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Introduction: Permeability is one of themost important parameters for reservoir
evaluation. It is commonly measured in laboratories using underground core
samples. However, it cannot describe the entire reservoir because of the limited
number of cores. Therefore, petrophysicists use well logs to establish empirical
equations to estimate permeability. This method has been widely used in
conventional sandstone reservoirs, but it is not applicable to tight sandstone
reservoirs with low porosity, extremely low permeability, and complex pore
structures.

Methods:Machine learning models can identify potential relationships between
input features and sample labels, making them a good choice for establishing
permeabilitypredictionmodels.Astackingmodel isanensemble learningmethod
thataimstotrainameta-learner to learnanoptimalcombinationofexpertmodels.
However, the meta-learner does not evaluate or control the experts, making it
difficult to interpret the contribution of each model. In this study, we design a
gatenetwork stacking (GNS)model,which is analgorithmthatcombinesdataand
model-drivenmethods. First, an input logcombination is selected for eachexpert
model to ensure the best performance of the expert model and selfoptimization
of the hyperparameters. Petrophysical constraints are then added to the inputs
of the expert model and meta-learner, and weights are dynamically assigned to
the output of the expert model. Finally, the overall performance of the model is
evaluated iteratively to enhance its interpretability and robustness.

Results and discussion: The GNS model is then used to predict the permeability
of a tight sandstone reservoir in the Jurassic Ahe Formation in the Tarim Basin.
The case study shows that the permeability predicted by the GNS model is
more accurate than that of other ensemble models. This study provides a new
approach for predicting the parameters of tight sandstone reservoirs.

KEYWORDS

machine learning, ensemble model, gate network, tight sandstone reservoir,
permeability prediction
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1 Introduction

The absolute permeability, k, is a measure of the ability
of a porous medium to pass through a certain fluid in the
presence of one or more fluid phases. The accurate prediction of
permeability plays an important role in the evaluation of reservoir
quality, numerical simulations of reservoirs, and estimation of
geological reserves. Rock permeability is usually obtained through
laboratory core measurements (Wu, 2004). However, this method
is time-consuming and costly, and it has problems such as
non-random sampling locations and limited quantity, making it
impossible to characterize the permeability characteristics of the
entire reservoir.

Scholars have performed extensive research on the problem
of permeability predictions. The Kozeny-Carman equation (KC
equation) based on the tube-like model applies the porosity
and Kozeny constant to calculate permeability (Kozeny, 1927;
Carman, 1937). However, the formation is not a uniform porous
medium; thus, the prediction results are unreliable (Paterson, 1983;
Mauran et al., 2001). Timur established a relationship using the
porosity, bulk volume irreducible (BVI), and free fluid index (FFI)
to predict permeability, but the predicted value was sensitive to the
value of BVI, and it generally tended to overestimate permeability
(Timur, 1968). Coates and Dumanoir derived a new free fluid
model that ensured zero permeability at zero porosity when the
irreducible water saturation was 100%. However, this model was
only valid for intergranular pores and was not applicable for tight
sandstones (Coates and Dumanoir, 1973). Ahmed considered the
influence of minerals based on the Timur model and introduced
a dual-mineral diffusion water model to estimate the permeability
values. However, the irreducible water saturation is related to the
shale volume and particle size; therefore, in complex heterogeneous
or fractured reservoirs, the results are unreliable (Ahmed et al.,
1991). The above research shows that it is very difficult to
establish a comprehensive permeability prediction equation for
highly heterogeneous reservoirs, and it is necessary to find a
nonlinear method that uses well log curves for prediction.

In some cases, the models used in petrophysical calculations
are nonlinear and cannot be explained by empirical theory.
Machine learning is a data-driven approach that can provide
alternative models in the absence of deterministic physical models;
therefore, machine learning is a suitable technique for building
regression models (Mohaghegh and Ameri, 1995; Saemi et al.,
2007; Ahmadi et al., 2013; Saljooghi and Hezarkhani, 2014). Rogers
applied a backpropagation neural network (BPNN) to predict
the permeability and input the porosity log (Rogers et al., 1995).
Jamialahmadi predicted the permeability of typical Iranian oil fields
based on radial basis function (RBF) neural networks (Jamialahmadi
and Javadpour, 2000), and Nazari applied support vector regression
(SVR) to extract data into hyperplane dimensions to avoid
overfitting (Nazari et al., 2011). Al–Anazi applied the gamma-
ray log (GR), density (DEN), neutron (CN) and compressional
slow-ness (DT) to predict permeability; the results showed that
SVR was better than artificial neural networks (ANN) (Al-
Anazi and Gates, 2012). The above research shows that machine
learning methods have significant advantages over empirical

models. However, overtraining often occurs in the process of using
these models for prediction, resulting in individual models that are
not robust and have poor generalization. Zhang constructed a visual
predictionmodel and concluded that ResNet learned the best-fitting
nonlinear porosity–permeability relationship from the input feature
(Zhang et al., 2021).

