the hot water bath. The comparisons
above indicate the reliability of the THMC numerical model in
this study.

4 Methane hydrate extraction with
HFN

The low permeability of the methane hydrate-bearing sediments
is identified as one of the crucial factors limiting methane gas
extraction. To enhance methane hydrate extraction, hydraulic
fracturing can be a promising approach to improve the hydrate
reservoir permeability by creating an artificial fracture network in
the reservoir. To preliminarily explore the effect of HFN geometrical
and hydraulic characteristics on methane gas extraction, this
section performs a discussion of methane gas depressurization
extraction through the sediments with the DFNs assigned as diverse
geometrical characteristics. The examples used in this section
are modified from literature by Jiang et al. (2022b). As shown in
Figure 2, the area of the sediments simulated is a rectangle-shaped
area of length 200 m by width 50 m, where no fluid flow and heat
transfer occur at the upper, lower, and right boundaries, and the left
boundary is an axis of symmetry. A reservoir pressure of 13 MPa
is applied to the upper boundary. The lower boundary is fixed in
the horizontal direction, and the right boundary is fixed in both
the vertical and horizontal directions. In addition, the horizontal
production well with a radius of 0.15 m is located at the center of
the axis of symmetry.The physical and mechanical parameters used
are detailed in Table 1.

Three HFN configurations are given as shown in Figure 2.
Models HFN-1 and HFN-2 both only have one primary hydraulic
fracture with lengths of 50 and 100 m, respectively. However,
in addition to the primary hydraulic fracture with a length of
50 m, model HFN-3 also has four secondary hydraulic fractures
with a length of 12.5 m. The three HFN models have the
same fracture aperture of a = 1 mm. Figures 3A1–A5 show the
simulated hydrate saturation, gas saturation, water saturation,
gas pressure, and temperature distributions of model HFN-1
after 15 days, respectively. Figures 3B1–B5 show the simulated
hydrate saturation, gas saturation, water saturation, gas pressure,
and temperature distributions of model HFN-2 after 15 days,
respectively. Figures 3C1–C5 show the simulated hydrate saturation,
gas saturation, water saturation, gas pressure, and temperature
distributions of model HFN-3 after 15 days, respectively.

It can be seen that the hydrate saturations in the three cases
all drop sharply around the HFNs due to the great increase in
permeability and the decrease of pressure caused by the HFNs.
Accordingly, the saturation of both gas and water increases greatly
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FIGURE 3
Hydrate saturation, gas saturation, water saturation, gas pressure, and temperature distributions in the sediments with (A1–A5) HFN-1 (B1–B5) HFN-2
(C1–C5) HFN-3 after 15 days.

around the HFNs due to the hydrate decomposition. Especially, the
gas accumulates most in the HFNs and the region very close to
the HFNs since HFNs become the preferential pathway for the gas
flow due to their greater permeability compared to the sediments
matrix. However, there is relatively little water in the HFNs, and
the region very close to the HFNs, which indicates that the gas
enters the HFNs more easily than the water. Both the gas pressure
and sediment temperature decrease since hydrate decomposition
absorbs heat. Obviously, the longer the primary hydraulic fracture is,
the more beneficial it is to promote the depressurization extraction
of methane hydrate. The secondary hydraulic fracture can further
enhance the depressurization extraction of methane hydrate on the
basis of primary hydraulic fracture. However, under the same total
fracture length, HFN-2 has a larger hydrate decomposition volume
than HFN-3. Therefore, in the long run, increasing the length of
the primary hydraulic fracture is more important than creating the
secondary hydraulic fractures.

5 Conclusion

A coupled THMC mathematical model is introduced
and numerically implemented based on the finite element

technology in this study for modeling the methane
hydrate extraction through fractured methane hydrate-
bearing sediment. The reliability and effectiveness of the
model proposed were testified by reproducing a methane
hydrates dissociation laboratory test and simulating the
methane gas depressurization extraction through the
sediments with the DFNs assigned as diverse geometrical
characteristics. The primary conclusions from our research
are as follows:

• By introducing a fracture model, the coupled THMC
mathematical model can effectively simulate the methane
hydrate extraction through fractured methane hydrate-bearing
sediment with HFN conditions.
• The longer the primary hydraulic fracture is, the more
beneficial it is to promote the depressurization extraction of
methane hydrate.
• The secondary hydraulic fracture can further enhance
the depressurization extraction of methane hydrate on
the basis of primary hydraulic fracture. However, in the
long run, increasing the length of the primary hydraulic
fracture is more important than creating the secondary
hydraulic fractures.
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