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The automated classification of rock images is of paramount importance
in geological analysis, as it serves as the foundational criterion for the
categorization of rock lithology. Despite recent advancements in leveraging
deep learning technologies to enhance the efficiency and precision of image
classification, a crucial aspect has been overlooked: these methods face
a performance bottleneck when attempting to apply it directly to rock
classification methods. To address this limitation, we propose a multiple
granularity Spatial disorder Hierarchical residual Network (SHN). This approach
involves learning from objects annotated at different levels, thereby facilitating
the transfer of hierarchical knowledge across levels. By enabling lower-level
classes to inherit pertinent attributes fromhigher-level superclasses, ourmethod
aims to capture the intricate hierarchical relationships among different rock
types. Especially, we introduce a multi-granularity spatial disorder module to aid
neural networks in discerning discriminative details across various scales. This
module enables processed images to exhibit region independence, compelling
the network to adeptly identify discriminative local regions at diverse granularity
levels and extract pertinent features. Furthermore, in light of the absence of a
comprehensive rock dataset, this study amassed 4,227 rock images of diverse
compositions from various places, culminating in the creation of a robust rock
dataset for classification. Rigorous experimentation on this dataset yielded highly
promising results, demonstrating the effectiveness of our proposed method in
addressing the challenges of rock image classification.

KEYWORDS

hierarchical classification, multi-granularity, spatial disorder, deep learning, rock image
analysis

1 Introduction

Rock, as a primary component of the earth’s crust, constitutes a stable ensemble with a
fixed external form. The lithology of rocks serves as a crucial basis for accurately analyzing
rock porosity and oil saturation, while also forming the foundation for studying geological
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reservoir characteristics, geological modeling, and calculating
reserves. Therefore, the analysis of rock lithology holds significant
research significance in many scenarios. Thanks to the convenience
and universality of imaging equipment, different types of image
acquisition, including in the field of rock classification, have become
simple. This offers a promising opportunity for the study of rock
lithology. Furthermore, geological researchers have made extensive
efforts to fully take advantage of this opportunity, with one of the
most important efforts being the application of deep learning to rock
image classification.This expands the application of deep learning in
geological analysis.

Fine-grained image and video recognition has a wide range
of research and application in both the academic and industrial
fields (Yan et al., 2021; Tong et al., 2024). It’s more challenging than
traditional recognition problems because it aims to distinguish
subclasses of large-category objects in images, such as different
types of birds. Since there are subtle inter-class differences among
multiple subclasses within a large category, the key to fine-grained
recognition lies in first locating the parts of the image that are
conducive to the final recognition, such as the beak, eyes, and claws
of birds. Additionally, the collaboration ofmulti-granularity features
and multi-scale information within each other can improve the
performance of fine-grained image classification (Yang and Song,
2023).

For rock image classification, single fine granularity
classification can be employed (Chen et al., 2023). A high accuracy
depth transfer learning method (Polat et al., 2021b) is proposed
to identify rock types quickly and accurately by classifying
12 deep rock types using thin section images. However, the
definition of granularity is subjective, and image quality may
affect recognition results. These challenges increase the difficulty of
constructing fine granularity classification for rock. In comparison
to single-granularity classification, a more preferable solution is
to adopt hierarchical multi-granularity labels in HMC to describe
objects, providing a more flexible approach for annotators with
different knowledge backgrounds. Hierarchical multi-granularity
classification (HMC) (Silla and Freitas, 2011) aims to leverage
hierarchical multi-granularity labels and embed the label hierarchy
into the loss function or network architecture. Chen et al. (2022)
proposed a hierarchical network structure HRN, and designed a
hierarchical feature interaction method that can utilize samples
labeled at different levels and enhance the ability to distinguish
between fine-grained categories.