To improve the problem of limited performance of a single
model, ensemble learning has been developed; this method
combines separate machine learning models through different
combination strategies to improve the performance of the combined
model (Nilsson, 1965; Friedman, 2001; Sammut and Webb, 2011;
Zhang et al., 2022; Kalule et al., 2023). Chen and Lin used a
committee machine with empirical formulas (CMEF) model to
predict permeability using a collection of empirical formulas as
experts. The results showed that the proposed model was more
accurate than any single empirical formula (Chen and Lin, 2006).
Sadegh built a supervised committee machine neural network
(SCMNN), and each estimator of the SCMNNwas the combination
of two simple networks and one gating network; the prediction
results were in good agreement with the core experimental results
(Karimpouli et al., 2010). Zhu built a hybrid intelligent algorithm
that combined the AdaBoost algorithm, adaptive rain forest
optimization algorithm, and improved Back Propagation Neural
Network (BPNN)withNuclearMagnetic Resonance (NMR) logging
data to improve and reconstruct the original artificial intelligence
algorithm (Zhu et al., 2017). Zhang established a regression model
based on the fusional temporal convolutional network (FTCN)
method that can accurately predict the formation properties when
there are major changes (Zhang et al., 2022). Bai established an
RCM model to predict reservoir parameters, and the prediction
results of the integrated model were more accurate than those
of individual expert models (Bai et al., 2020). Morteza combined
the social ski-driver (SSD) algorithm with a multilayer perception
(MLP) neural network and presented a new hybrid algorithm to
predict the value of rock permeability. The results indicated that the
hybridmodels can predict rock permeability with excellent accuracy
(Matinkia et al., 2023).

However, in current ensemble learning training, the input data
are mostly well log measured in situ, resulting in input features that
often lack petrophysical constraints. In log interpretation, the classic
petrophysical model is applicable to sandstones with medium and
high porosity. However, for tight sandstones, the porosity is low and
the pore structure is complex; therefore, the porosity–permeability
relationship cannot be explained by a simple linear model.
Therefore, we aim to build an improved stacking model in
this study.

In this study, we improve a classic stacking model called the
gate network stacking (GNS) model. In the methodology section,
we introduce the structure of the GNS model, which includes four
parts: the input layer, expert layer, meta-learner, and gate network.
In the case study section, we apply the GNS model to predict the
permeability of tight sandstones in the Jurassic formation of the
Tarim Basin and compare its performance with other ensemble
learningmodels. In the discussion section,we discuss the advantages
of the GNS model over other models and present the conclusions of
the study.
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2 Methodology

2.1 Input layer

2.1.1 Data processing
The input layer of the model is the data import port, which is

responsible for data standardization and preprocessing. The input
data for the gated network stacking model are a variety of well
log curves, and the units and orders ofmagnitude of these log curves
are quite different. Data normalization converts raw data into
dimension-less and order-of-magnitude standardized values that
can be compared between different input indicators. We use Z-
value standardization for data preprocessing of the conventional
well-logging curves. This method converts the data into a normal
distribution with a mean of zero and a standard deviation of one
without changing the distribution characteristics. To ensure that
the model exhibits the best possible performance, the value of the
output variable (core permeability) is considered as a logarithm.The
Z-value normalization formula is shown in Eqs 1–3.

Zi =
xi − μ
σ

(1)

μ = 1
n

n

∑
i=1

xi (2)

σ = √ 1
n

n

∑
i=1
(xi − μ)

2 (3)

where Zi is the standardized result of the i-th sample, xi is the i-th
sample data, μ is themean calculated for all samples, σ is the variance
calculated for all samples, and n is the total number of samples in
the dataset.

