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The riparian zone is an area where land and water are intertwined, and
vegetation is rich and complexly distributed. The zone can be directly involved
in ecological regulation. In order to protect the ecological environment of
the riparian zone, it is necessary to monitor the distribution of vegetation.
However, there are many disturbing factors in extracting riparian vegetation, the
most serious of which are water bodies with similar colours to the vegetation.
To overcome the influence of water bodies on vegetation extraction from
UAV imagery of riparian areas, this paper proposes a novel approach that
combines the marked watershed algorithm with vegetation index recognition.
First, the image is pre-segmented using edge detection, and the output is
further refined with the marked watershed algorithm. Background areas are
classified as potential regions for vegetation distribution. Subsequently, the final
vegetation distribution is extracted from these potential vegetation areas using
the vegetation index. The segmentation threshold for the vegetation index is
automatically determined using the OTSU algorithm. The experimental results
indicate that our method, when applied to UAV aerial imagery of the riparian
zone, achieves an overall accuracy of over 94%, a user accuracy of over 97%,
and a producer accuracy of over 93%.
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1 Introduction

Riparian zones are three-dimensional transition zones where terrestrial and aquatic
ecosystems directly interact and are among the most biodiverse and productive ecosystems
on Earth (Rusnák et al., 2022). In addition, the riparian zone is referred to as the “critical
transition zone,” which is a conduit for large flows of materials and energy between
terrestrial and aquatic ecosystems (Zhang et al., 2019) and plays an important role in
water quality regulation, soil conservation, habitat protection, biodiversity maintenance,
climate regulation, riparian landscape, and aquatic ecosystem function. Therefore, riparian
zones are key ecosystems within river basins (Zhang et al., 2019). However, as open
freshwater ecosystems at the interface of terrestrial and aquatic realms, riparian zones are
less resilient to negative impacts caused by climate change, direct human activities, or
artificial demands on water resources (Rusnák et al., 2022). Moreover, with the increase
in urbanization and industrial activities, riparian zones have been severely damaged.
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According to relevant studies, in Europe, the area of pristine
wetlands has been reduced by 80% (Verhoeven, 2014). In addition,
in the Xilin River Basin in InnerMongolia, due to poormanagement
of reservoirs, the amount of water discharged from the reservoirs
is unable to meet the ecological water demand of the downstream
riparian zone. In hydrologically wet, average and dry years, only
36%, 19%, and 15% of the ecological water demand can be met,
which will directly lead to a reduction in the area of vegetation and a
consequent decline in the ecological role of the riparian zone (Duo
and Yu, 2020). Therefore, protecting and restoring riparian zone
vegetation is critical tomaintaining ecosystemhealth and promoting
sustainable development, and there is a growing need worldwide to
protect or restore the ecological health and function of rivers and
associated wetlands.

The first task in protecting and restoring riparian zone
vegetation is how to extract its vegetation cover area. Remote
sensing technology provides a continuous data set from a satellite
perspective, which helps to determine the spatial coverage
and structural complexity of vegetation and its functioning
(Rusnák et al., 2022). However, most current studies of satellite
remote sensing systems are coarse in spatial resolution (e.g., Sentinel
2A (10 m); Landsat TM (30 m); SPOT5 HRVmultispectral (10 m)).
In their natural state, riparian ecosystems are characterized by a
high degree of spatial and temporal heterogeneity (Rusnák et al.,
2022). Therefore, sensors with moderate spatial resolution (>4 m
× 4 m) may not be sufficient to detect and analyze riparian areas
because their pixel size often exceeds the physical size of vegetation
cover changes in these areas, and thus satellite remote sensing
images are insufficient to obtain reliable vegetation measurements
(Duo and Yu, 2020). Unlike satellite remote sensing, unmanned
aerial vehicle systems (UAVs) are well suited for riparian zones
and riverine ecosystems because of their unprecedented fine scale
(Müllerová et al., 2021). UAVs can now be equippedwith a variety of
sensors, such as visible bands, multispectral, hyperspectral sensors,
and Lidar. Among them, RGB images (visible band) are especially
widely used due to their convenience, speed, and low price. It has
been demonstrated that UAVs deployed with RGB cameras are
sufficient to map vegetation cover dynamics (Laslier et al., 2019).
Even more, it is possible to achieve high-accuracy classification of
riparian zone vegetation using RGB images instead of multispectral
and hyperspectral sensors (Rusnák et al., 2022).Therefore, the use of
aerial drone images for vegetation distribution studies has become
a very promising research direction.