The rock lithology is the basis for rock image classification,
including color, structure, composition, cementing material, special
minerals, etc. Currently, according to the lithological characteristics
of various types of rocks, rocks can be divided into three
major categories, namely, Igneous rocks, Sedimentary rocks, and
Metamorphic rocks (Liu et al., 2023). Among them, igneous rocks
are generally considered as original rocks, formed by the cooling and
solidification of volcanic lava or magma erupted from volcanoes, so
their composition is generally determined by magma composition.
Sedimentary rocks and metamorphic rocks belong to secondary
rocks, formed by various evolutions of igneous rocks, so their
composition ismore complex. Sedimentary rocks aremainly formed
by the influence of high pressure, weathering, and transportation
on igneous rocks, while metamorphic rocks are formed under the
metamorphic action of igneous rocks or sedimentary rocks. In

addition to being divided into three major categories, rocks can
also be further subdivided into thirteen small categories according
to indicators such as rock texture, particle size, composition, and
structure (Ma et al., 2021). These unique nature of rock provides
direct support for our study of multiple granularity hierarchical
network.

Specially, to better identify discriminative local regions, we
introduce a multi-granularity spatial disorder module into the
classification network. The spatial disorder module fragments and
reorganizes the image, breaking the overall correlation of the
image. This compels the network to search for locally relevant
regions that are more beneficial for classification, as important
discriminative points for fine-grained image classification are
often found in these local areas. Additionally, we incorporate
the concept of multi-granularity (Lang et al., 2019; Chen and
Miao, 2020) to comprehensively explore local regions of different
granularities (Qian et al., 2020) from multiple granularity layers to
enhance feature extraction and improve classification accuracy. The
contributions of this study are as follows.

• A rock image classification method SHN based on HMC is
proposed. A novel network structure is built to add parent
features as skip connections to child features through a
hierarchical feature interaction module. Embedding the label
hierarchy into the loss function and network architecture
introduces layers with specific granularity to separate
hierarchical features from the main network, which enables
coarse-layer rock lithology features to be inherited by finer
layers.
• A spatial disorder module is introduced to enhance the
classification accuracy of the multi-granularity network.
This module operates by segmenting and disrupting the
input image, breaking the correlation between local regions
and enabling the network to better identify discriminative
local areas.
• Design a hierarchical multi-granularity classification network
loss based on multi-class cross entropy loss to enhance the
classification ability of fine-grained subclasses.
• Extensive experiments are conducted with the state-of-
the-art method HRN on a self-made rock image dataset,
verifying the effectiveness of SHN on the rock classification
task.

2 Related works

2.1 Rock lithology image classification

Currently, deep learning technology is gradually maturing,
and significant progress has been made in the field of geological
research, both domestically and internationally, particularly in the
classification, recognition, and retrieval of rock images. Fan et al.
(2020b) addressed the need for rapid identification of rock lithology
by field geological surveyors using a lightweight CNN model.
Ran et al. (2019) achieved the recognition of six common rock
types in the field environment based on deep convolutional
networks. Koeshidayatullah et al. (2020) employed DCNN-based
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FIGURE 1
The overview of the proposed Multiple Granularity Spatial Disorder Hierarchical Residual Network.

object detection and image classification methods to identify
carbonate rock lithofacies images, demonstrating that this approach
is more cost-effective, faster, andmore reproducible than traditional
lithofacies analysis. Fan et al. (2020a) utilized two lightweight
CNNs to recognize and classify 28 rock images. Liu et al. (2020)
conducted intelligent recognition of underground rock masses
in rock mining using a simplified VGG16 under the Faster-
RCNN object detection framework for feature extraction and
learning from eight rock images. Polat et al. (2021a) employed
DenseNet121 and ResNet50 models to classify thin sections of
six volcanic rock images. Although the aforementioned methods
have achieved satisfactory results, the relatively singular choice
of models suggests the potential for expanding experiments to
compare different networks. Furthermore, further optimization
of the model structure can enhance the speed and accuracy of
recognition.