After data preprocessing, based on the game theory proposed by
Shapley (1988), we used Shapley values to analyze the contribution
of features and evaluate the importance of features in the ensemble
learning model. The Shapley value is a method from cooperative
game theory used to fairly distribute the total gains or losses
among players based on their individual contributions to the
collective effort.

The Shapley regression value represents the feature importance
of a linear model in the presence of multicollinearity (Lundberg and
Lee, 2016). It assigns an important value to each feature, indicating
the impact of including the feature in the model prediction. SHAP
(SHapley Additive exPlanations) explains the output of a model by
attributing the importance of each feature to the prediction, which
can be used to identify a new class of additive feature importance
measures and show that there is a unique solution and a desirable set
of properties in this class (Lundberg and Lee, 2017; Lundberg et al.,
2018; Lundberg et al., 2020). The SHAP value is a unified measure
of feature importance that combines these conditional expectation
functions with the classic Shapley value from game theory to
attribute ϕi values to each feature, as shown in Eqs 4, 5.

f x(S) = E[f (x)|xS] (4)

ϕi = ∑
S⊆N\{i}

|S|!(|M| − |S| − 1)!
M!

[f x(S ∪ {i}) − f x(S)] (5)

where S is the subset and E[ f(x)|xS] is the expected value of the
function conditioned on a subset S of the input features. ϕi is the

Shapley value. N is the set of all input features. S ⊆ N\{i} comprises
all the possible subsets with feature i. S∪ {i} is a subset S with added
i, and |S| is the size of the subset before the ith feature is added to
the interaction. |S|!(|M|−|S|−1)!

M!
is the weight of the combination, and

fx(S∪ {i}) − fx(S) is the marginal contribution.

2.1.2 Petrophysical models
In the process of intelligent well-logging interpretation, simply

using a data-driven strategy without geological constraints can
easily lead to training model prediction results that are significantly
different from the objective understanding. Even if the evaluation
index of the trained model is good, its prediction results for
unknown samples are not convincing. Therefore, we add the results
of the petrophysical model as the input.

The volume of clay from the gamma ray log, Vsh, is as follows:

SH =
GR−GRmin

GRmax −GRmin
(6)

V sh =
2GCUR∗SH − 1
2GCUR − 1

(7)

where GRmin is the minimum value of GR, which is about
approximately 40 API; GRmax is the maximum value of GR,
which is about approximately 140 API; SH is the relative value
of the clay volume, and GCUR is an empirical coefficient that is
approximately 2.

For the volume model of shaley sandstone, the density porosity
from the density log, ϕD, is as follows:

ϕD =
ρ− ρma

ρmf − ρma
−V sh

ρsh − ρma

ρmf − ρma
(8)

where ρma is thematrix density of tight sandstone (density of quartz),
which is about approximately 2.65 g/cm3; ρmf is the density of mud
filtrate, which is approximately 1.0 g/cm3; and ρsh is the density of
shale, which is approximately 2.3 g/cm3.

In addition, the difference between the neutron porosity and
density porosity, ND, is as follows:

ND = (ϕN −ϕNma) −
ρ− ρma

ρmf − ρma
(9)

where ϕNma is the matrix neutron porosity of sandstone, i.e., the
neutron porosity of quartz, which is about −0.02, fraction.

2.2 Expert layer

The expert layer in this study has the same structure as the
expert layer of the stackingmodel (Wolpert, 1992). It is an intelligent
system composed of multiple algorithms (experts), and all experts
handle the same tasks. During the model training process, the data
set is divided into k folds, and all of the experts output simulation
prediction results through K simulation training and prediction
processes as the input data set of the meta-learner. Finally, all data
sets are used to complete the training of the expert. In the actual
prediction process, the test set is input to each expert, and their
prediction results are input to the meta-learner for combination.

Permeability prediction is an important aspect of formation
evaluation. In the stacking model, using strong learners as experts
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can improve the accuracy and robustness of the model. Therefore,
we selected five experts to construct the expert layer: multilayer
perceptron (MLP), support vector regression (SVR), ElasticNet
(EN), light gradient boosting machine (LightGBM), and category
boosting (CatBoost). The characteristics and advantages of the five
experts are discussed in detail below:

AnMLP is a feed-forward neural network composed ofmultiple
layers of nodes andneurons. It performs nonlinearmapping through
activation functions to complete classification and regression tasks.
The error between the predicted and actual results is then measured
based on the loss function, and a backpropagation algorithm is
applied to update the weights and biases of the neural network. The
MLP can adapt to different datasets and tasks, has good capabilities
for solving complex function-fitting problems, and has certain
generalization capabilities.