Currently, with the development of research, some methods
for vegetation cover extraction based on UAV RGB images have
emerged, such as extraction methods based on spectral indices and
texture information (Laslier et al., 2019; Gao, et al., 2020; Kutz et al.,
2022; Xu et al., 2023), and extraction methods based on machine
learning and deep learning (Bhatnagar et al., 2020; Hamylton et al.,
2020; Onishi and Lse, 2021; Behera et al., 2022). Compared to
machine learning and deep learning vegetation extraction methods,
spectral and texture-based vegetation extraction methods not only
do not require training datasets, but are also more computationally
efficient and easier to interpret. As a result, they have been
widely used in riparian zone processing. For example, Zhang et al.
(2019) proposed a new green-red vegetation index (NGRVI)
according to the construction principle of green-red vegetation
index (GRVI) and modified green-red vegetation index (MGRVI).

The results show that the NGRVI based on UAV visible light
images can accurately extract the vegetation information in arid
and semi-arid areas, and the extraction accuracy can reach more
than 90%. In conclusion, NGRVI can accurately and effectively
reflect the vegetation information in arid and semi-arid areas, and
become an important technical means for retrieving biological
and physical parameters using visible light images. Laslier et al.
(2019) pre-processed UAV images to obtain orthomosaics and
calculated vegetation indices, from which texture variables were
extracted. Their findings determined that a traditional RGB camera
mounted on a UAV was adequate for mapping vegetation cover
in the study area. This particular technology demonstrated the
feasibility of capturing images and generating information about
vegetation cover dynamics at a low cost, given the affordability
of RGB cameras. Due to the lack of near-infrared in the visible
band, many researchers have resorted to utilizing the spectral
reflectance characteristics in the visible band to construct various
visible vegetation indices (Zhang et al., 2019), such as Visible-band
Difference Vegetation Index (VDVI) (Wang et al., 2015), Difference
Enhanced Vegetation Index (DEVI) (Zhou et al., 2021), Normalised
Green-Red Difference Index (NGRDI) (Meyer and Neto, 2008),
Modified Green-Red Vegetation Index (MGRVI) (Bendig et al.,
2015), Red-Green-Blue Vegetation Index (RGBVI) and Normalised
Green-Blue Difference Index (NGBDI) (Xu et al., 2017). However,
because visible vegetation indices can only determine the type of
ground cover by its colour, it is difficult to distinguish similarly
coloured features using only simple indices. For example, if a
clear body of water is more than 2 m deep and is surrounded by
abundant vegetation, the reflection and refraction of light can cause
the water’s colour to change to a vegetative green. In addition,
the presence of algae and plankton in a body of water can cause
aerial images taken by a drone to appear darker green, especially
in urban areas. The high-resolution imagery captured by UAVs
enables us to acquire detailed information on vegetation distribution
within the riparian zone, facilitating real-time monitoring and
assessment of its ecological health status. However, given that the
riparian zone is a complex ecosystem, the vegetation distribution
is intricately linked to the diverse environments of rivers and lakes.
Moreover, the close color proximity of water bodies and vegetation
poses a significant challenge in accurately identifying vegetation
from UAV aerial imagery. Water bodies are often misidentified
as vegetation when detected using the Visible Band Vegetation
Index (VBVI). Meanwhile, due to the complexity of the riparian
environment, high-resolution images acquired by UAVs often have
various disturbances, such as waves, shadows, sunlight reflections,
etc., in the water area, which further increases the difficulty of
vegetation extraction.Therefore, it is necessary to incorporate other
information (e.g., texture information) to jointly delineate and
extract the vegetation cover area. Unfortunately, there is still a lack
of research on efficiently extracting vegetation in complex riparian
zones from high-resolution RGB images from UAVs.