2.2 Multi-granularity classification

HMC has found extensive applications in various fields.
For example, Bengio et al. (2010) proposed a label embedding

hierarchical structure for multi-classification problems. Liu et al.
(2013) designed and established a hierarchical structure for a
probability label tree. Unlike the tree structure modeling methods
mentioned above, Jia et al. (2011) proposed in 2011 to establish
a category hierarchy of a directed acyclic graph, which can
include more diverse and slightly redundant multi-granularity
information. This approach is conducive to a more reliable
exploration of different granularity relationships in modeling,
leading to improved classification performance. In text classification,
an increasing number of works (Chen et al., 2020; Huang et al.,
2019) utilize label hierarchy structures to enhance accuracy. In
image classification, HMC systems have been used for annotating
medical images (Dimitrovski et al., 2011) and classifying diatom
images (Dimitrovski et al., 2012).

Research based on deep neural networks (DNN) typically follows
twomain paths: mapping the label hierarchy structure to the network
architecture (Cerri et al., 2014; Peng et al., 2018), or applying a loss
function with hierarchical constraints (Jia et al., 2014; Giunchiglia
and Lukasiewicz, 2020). HMC with Local Multi-Layer Perceptrons
(HMC-LMLP) (Cerri et al., 2016) proposes training a series of MLP
networks, each corresponding to a hierarchical level. The input for
each MLP uses the output provided by a previously trained MLP to
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FIGURE 2
Structure diagram of the hierarchical residual network using spatial disorder module.

enhance the feature vector of instances. This supervised incremental
greedy process continues until reaching the last level of the hierarchy.
HMCNetwork (HMCN) (Wehrmann et al., 2018) consists ofmultiple
local outputs, with each hierarchical level of the class hierarchy having
a local output layer, along with a global output layer capturing the
cumulative relationships propagated through the entire network. All
local outputs are thenconnectedandaggregatedwith theglobaloutput
to generate the final consistent prediction. HMC-LMLP and HMCN
embed the label hierarchy structure into their network architectures.
Their loss functions sum up the binary cross-entropy loss for each
hierarchical level, assuming independence between each label, thus
neglecting implicit hierarchical relationships between two semantic
labels.

The task of multi-granularity image recognition can employ part-
based/attention-basedapproaches to identifydiscriminativeregions in
the imageand learnregion-based feature representations.For instance,

Fu et al. (2017) proposed a ReinforcedAttention Proposal Network to
obtain distinctive attention regions and a region-based multi-scale
feature representation. Sun et al. (2018) introduced the OneSqueeze
Multi-Excitation Module to learn multiple attention region features
for each input image, and then applied multi-attention multi-class
constraints within a metric learning framework. Zheng et al. (2017)
utilizedachannelgroupingnetworktogeneratemultipleparts through
clustering and then classified thesepart features topredict the category
of the input image. In comparison to early part/attention-based
methods, recent approaches often tend tobeweakly supervised anddo
not require annotations forpartsorkey regions. Specifically,Peng et al.
(2017) proposed a spatial constraint to ensure the model selects
discriminative regions and used a dedicated clustering algorithm to
integrate features from these regions. Yang et al. (2018) introduced a
method to detect information regions and carefully examined them
to make final predictions. However, the correlation between regions
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FIGURE 3
The process of rock images through spatial disorder module.

contributes to a more profound understanding of objects, and this is
often overlooked in previous work. Research (Noroozi and Favaro,
2016) also indicates that leveraging the positional information of
regions can enhance the visual representation capacity of neural
networks, thereby improving the performance of classification and
detection tasks.

3 Detailed method

3.1 Network architecture

As shown in Figure 1, we propose a multiple granularity Spatial
disorder Hierarchical residual Network, called SHN. The network
architecture comprises a spatial disorder module, a trunk network,
a hierarchical feature interaction module, two parallel output
channels and Grad-CAM feature visualization. The trunk network
is responsible for extracting features from input images, and any
commonly used network can be applied. In this study, we opt for

ResNet-50 as the trunk network, given its widespread usage in
feature extraction.

The hierarchical feature interaction module consists of
granularity-specific blocks and residual connections. These blocks
share a consistent structure, comprising two convolutional layers
and two fully connected (FC) layers. Each block is tailored to
extract specialized features for a particular hierarchical level.
The residual connections initially linearly combine features of
fine-level subclasses with those of coarse-level superclasses.
Consequently, subclasses possess both unique attributes and
inherit attributes from their superclasses. Subsequently, a non-
linear transformation (ReLU) is applied to the combined
features.