SVR is a regression algorithm based on a support vector
machine (SVM). It maps the original features to a high-
dimensional feature space, transforms the regression problem
into a convex optimization problem by determining the optimal
hyperplane, and solves the optimization problem to determine
the best hyperplane. SVR has strong nonlinear modeling
capabilities, can solve complex regression tasks involving nonlinear
relationships and high-dimensional data, is robust to noise
and outliers in the training data, and can effectively avoid
overfitting.

ElasticNet regression is an extended form of linear regression.
It uses both L1 and L2 regularization terms in the objective
function. The L1 regularization term judges the importance
of features through the size of the coefficient, such that for
unimportant features the coefficient tends to zero, which is
suitable for dealing with problems with redundant features. The
L2 regularization term controls the complexity of the model
and reduces the impact of the correlation between features on
the model. The model is more stable when highly correlated
features are present. ElasticNet regression has good robustness
when dealing with regression problems with redundant features or
fewer samples, and it is relatively insensitive to noise and outliers
in the data.

LightGBM iteratively trains multiple weak learners using
the gradient boosting algorithm and optimizes and adjusts
the newly generated weak learners according to the objective
function to improve the accuracy of the model. It retains
samples with larger gradients to accelerate the training process
and uses a leaf-wise growth algorithm with depth restrictions
to prevent overfitting. LightGBM sorts features according to
their importance and performs feature selection based on
thresholds, thereby improving the generalization ability and
interpretability of the model. Further, LightGBM is suitable
for processing large-scale data sets with uneven feature
distributions.

CatBoost is a gradient boosting algorithm that is specially
designed to effectively handle categorical features. The impact of
most noise and outliers is diluted in the entire tree structure,
thereby reducing their impact on individual nodes. CatBoost
dynamically adjusts the learning rate according to the distribution
of data and the complexity of the model and has strong
accuracy and robustness when processing datasets with noise
and outliers.

2.3 Meta-learner

In the classic stacking model, the meta-learner is between the
expert and output layers. Its main function is to combine the
prediction results of different experts in a manner that minimizes
errors, as shown in Figure 1. By generalizing the outputs of multiple
expert models, the prediction accuracy of the overall model is
improved, and the final prediction result is output. When choosing
a meta-learner, the capacity and complexity should be considered.
Stronger meta-learners may overfit the model, whereas weaker
meta-learners may fail to capture complex relationships. Because
themeta-learner only learns the combination of expert models, only
simple machine learning models (weak learners) can be used; when
dealingwith high-dimensional feature sets output bymultiple expert
models, the fitting effect is often poor.

In this study, the AdaBoost model (Freund and Schapire, 1997)
is used as the meta-learner, and the weak learner in the model is a
linear regressionmodel.During the training process for each learner,
the sample weight is adjusted according to the error rate of the
previous round, and greater weights are assigned to themisclassified
samples to iteratively learn and correct the errors, thereby improving
the accuracy of the meta-learner model. The GNS model proposed
in this study uses a gate network to assign different weights to the
input data of the meta-learner and adds physical model constraints
to allow the meta-learner to better find the best combination of
expert models while complying with the physical model constraints.

2.4 Gate network

A gate network is a neural network structure that is used
to control the flow and processing of information in a model.
By adding a gate network mechanism, the input features can
be selectively filtered, amplified, or suppressed, thus forming a
constraint function for the model. In the classic stacking model,
differences in expert performance cause the relationship between
the features and learning objectives to become more complex. In
addition, the impact of the added experts on the overall model
cannot be measured. Therefore, this study introduces gate networks
to solve the aforementioned problems, adjust themodel architecture,
and improve the accuracy and interpretability of the overall model.