Based on observing and analyzing the UAV RGB images of the
riparian zone, this study proposes a novel method for vegetation
extraction in the riparian zone by combining the marked watershed
algorithm and vegetation index recognition. The basic ideas of this
method are to 1) distinguish water bodies and non-water bodies by
texture. 2) Discriminate between vegetation and non-vegetation by
vegetation index after excluding water bodies. Unlike the traditional
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FIGURE 1
Aerial drone images of the complex riparian zone: (A) Region I, (B) Region II, (C) Region III, (D) Region IV, (E) Region V, (F) Region VI.

marked watershed algorithm, this method is characterized by
obtaining the potential vegetation distribution area through the
background marker of the marked watershed algorithm, which
avoids the problem of over-segmentation. Specifically, the method
extracts the texture information in RGB images by the Canny
operator and then marks the potential complex riparian vegetation
cover area by a marked watershed algorithm. Finally, the vegetation
cover area is extracted by setting a threshold through the visible
light vegetation index. The experiments prove that the method
can efficiently and accurately extract the vegetation in complex
riparian zones, and effectively solve the problem that it is difficult
to distinguish between green water bodies and vegetation by visible
light vegetation index. This study will provide practical technical
support for sustainable ecological restoration and management of
riparian zones. In order to show the effectiveness of the proposed
method, six UAV aerial images of the riparian zone with different
regions were selected for experimental demonstration.

2 Materials and methods

2.1 Materials

In this study, a DJI Phantom 4 RTK drone was used for data
acquisition and captured UAV remote sensing images in R, G,
and B bands with a size of 5472∗ 3648 pixels. The drone images
were captured at a relative flight height of 120 m, with a Ground
Sample Distance (GSD) of 3.5 cm/px. The images were taken on
21 July 2023, between 10 a.m. and 4 p.m. In order to illustrate
the validity and generalizability of the experimental results, we
selected six strongly representative UAV aerial images of riparian

zones with different surface features and water conditions for the
experimental study, as shown in Figure 1. For example, the water
surface is calm, the water body is uniform in color, and the riverbank
is almost completely covered by vegetation (Figure 1A). The water
body has different depths, resulting in the uneven color of the
water body and sunlight reflection, and there are some floating
objects on the water surface and some bare soil and roads in the
vegetation-covered area on the river bank (Figure 1B). There is
visible floating debris and trash on the water, shadows obscure part
of the water surface, and power lines are passing over the water
surface, causing obscuration (Figure 1C). Vegetation is abundant,
and sunlight reflects off the water surface, creating pronounced
ripples (Figure 1D). The water surface exhibites ripple distribution
and the water body’s depth varies (Figure 1E). The presence of algae
causes uneven green coloration on the water surface (Figure 1F).

2.2 Methods

2.2.1 Algorithm implementation process and
flowchart

The implementation process of the vegetation extraction
method proposed in this paper consists of seven steps, as depicted
in Figure 2. The pseudo-code of the vegetation extraction process is
presented in Algorithm 1, and the algorithm is implemented using
Python and OpenCV.

By performing “Distance Transformation,” the distance from
foreground pixels to the nearest background pixels can be calculated,
resulting in a grayscale image where higher grayscale levels indicate
greater distances from the background. The “seed area” is generated
through threshold segmentation and binarization of the “distance
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FIGURE 2
Implementation process of the vegetation extraction method.

transformation” image. By subtracting the “seed area” from image I2
described in Algorithm 1, we obtain the “uncertainty area” image. In
the marking watershed algorithm, diffusing the “seed area” towards
the “uncertainty area” results in the segmentation outcome. Since all
vegetation in these results is located within the background region,
this area is identified as the “Potential Vegetation area”.

It is important to note that, in order to present the processing
results more clearly, we have utilized the appropriate color mode for
display. In image I3, the color change from red to blue represents the
distance between the foreground pixels and the background pixels,
and the red color indicates the distance is further away; in image
I4, the light blue on the top and the yellow and red on the left local
zoom represent different seed areas, and the dark blue in the middle
represents the background. In image I5, the red color represents the
uncertain areas; in image I6, the dark blue area labeled “PVA” is the
potential vegetation area.