Within our SHN model, two output channels are established.
The first output channel computes the probabilistic classification
loss based on the tree hierarchy, where each Sigmoid node
corresponds to a distinct label in the hierarchy. Sigmoid is employed
for non-linear projection instead of Softmax, as Sigmoid reflects
independent relations while Softmax implies mutual exclusion. The
Sigmoid nodes from each hierarchical level are then organized

Frontiers in Earth Science 05 frontiersin.org

https://doi.org/10.3389/feart.2024.1364209
https://https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Zhang et al. 10.3389/feart.2024.1364209

FIGURE 4
The result of rock images passing through spatial disorder module of different granularities.

according to the tree hierarchy to adhere to hierarchical constraints.
The second output channel computes the multi-class cross-
entropy loss at the leaf level, prioritizing attention to mutually
exclusive fine-grained classes during training. For simplicity, we
denote the first and second output channels as OHier and OCE,
respectively. The detailed network design and operation is shown in
Figure 2.

3.2 Multiple granularity spatial disorder
module

As shown in Figure 3, the spatial disorder module relies
on destruction and construction learning (DCL) (Simonyan
and Zisserman, 2014), a novel fine-grained image classification
model. This model introduces a DCL stream to automatically
learn from discriminative regions. Firstly, inspired by commonly
used disruption methods in natural language processing, a
region confusion mechanism is proposed to partition input
images and randomly shuffle them. Simultaneously, an adversarial
loss is introduced to mitigate the impact of noise, facilitating
destructive learning by the network. Subsequently, a region
alignment network is introduced to restore the original layout
of regions and model correlations between local regions through
reconstruction.

The spatial disorder module mentioned earlier aims to
encourage the network to focus on learning how to identify locally
discriminative regions in an image, rather than the overall relevance

of the image. However, these discriminative regionsmay not all be at
the same level of granularity. This paper proposes that one purpose
of the spatial chaos module is for the network to not only learn the
coarse-grained features of the original image, but also to identify
useful features in small local regions.

Granular computing is a method of thinking and methodology
that operates at different levels of granularity. The concept of multi-
granularity in granular computing can be seen as a multi-level
and multi-perspective approach to problem solving. The original
images input to the neural network can be seen as the coarsest
level of granularity information. From the perspective of granular
computing, the spatial disorder module mentioned earlier is the
process of refining the granularity of the image to obtain finer
granularity information.

If the image is spatially disrupted by other granularity modules
and each granularity is guided independently based on this concept,
the model can learn more information at different granularities
and make more robust decisions. Figure 4 shows the result of
rock images passing through spatial disorder module of different
Granular. In this paper different granularities are used to process
image data.

3.3 Hierarchical multi-granularity
classification network loss

In Fine-Grained Visual Categorization (FGVC), the widely
adopted approach for distinguishing fine-grained categories is
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TABLE 1 Data distribution.

Coarse category Fine category Example image Lable Number of images

Sedimentary rocks

volcaniclastic rocks AA 192

clastic rocks AB 131

clay rocks AC 123

biochemical rocks AD 913

Metamorphic rocks

contact metamorphic rocks BA 585

regional metamorphic rocks BB 172

dynamic metamorphic rocks BC 256

hydrothermal metamorphic rocks BD 610

Igneous rocks

ultramafic rocks CA 162

mafic rocks CB 297

intermediate rocks CC 136

acidic rocks CD 474

alkaline rocks CE 176

the utilization of multi-class cross-entropy loss. To enhance
the discriminative capabilities specifically for fine-grained leaf
classes, we integrate LCE into our model. LCE utilizes softmax
outputs from OCE, where each node corresponds to a fine-
grained leaf label in the tree hierarchy. The softmax outputs
indicate mutually exclusive relationships among fine-grained
classes, aligning with the hierarchy constraint outlined in the
tree structure. As shown in Eq. 1, we merge LCE with LHier in the
following manner:

Lcom (xl,y
l
gl) =
{{{{
{{{{
{

LCE + LHier only gl is a

lea f node

LHier otherwise

(1)

The combined loss determines whether to incorporate LCE based
on whether xl is labeled at fine-grained leaf categories. In the end, as
shown in Eq. 2, the total loss on dataset D is:

Ltotal (D) = ∑
l
Lcom (xl,y

l
gl) (2)
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FIGURE 5
Classification accuracy of different settings under 180 epochs. (A)
show the coarse category test accuracy and (B) show the fine
category test accuracy respectively.