In the GNS model, the role of the gate network includes three
main aspects.

a. In the input layer, the gate network extracts the input
petrophysical model and adds physical constraints to the input
data of all expert models and meta-learners to improve the
prediction performance and stability of the model and achieve
model driving.

b. In the k-fold cross-validation of the expert model, the weight
calculated according to the mean squared error (MSE) of each
expert model is saved to the gate network, and the features
corresponding to each expert model are weighted according
to the weight combination saved by the gate network, which
reduces the complexity of the meta-learner learning process
and improves the robustness.The expert weights of the storage
entry network are shown in Eq. 10, and the expert prediction
results calculated based on the combination of weights are
shown in Eq. 11.
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FIGURE 1
Stacking model architecture consisting of an input layer, experts, prediction results, meta-learner, and output layer.

wt_GN =
1

MSEt
/

T

∑
i=1

1
MSEi

(10)

where T is the total number of expert models, andMSEt is the MSE
of the t-th expert.

H t(x) = wt_GN ⋅ ht(x) (11)

where ht(x) is the prediction result of the t-th expert andHt(x) is the
prediction result of the t-th expert after assigning weights through
the gate network.

c. When themeta learner outputs results, the accuracy indicators
of the expert model combination are evaluated through
a gate network. Experts who have a positive impact on
the accuracy indicators are retained, abandoning experts
who have a negative impact on the accuracy indicators are
abandoned to ensure that the overall performance of themodel
is improved.

2.5 GNS model architecture and workflow

For the formation permeability prediction problem, the
aforementioned components are used in this study to form a
GNS model. First, a dataset is created and labeled. The logging
dataset includes the natural gamma-ray log (GR), spectral gamma-
ray log (K-TH-U), compressional slow-ness log (DT), neutron
log (CN), and density log (DEN). Lab-measured core permeability
data points are used as labels. In addition to the logging data
mentioned above, Vsh, ND, and ϕD, calculated using Eqs 6–9,
are also input into the GNS, called petrophysical constraints.
Finally, a petrophysical and data-driven intelligent model is
developed.

In the input layer, the optimal combination of the corresponding
well log curves is selected for each expert model based on the

SHAP value, and the petrophysical constraints are input into
the gate network. In the expert layer, petrophysical constraints
are added to the input data of the expert model through the
gate network, and the hyperparameters of the model are self-
optimized. The Bayesian optimization method is used in this study
to optimize the parameters; it estimates the posterior distribution
of the objective function by constructing a Gaussian process (GP)
model and determines the hyperparameter value for the next
sampling, thereby quickly finding the global optimal solution. Cross-
validation partitioning the dataset intomultiple subsets, training the
model on some of these subsets, and evaluating its performance
on the remaining subsets. After model optimization is completed,
each expert model is simulated and predicted using a five-fold
cross-validation method. The performance of the expert model
is evaluated according to the MSE of the model and stored in
the gate network. Each expert model is then trained using all
of the datasets.

According to the ranking of expert performance indicators,
the expert model simulation prediction results are added to the
meta-learner and given weights to form the input set of the meta-
learner. At the same time, the gate network adds petrophysical
constraints.

Finally, the meta-learner is trained. We evaluate the output
results, retain the expert models that positively impact the overall
model performance, eliminate the expert models that negatively
impact the overall model, and finally output the prediction results
of the best model combination.

Because the expert model adds dynamic weight constraints, it is
more robust and interpretable than the classic stacking algorithm.
Figure 2 shows the GNS workflow based on petrophysical and data-
driven methods.

2.6 Performance evaluation

To verify the reliability and accuracy of the proposed GNS
model, three statistical parameters are introduced as performance
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FIGURE 2
GNS model workflow consisting of five parts: the input layer, expert layer, meta-learner, gate network, and output layer.

TABLE 1 Parameters for assessment to evaluate the model performance.

Accuracy measure Mathematical exp

Coefficient of determination (R2) R2 = 1−

N
∑
i=1
(yi−ŷi)

2

N
∑
i=1
(yi−yi)

2

Mean square error (MSE) MSE = 1
N

N
∑
i=1
(yi − ŷi)

2

Maximum absolute error (MAE) MAE = 1
N

N
∑
i=1
|(yi − ŷi)|

evaluation indicators. The equations used to calculate each
parameter are listed in Table 1.

3 Case study

3.1 Geological background

The Dibei tight gas reservoir in the Kuqa Depression of the
Tarim Basin has become a key exploration area because of its large
gas reserve potential. The main production and storage unit is the
Jurassic Ahe formation. The lithology is mainly coarse sandstone,
and the sedimentary type is a braided river delta plain channel. The
rock type in the sedimentation is mainly lithic sandstone, followed
by feldspathic lithic sandstone, with a quartz content of more than
60%. Feldspar, clay minerals, calcite, and dolomite are all developed.
The Dibei gas reservoir has low porosity, a complex pore throat
structure, and a wide range of permeability changes.Multiple factors
jointly control the permeability of the reservoir, and the predictive
effect of the empirical model is poor. It is necessary to apply a model
that can identify nonlinear characteristics betweenwell logs and core
data.Therefore, we apply theGNSmodel to predict the permeability.