2.2.2 Vegetation index
Vegetation index is a technique developed from remote

sensing. By analyzing the differences in the different spectral

curves presented by different objects in images taken by
multi/hyperspectral satellites, data in specific bands can be
combined to highlight the representation of specific object
characteristics. This technique can distinguish between object
types or related object characteristics, such as plant or vegetation
abundance, in remotely sensed images. As there are more types of
vegetation indices, they should be selected according to the actual
situation, such as remote sensing image type, band composition,
land cover type, vegetation type, etc., to achieve more accurate
extraction results. For general RGB images, vegetation indices
containing only visible bands should be selected. Common visible
band vegetation indices are shown in Eqs 1–6:

VDVI =
2× ρg − (ρr + ρb)

2× ρg + (ρr + ρb)
(1)

DEVI =
ρg

3× ρg
+

ρr
3× ρg
+

ρb
3× ρg

(2)

NGRDI =
ρg − ρr
ρg + ρr

(3)
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Input: UAV RGB image

Output: Vegetation coverage area in the image

1 Perform edge detection and vegetation index

calculation for the input image to obtain images

I1 and Iv, respectively;

2 The image I1 was binarised, and Its areas of

high-frequency texture (potential vegetation) were

set as the background, followed by a morphological

closing operation to eliminate holes and then an

opening operation to reduce noise to obtain the

image I2;

3 The image I2 was subjected to distance

transformation to obtain the image I3;

4 Perform threshold segmentation and binarization

for the distance transformation image I3 to obtain

the watershed seed area image I4;

5 The image I2 subtracts the image I4 to obtain

uncertainty areas;

6 Perform marked watershed algorithm with seed

areas, uncertainty areas, and UAV RGB image as

inputs to extract the potential vegetation areas;

7 Perform threshold segmentation for potential

vegetation areas with vegetation indices to obtain

final vegetation cover areas.

Algorithm 1. Vegetation extraction.

MGRVI =
ρg × ρg − ρr × ρr
ρg × ρg + ρr × ρr

(4)

RGBVI =
ρg × ρg − ρr × ρb
ρg × ρg + ρr × ρb

(5)

NGBDI =
ρg − ρb
ρg + ρb

(6)

In the equations: ρr , ρg , ρb are the image pixel values of the red,
green and blue 3 bands respectively.

2.2.3 OTSU image segmentation
The OTSU method (Otsu, 1979) is an algorithm used to

determine optimal segmentation thresholds for image binarization.
This algorithm automatically calculates the thresholds based on
the characteristics of the image (Yang et al., 2014). The specific
calculation process is shown in Eq. 7:

σ2(t) = ω1(t)ω2(t)[μ1(t) − μ2(t)]
2 (7)

where σ2 is the inter-class variance, ωi and μi are the probability and
mean of class i, respectively.

The OTSU method, also known as the maximum inter-class
variance method, offers several advantages: it involves simple
calculations, is convenient to use, and is unaffected by the image’s
brightness. Additionally, it enables fast segmentation in a simple
bimodal scene. However, there are also some disadvantages to
consider. The method is susceptible to noise interference, and when
the image lacks distinct bimodal peaks, accurate segmentation

cannot be achieved. Furthermore, its effectiveness diminishes when
applied to images with multiple peaks.

2.2.4 Canny operator
The Canny operator is an exact edge detection algorithm

known for its robust resistance to interference. It incorporates dual
thresholds and multi-level characteristics, which make it adaptable
to complex images. The fundamental principle of Canny edge
detection involves converting an image to grayscale and identifying
edges by detecting significant variations in grey values (Ding and
Goshtasby, 2001; McIlhagga, 2011).This is based on the observation
that changes in luminance typically occur at the edges of the
image. Mathematically, this can be achieved by calculating the first-
order partial derivatives, where points with extremely large partial
derivatives represent the edges of the image (Liu and Jezek, 2004),
the specific calculation process is shown in Eq. 8.

∇f = [
∂f
∂x
,
∂f
∂y
]
T
= [Gx,Gy]

T (8)

Where Gx, Gy denote the first-order partial derivatives at the
point (x,y) in the image f, respectively.

2.2.5 Marked watershed algorithm
The Watershed algorithm belongs to the category of image

segmentation algorithms. Its principle involves mapping the same
gray levels in an image to contour lines in geography, creating
a topographic surface defined by the gray values of the image.
Basins are formed in areas with extremely low gray values
(Kornilov & Safonov, 2018). If we imaginewater flooding the surface
from the lowest point, dams are built to prevent adjacent basins
from merging. These dams, known as watershed lines, serve as
the segmentation lines for the image. The watershed algorithm
has several advantages, including its simplicity, intuitiveness, and
potential for parallelization. However, it has a significant drawback,
which is over-segmentation caused by numerous localminima in the
image. To mitigate the severe over-segmentation issue, the marked
watershed algorithm has been proposed.