This loss can simultaneously constrain the spatial disorder
module and the multi-layer hierarchical network. By minimizing
this loss function, robust and effective classification results can be
obtained.

4 Experiments

4.1 Datasets

Currently, there is a lack of publicly available rock datasets.
In this paper, 4,227 rock images of various rock types were
collected from the natural historymuseums of Chongqing, Chengdu
University of Technology, and the digital cloud platform of Wuhan
University to create a basic rock dataset for classification.

Our collected images align with the methodology proposed
by Chang et al. (2021), where the rock images in the dataset
are divided into three major categories of sedimentary rocks,
metamorphic rocks and igneous rocks according to the lithology of
rocks. This paper divides sedimentary rocks into four subcategories
of volcaniclastic rocks, clastic rocks, clay rocks and biochemical

FIGURE 6
Classification accuracy of different settings under 300 epochs. (A)
show the coarse category test accuracy and (B) show the fine
category test accuracy respectively.

rocks; divides metamorphic rocks into four subcategories of
contact metamorphic rocks, regional metamorphic rocks, dynamic
metamorphic rocks and hydrothermal metamorphic rocks; divides
igneous rocks into five subcategories of ultramafic rocks, mafic
rocks, intermediate rocks, acidic rocks and alkaline rocks. The
specific data distribution is shown in Table 1.

In the experiment, the dataset was divided with 50% used
for training and the remaining 50% for testing. Furthermore, the
performance of neural network models mainly depends on the
knowledge learned from the dataset. The larger and more diverse
the dataset, the better the learning effect and the higher the
performance of the neural network model. Therefore, in order to
better train the neural network, this paper expanded the rock images
through various methods such as brightness adjustment, contrast
adjustment, random rotation, and deep convolutional generative
adversarial network (DCGAN). After expansion on the training set,
this paper finally formed a dataset of 8,400 rock images oriented to
the task of rock image classification.

The experimental platform is Ubuntu 22.04 LTS system. Under
the Pycharm integrated development environment, use PyTorch
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TABLE 2 Experimental evaluation.

Category HRN SHN

Precision Recall Specificity Precision Recall Specificity

AA 0.783± 0.092 0.823± 0.095 0.986± 0.027 0.891± 0.080 0.936± 0.066 0.993± 0.014

AB 0.723± 0.083 0.714± 0.058 0.981± 0.019 0.929± 0.075 0.916± 0.055 0.994± 0.022

AC 0.761± 0.076 0.700± 0.087 0.984± 0.014 0.809± 0.098 0.739± 0.079 0.993± 0.013

AD 0.787± 0.056 0.779± 0.091 0.901± 0.018 0.923± 0.021 0.913± 0.043 0.977± 0.015

BA 0.806± 0.042 0.775± 0.078 0.924± 0.021 0.901± 0.064 0.865± 0.023 0.982± 0.021

BB 0.745± 0.063 0.721± 0.088 0.987± 0.017 0.915± 0.100 0.885± 0.057 0.995± 0.010

BC 0.726± 0.042 0.760± 0.067 0.967± 0.019 0.847± 0.071 0.886± 0.069 0.983± 0.016

BD 0.729± 0.061 0.731± 0.038 0.932± 0.015 0.852± 0.084 0.853± 0.074 0.975± 0.027

CA 0.831± 0.107 0.848± 0.097 0.988± 0.012 0.897± 0.099 0.914± 0.038 0.995± 0.021

CB 0.717± 0.099 0.741± 0.112 0.952± 0.012 0.794± 0.069 0.822± 0.058 0.985± 0.021

CC 0.842± 0.090 0.843± 0.107 0.993± 0.012 0.928± 0.081 0.928± 0.053 0.998± 0.021

CD 0.747± 0.087 0.728± 0.087 0.940± 0.012 0.838± 0.076 0.816± 0.022 0.983± 0.021

CE 0.815± 0.084 0.875± 0.079 0.969± 0.012 0.835± 0.071 0.897± 0.059 0.987± 0.021

2.1.0 to build a network model to conduct model training on the
NVIDIA GeForce RTX 2080.