3.2 Data acquisition

The stability and accuracy of the model depend on the reliability
of the training data. In this study, 1,088 samples were collected
from five wells in the Dibei area. The locations of the core wells are
shown in Figure 3. The input variables include seven conventional
well logs (GR, K, TH, U, DT, DEN, and CN) and three petrophysical
constraints (ND, Vsh , and ϕD); the permeability value is the
desired output. To ensure that the GNS model has the best possible
performance, the training data were normalized. Based on the data
normalization, we calculated the SHAP value of each input feature,
as shown in Figure 4, which reflects the contribution of each feature
to the model prediction, further indicating the relative importance
of each feature to the prediction results.

The bar chart in Figure 4 shows that the contributions of the
SHAP values in descending order are DEN, GR, TH, CN, K, DT,
and U. Five different expert models were trained based on the SHAP
value contribution of the well log, and the MSE of the training
results is shown in the line chart in Figure 4. The MSE reduction is
defined as a log that has a positive contribution to the model, while
conversely, when it has a negative contribution to the model, the
positive contribution log is retained as the input of the expertmodel,
and different log combinations are input for different expert models.
Together with the permeability label, these constitute the training
set, as summarized in Table 2.

3.3 Model training and performance
evaluation

The feature combinations in Table 2 are input into the expert
model for training, and the Bayesian optimization method is used
to find the optimal hyperparameter values such that the model can

Frontiers in Earth Science 06 frontiersin.org

https://doi.org/10.3389/feart.2024.1364515
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Shi et al. 10.3389/feart.2024.1364515

FIGURE 3
The Dibei gas reservoir is located in the northern part of the Kuqa Depression, as indicated by the red box in the thumbnail; the red dot indicates the
location of the coring well.

FIGURE 4
SHAP contribution of well logs and changes in the MSE of well
log combinations in each expert model.

achieve the best performance on the target task. A performance
comparison of the expert model using optimal hyperparameter
values and the expertmodel using default parameters is summarized
in Table 3.

The petrophysical constraints stored in the gate network are
added to the feature combination of each expert to form the input
dataset for each expert. Targeting the core permeability, multiple
random sampling and no-replacement iterative predictions are
conducted on experts to obtain a set of simulation prediction results,
record the expert model MSE, save it to the gate network, and use
all datasets to train each expert model. The expert combination is
formed iteratively based on the MSE of the expert model (from
small to large), the weight of each expert in the combination is
calculated (Eq. 8), and the corresponding simulation prediction
results are weighted (Eq. 9). Next, the weighted prediction results

TABLE 2 Well log input combinations for different experts.

Model Well logs

SVR DEN, GR, TH, CN, DT

MLP DEN, TH, K, DT, U

EN DEN, GR, TH

LightGBM DEN, GR, TH, CN, K, DT, U

CatBoost DEN, GR, TH, CN, K, DT, U

and petrophysical constraints are input into the meta-learner
for training to determine the optimal expert model combination
strategy. To demonstrate the effectiveness and advantages of the
GNS algorithm, a classic stacking model is used for comparison. To
ensure consistency, the same experts and meta-learners are used in
the models. A performance comparison of the two models is shown
in Figure 5.

It can be seen that the addition of the gate network clearly
improves the overall model. In contrast, the classic stacking model
lacks petrophysical constraints and expert evaluation mechanisms
and cannot optimize over-fitting, coupling correlation, and other
problems existing in the integration process of experts; as a result,
the overall performance of the stacking model is inferior to that of
the GNS. For example, in the fourth iteration shown in Figure 5, the
MLPmodel may have problems with dataset misfit or poor coupling
with other expert results, resulting in negative improvements to
the overall model when an expert is added to the stacking model.
In the GNS algorithm, the addition of this expert is judged to be
a negative improvement. Therefore, the prediction results of this
expert are eliminated from the overallmodel, ultimatelymaintaining
the quality of the overall expert group.
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TABLE 3 Expert performance comparison when applying optimized and default hyperparameters.