In the marked watershed algorithm, the foreground and the
background are automatically determined by integrating techniques
like edge detection, binarization, and morphological operations.
Then, a distance transformation is conducted to generate the
watershed seed areas. However, since vegetation texture tends to be
more intricate, while water bodies exhibit relatively uniform and
cohesive textures, we designate the water bodies as the foreground to
obtain smoother segmentation boundaries in vegetation extraction.

2.2.6 Kappa coefficient
Classification accuracy is also calculated using the Kappa

coefficient (Foody, 2002), the specific calculation process is shown
in Eq. 9.

Kappa =
Po −Pe

1−Pe
(9)

where Po represents the agreement between predicted results and
actual results, which can be calculated using a confusion matrix. Pe
refers to the agreement between predicted results and actual results
when the predictions are made randomly. As the Kappa coefficient
approaches 1, it signifies an increased degree of concordance in
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FIGURE 3
The results of extracting vegetation cover using only vegetation indices (green indicates areas identified as vegetation, while black indicates areas
identified as non-vegetation): (A) Region I, (B) Region II, (C) Region III, (D) Region IV, (E) Region V, (F) Region VI.

FIGURE 4
The results of extracting vegetation cover using canny edge detection only: (A) Region I, (B) Region II, (C) Region III, (D) Region IV, (E) Region V, (F)
Region VI.
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FIGURE 5
The results of extracting vegetation cover using our method: (A) Region I, (B) Region II, (C) Region III, (D) Region IV, (E) Region V, (F) Region VI.

TABLE 1 Accuracy after interference removal using our method.

Regions Overall accuracy/% User’s accuracy/% Producer’s accuracy/%

(a) 97.25 99.93 96.02

(b) 99.27 99.24 99.26

(c) 94.95 99.20 88.66

(d) 95.49 99.85 94.04

(e) 98.89 99.92 98.41

(f) 99.68 99.78 99.72

classification. When approaching 0, it suggests that classification
performance is equivalent to random predictions. However, once
it approaches −1, it indicates reduced consistency in classification
compared to random predictions.

3 Results

3.1 Extracting vegetation cover using only
vegetation indices

In Figure 1, the green vegetation information of each region
appears to be highly similar. To select an optimal threshold for
vegetation recognition, we plotted the histogram corresponding to
the VDVI and identified the lowest value of 0.11 between the double
peaks. This threshold has proven to be more accurate in extracting
vegetation information from our images. Consequently, we have

chosen to use this threshold consistently throughout our subsequent
VDVI-based vegetation extraction processes.

The results of threshold segmentation after calculating theVDVI
vegetation index for each subplot in Figure 1 are shown in Figure 3.
As can be seen from the figure, all subplots have water bodies that
are difficult to completely separate from the vegetation. Because
the color of the water body is similar to the vegetation, setting a
larger segmentation threshold can further separate the water body.
However, it will also lead to a large amount of vegetation loss.

3.2 Extracting vegetation cover using only
texture information

Figure 4 shows the threshold segmentation results of the Canny
edge detection for each subplot shown in Figure 1. It can be seen that
all subplots can effectively separate water bodies, but they cannot
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FIGURE 6
The Urban Drone Dataset image and corresponding vegetation extraction results, (A–C): original images of three different regions, (D–F): labeled
image corresponding to the original image, where green indicates vegetation, and other colors represent non-vegetation, (G–I): The results of
extracting vegetation cover using our method.

completely exclude the non-vegetated surface cover. Additionally,
the most serious issue is that a large number of voids appear within
the vegetation cover. The Otsu algorithm is utilized to automatically
determine the threshold value in this method. While setting a larger
segmentation threshold can help in further separating the non-
vegetated surface cover, it comes at the cost of potentially losing a
significant amount of vegetation and creating larger voids within the
vegetation cover.

3.3 Extraction of vegetation cover using
our method

The results of extracting the vegetation cover of each
subplot in Figure 1 using the method proposed in this
paper are shown in Figure 5. It can be seen from the figure

that all the water bodies, which can easily be confused
with vegetation, have been excluded completely in all the
subplots, while the vegetation has been retained to the
maximum extent.