4.2 Evaluation metrics

To systematically assess the performance of the proposed
method on Fine-Grained Visual Categorization (FGVC) for crock
classification datasets, we employ two evaluation metrics. The
first metric adheres to FGVC conventions and utilizes overall
accuracy (OA). The HMC models produce a probability vector for
each class (coarse and fine category). Considering the hierarchical
label structure, we extract the maximum value from the output
probability vector corresponding to each hierarchical level as the
predicted label and compute the overall accuracy on the test set.The
second criterion, commonly employed in HMC literature, evaluates
the area under the average precision and recall curve (AU). Instead of
calculating precision and recall curves (PRC) for individual classes,
AU computes an average PRC to assess the output probability vector
of all classes in the hierarchy. Specifically, for a given threshold value,
one point (Prec, Rec) in the average PRC is computed as Eqs 3, 4:

Prec =
∑n

i=1
TPi

∑n
i=1

TPi +∑
n
i=1

FPi
(3)

Rec =
∑n

i=1
TPi

∑n
i=1

TPi +∑
n
i=1

FNi
(4)

where TP (true positive) is the number of positive samples
correctly identified by the network; TN (true negative) is the

number of negative samples incorrectly identified by the network;
FN (false negative) is the number of negative samples correctly
identified by the network; FP (false positive) is the number
of positive samples incorrectly identified by the network. i
means the ith rock image and n is the total numbers of the
tested images.

4.3 Experiment settings

In our experimental setup, we consistently resized input images
to a dimension of 448 × 448 pixels and conducted a total of 180
and 300 training epochs, in order to observe how the various
training methods perform in short and long training epochs.
The test operation was repeated 3 times for each experimental
setting, and the results were derived from the average of 3 times
experiments to ensure the reliability of the experimental results.
Furthermore, we always use the original dataset to train the
HRN model. For the backbone of our model, we leverage a
pretrained ResNet-50 architecture, specifically pretrained on the
ImageNet dataset. Our optimization strategy involves employing
stochastic gradient descent (SGD) with a momentum value of
0.9 and a weight decay of 0.0005. Throughout the training
process, we set the batch size to eight to balance computational
efficiency and model performance. Additionally, we initialize
the learning rates for both the convolutional layers and the
fully connected (FC) layers newly introduced for hierarchical
interaction to 0.002. This comprehensive approach aims to fine-
tune the model effectively and achieve optimal performance in
our experiments.
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FIGURE 7
Confusion Matrix of tested method. (A) show the confusion matrix of HRN and (B) show the confusion matrix of SHN respectively.

4.4 Experiment results

In the lower right corner of Figure 5, it represents the training
methodonboth coarse andfine category.Thefirst-level classification
channel always uses the original data set, while in the second-level
classification channel, a different data set is used. For example,
in 1+2+1+4+1 (21, 212), one represents the original dataset, two
represents the processed dataset with a granularity of 2, four

represents the processed dataset with a granularity of 4, and the
numbers in brackets represent the ratio of each training stage period,
that is, two to one to two to one to 2. In order to observe the
effects of different training methods in short training epochs during
180 training epochs, we divided the training methods into two
categories. The first training method is to first use the original data
set to train the SHNmodel, and then use the processed data set with
a granularity of 2, 3, 4. The second training method is to alternately
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FIGURE 8
Two-dimensional activation thermodynamic diagram generated by HRN and our SHN.

use these different data sets.The results show that the coarse category
test accuracy of the trainingmethod that alternately uses the original
data set and the processed data set with granularity of two and four
is higher than other training methods and the HRN model, and
its fine category test accuracy is much higher than other training
methods, even Slightly higher than the HRNmodel. In summary, in
short training epochs, the training method of alternately using the
original data set can improve the accuracy of coarse andfine category
test accuracy. It is worth noting that using the original dataset in
the final training stage can significantly improve the fine-category
testing accuracy.