SVR MLP EN LightGBM CatBoost

MSE of experts using default hyperparameter values 0.38 0.39 0.44 0.21 0.23

MSE of experts using optimal hyperparameter values 0.34 0.36 0.39 0.18 0.21

FIGURE 5
MSE of the expert model and changes in the MSE when iteratively
inputting the ensemble learning model.

TABLE 4 Performance evaluation parameters of different ensemble
learning models.

Model MSE MAE R2

GNS 0.1364 0.2802 0.7291

RCM 0.1762 0.2941 0.6124

Bagging 0.2230 0.3467 0.5566

Voting 0.2764 0.4005 0.4512

The above analysis shows that the performance of the GNS
model is better than that of the stacking model, indicating
that the improvement in the gate network is effective. To
discuss the superiority of the model architecture, this study
conducts a horizontal comparison with other ensemble learning
models. We selected three representative integration strategies:
two heterogeneous integration models (RCM and Voting) and a
bagging integration model constructed using LightGBM. Three
evaluation indicators—MSE,MAE, andR2—are used to evaluate the
performance of the model. The results are summarized in Table 4.
TheGNS and RCMmodels have better prediction performance, and
the GNS model achieves the best prediction results.

Figure 6A shows the error between the core permeability
measured in the laboratory and that predicted using theGNSmodel.
To compare the prediction effect more intuitively, the permeability
is plotted on a cross diagram (Figure 6B), where the 45° diagonal
line represents a perfect match between the predicted and true

penetration rates. The prediction error of the model conforms
to a normal distribution; therefore, the accuracy of the model
can be judged based on the variance and MSE (Helle et al., 2001;
Zhong et al., 2019). Figures 7–9 show the prediction results of the
RCM, bagging, and voting models, respectively.

The GNS model has a variance of 0.0931 and MSE of 0.1364. It
has the highest degree of fit with the core permeability values. The
error does not exceed one order of magnitude for any of the core
samples, showing the best performance (Figure 6). The variance of
the RCM model is 0.1109 and the MSE is 0.1762. The prediction
results are slightly lower in the high-permeability interval, and the
performance is slightly weaker than that of the GNS (Figure 7). The
variance of the bagging model is 0.1272, and the MSE is 0.2230.
Some sample points exhibit large errors at different permeability
intervals. This may be because random sampling will lead to a loss
of some useful information (Figure 8). Finally, the voting model has
the largest variance and MSE, and the predicted permeability has
a larger error than the core permeability (Figure 9). These studies
demonstrate that the GNS model is consistent with the measured
permeability of the cores.

3.4 Prediction results

Well N4 is a core well in the Dibei gas reservoir in the
Tarim Basin. The target reservoir is the Jurassic Ahe Formation.
Logging data includes natural gamma ray log (GR), porosity logs
(DEN-CN-DT), and natural gamma spectrum logs (K-TH-U).
In this study, we selected the above seven well logs and three
petrophysical constraints (VSH, PHID, and ND) as inputs, used
the core permeability measured in the laboratory as label data, and
entered it into the GNS model for prediction. For comparison, the
results of several other ensemble learning models were obtained.
Figure 10 shows the prediction results for each model in Well N4.
The first track is the natural gamma curve, the second track is
the natural gamma spectrum curve, the third track is the porosity
log curve, and the fourth track is the petrophysical constraints.
Tracks 6, 7, 8, and 9 are the comparisons between the prediction
results of the GNS model, RCM model, bagging model, and voting
model and the true value of the core permeability, respectively. The
prediction results of the GNSmodel exhibit the best agreement with
the core measurement results. The RCM and bagging models have
certain errors at lower permeabilities. The voting model exhibits
the largest difference from the core measurement results. The case
study shows that the GNS model has advantages in predicting
permeability. Importantly, we applied the gate network to integrate
the petrophysical constraints with the model, rather than simply
taking the petrophysical constraints as inputs. In addition, we
controlled the weight of the model through the gate network,
avoiding the influence of weak experts. Thus, the proposed model
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FIGURE 6
(A) Histogram of the error between the core measured permeability value and the permeability predicted by the GNS model. (B) Cross plot of the core
measured permeability value and permeability predicted by the GNS model.

FIGURE 7
(A) Histogram of the error between the core measured permeability value and the permeability predicted by the RCM model. (B) Cross plot of the core
measured permeability value and permeability predicted by the RCM model.

is more flexible than previously established empirical equations and
other machine learning models.