Turning to Figure 6, asmentioned above, in 300 training epochs,
in order to observe the effects of different training methods in
long training epochs, we adopted three training methods. The first
training method is to use alternate the original data set and the
processed data sets with granularity two and four. The second
training method is to sequentially use the original data set and the
processed data sets with granularity of 2, 4, and 6.The third training
method is different from the first two training methods in that it

first uses the processed data sets with a granularity of two and four,
and then uses the original data set. The results show that in terms of
coarse category test accuracy, there is little difference in the effects
of various training methods, but the third one is slightly higher
than the first and second training methods and the HRN model.
In terms of fine category test accuracy, the third training method
is significantly higher than the first and second training methods,
and slightly higher than the HRN model. In summary, in long
training epochs, the third training method can better improve the
accuracy of coarse andfine category testing, that is, using the original
data set in the final training stage can significantly improve the
test accuracy.

The experimental evaluation in Table 2 shows the accuracy,
recall, and specificity rates of 13 classification results (mean
and standard deviation results of all the three experiments). In
comparison to the HRN model, the SHN model exhibits a certain
degree of accuracy improvement across all 13 classifications. The
accuracy improvement is particularly significant in categories
other than BC, notably in AB, AD, and BB, with increases
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of approximately 20%, 14%, and 17%, respectively. Except for
category AB, the recall rates for all other categories have also
improved. Among them, the improvements in AA, AB, AD,
BB, BC, and BD categories are significant, with increases of
approximately 11%, 20%, 14%, 16%, 12%, and 12%, respectively.
Regarding specificity, the model shows a notable improvement
in categories AD, BA, and CD, with increases of approximately
8%, 6%, and 4%, respectively. Specificity rates for other categories
have also seen improvements. These results demonstrate the
significant effectiveness of the SHN model in identifying
true positives.

The confusion matrix is based on the classification
judgments made by the classification model in relation to
the true categories, summarizing the records in the dataset
in matrix form. In this matrix, rows represent predicted
values, while columns represent true values. One obtained
confusion matrix from the three experiments is shown
in Figure 7. From the figure, it is evident that the improved
network demonstrates higher prediction accuracy compared
to the traditional HRN network. Specifically, the prediction
correct to error ratios of categories AB, AD, BB, BC
and BD are significantly improved, about 20%, 14%, 16%,
12%, and 13% respectively, and other categories are also
slightly improved.

We visualize HRN and our SHN predictions in Figure 8. It find
that the SHN predictions are more focused on the discriminant
areas. The SHN-based model can consistently highlight the
discriminant areas, which proves the robustness of our SHN. In
summary, This is sufficient evidence to illustrate the advancement
achieved by our improved network in comparison to the traditional
HRN network.

5 Conclusion

In this work, we propose a multiple granularity spatial
disorder hierarchical residual network (SHN) for rock
image classification and feature visualization. Through SHN,
different levels of labeled samples can be effectively used
to enhance the model network’s classification ability of
fine-grained rock images. The residual network is used to
interact between features at different levels, so that child-
level features can inherit from parent-level features. We
designed a multiple granularity spatial disorder module to
guide the network to learn to find discriminative regions at
different granularities to improve the network’s discriminative
accuracy in classifying rock images. Our extensive experiments
on rock datasets collected from various platforms also
demonstrate the effectiveness of our approach. In the future,
we hope to better combine the spatial confusion module
with the hierarchical residual network to achieve better
classification results.

It is known that rock type identification should consider
image classification, incorporating aspects like color, structure,
and composition. However, some characteristics are beyond image
capture, posing a challenge. We will explore more faithful feature
learning and explainable methods to address these limitation and
enhance our approach.
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