4 Discussion

In recent years, machine learning has promoted the intelligent
development of log interpretation. In the process of supervised
learning, machine learning automatically adjusts the internal
structure to satisfy the mapping relationship between the feature
data and label data and establishes a prediction model with certain
generalization capabilities. However, data-driven learning is the core
of current machine learning. Most studies have only considered the
use of indicators such as accuracy andmean square error to evaluate

the performance ofmachine learningmodels, ignoring the impact of
physical constraints on the overall model. Therefore, even a model
with superior performance is not convincing in its predictions for
unknown samples. It is clear that a single data-drivenmethod cannot
meet the requirements of log interpretation tasks. The combination
of model- and data-driven methods is a development trend for
the future application of machine learning models in the field
of log interpretation. This approach considers model performance
and interpretability. While ensuring the accuracy of the model, it
also ensures that it conforms to the physical laws of the logging
interpretation process.

The stacking model typically consists of an expert model layer
and a meta-learner, which has better performance than a single
model in actual tasks. However, the meta-learner only learns the
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FIGURE 8
(A) Histogram of the error between the core measured permeability value and the permeability predicted by the bagging model. (B) Cross plot of the
core measured permeability value and permeability predicted by the bagging model.

FIGURE 9
(A) Histogram of the error between the core measured permeability value and the permeability predicted by the voting model. (B) Cross plot of the
core measured permeability value and permeability predicted by the voting model.

combination of experts and does not perform any evaluation or
control of the experts, resulting in poor interpretability and difficulty
in explaining the contribution of each model. The RCM model
relies on the performance of experts, and some weak models may
have a greater impact on the results and a weak ability to solve
the problem of data imbalance. The bagging model aims to reduce
the variance. When the data distribution was uneven, each basic
model learned different features from different data subsets. In
addition, if the basic model itself has overfitting or underfitting
problems, bagging cannot solve them. The voting algorithm relies
on the performance of experts. Because the weights are the same,
the information obtained by each model may not be fully utilized.
The voting model is sensitive to noise. In this study, it is also found

that for sample sets with large differences in permeability, noise
causes the model to obtain poor results. The GNS model controls
the model through the gate networkmechanism, adds petrophysical
constraints to the inputs of the expert model and meta-learner,
dynamically assigns weights to the output of the expert model, and
finally iteratively evaluates the overall performance of the model.
Connecting each training step of the model and adding constraints
uniformly improves the shortcomings of the traditional model and
significantly enhances the interpretability and credibility of the
overall model.

However, petrophysical constraints are calculated from well
logs, and there is still a certain similarity in their features.
During the model training process, feature redundancy is
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FIGURE 10
Permeability prediction results for Well N4 in the Dibei Gas Reservoir, Tarim Basin.

possible, and the information dimension may not be sufficiently
rich. Therefore, the choice of petrophysical constraints is
important. In the future research, while applying petrophysical
constraints, more logging information can be used as the input
or constraint of the model, such as imaging logging to achieve
better results.

5 Conclusion

This paper proposes a workflow for reservoir permeability
prediction based on the GNS model. The SHAP value is used to
analyze the contribution of the feature curve, select the optimal
feature combination to build the traditional stacking model, and use
the gate network to control and dynamically optimize the overall
model. Finally, the results of othermodels are compared to verify the

superior performance of the GNSmodel. The following conclusions
can be drawn from this study.

1) The selection of a well log is crucial for the prediction
performance of intelligent algorithms. Intelligent algorithms
based on appropriate features can outputmore accurate results.
SHAP contribution analysis is an effective means of evaluating
the importance of well logs.

2) Based on the classical stacking model, the GNS model applies
gate networks to control and dynamically optimize the overall
model. GNS is an algorithm driven by both data andmodels. It
retains the advantages of the stackingmodel’s strong expressive
ability and significantly improves the interpretability of the
algorithm. Compared with single data-driven algorithms,
it is more reliable and superior in practical logging task
applications.
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3) The GNS model can effectively solve the nonlinear
prediction problem of high-dimensional features. In the tight
sandstone reservoir permeability prediction example, the
results of theGNSmodel are closer to the laboratory-measured
permeability than the results of the RCM, voting, and bagging
models, thus verifying that the proposed model is an accurate
method.
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