To quantitatively assess the accuracy of vegetation extraction,
water bodies were manually labeled and removed from each subplot
in Figure 1. The VDVI vegetation index was then calculated, and
the vegetation was extracted. The extraction results were compared
with those obtained by the method in this paper, and the confusion
matrix was calculated to obtain the overall accuracy, producer
accuracy, and user accuracy, as shown in Table 1. The table shows
that the overall accuracy of all regions is above 95% except for
region (c), where the overall accuracy is slightly below 95%. The
user accuracy is very high in all regions, while the producer
accuracy is slightly lower. Among them, the producer accuracy of
region (c) is slightly lower than 90% because there is relatively
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TABLE 2 VDVI extraction accuracy after eliminating interference.

Regions Overall accuracy/% User’s accuracy/% Producer’s accuracy/% Kappa

Figure 6A 90.17 98.38 70.36 0.76

Figure 6B 92.31 97.85 57.83 0.69

Figure 6C 81.65 97.85 59.70 0.61

FIGURE 7
The results using different edge detection operators: (A), (B), and (C) correspond to the detection results using the Canny operator for areas depicted in
Figures 1A–C, respectively; (D), (E), and (F) correspond to the detection results using the Sobel operator for areas shown in Figures 1A–C, respectively.

less vegetation cover in the region (c), and more dark shadows
cover the vegetation. This causes the edge detection algorithm
to have lower values in these areas, which are swamped and
marked as the foreground in the watershed algorithm, resulting in
non-vegetated areas.

3.4 Vegetation extraction for public
datasets with ground truth using our
method

The Urban Drone Dataset (UDD) (Chen et al., 2018) was
collected using the DJI Phantom 4 at heights ranging from 60
to 100 m. The image size is 3000 × 4000 or 4096 × 2160. This
dataset is divided into three types: UDD3, UDD5, and UDD6, each
representing different scenarios. To validate the accuracy of our
method, we selected three images (Figures 6A–C) from UDD5 that
resemble the riparian zone environment, and their corresponding
ground truth labels were provided (Figures 6D–F). The results of
extracting the vegetation cover of each subplot in Figures 6A–C

using themethod proposed in this paper are shown in Figures 6G–I.
The extraction results are compared with the true values of
the images, and the extraction accuracy is calculated, as shown
in Table 2.

From Figure 6, it can be seen that the original image in
UDD5 is darker and has more shadows and reflections. On
the other hand, from Table 2, the overall accuracy and kappa
coefficient of classification of this paper’s method for Figures 6A–C
are 90.17%, 92.31%, 81.65%, and 0.76, 0.69, 0.61, respectively.
However, the producer accuracy is lower, 70.36%, 57.83%, and
59.7% in Figures 6A–C, respectively. Figure 6B has the highest
Overall Accuracy, but it has a lower Kappa than Figure 6A due
to its uneven distribution of error pixels. Specifically, compared
to Figures 6A,B has fewer errors in recognizing water body
pixels as vegetation pixels, leading to a slightly higher Overall
Accuracy. The uniformity of the error pixel distribution directly
influences the Kappa coefficient. Figure 6B has fewer error pixels,
and the distribution location of these pixels is not uniform
enough, resulting in a lower Kappa coefficient for Figure 6B than
for Figure 6A.
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FIGURE 8
The results of watershed segmentation based on different edge detection operators, (A–C): based on Canny edge detection, (D–F): based on Sobel
edge detection.

4 Discussion

4.1 Choice of edge detection operator

The Canny and Sobel operators are widely used algorithms
for image edge detection. The Canny operator determines image
edges by considering the direction and magnitude of the gradient,
while the Sobel operator calculates the gradient using pixel value
differences (simple subtraction of two pixels). As a result, the Canny
operator can preserve edge continuity more effectively during edge
detection, resulting in more detailed and clearer detected edges,
especially in scenes that require high-precision edge detection, such
as image recognition. On the other hand, the Sobel operator may
introduce significant errors when processing right-angled edges.
However, it is faster than the Canny operator, making it more
suitable for real-time applications requiring higher speed, such as
video surveillance.

In order to find edge detection operators suitable for the
characteristics of riparian zone images, in this study, we considered
the Canny operator and Sobel operator, which are outstanding in
edge recognition accuracy and noise point sensitivity. We converted
Figures 1A–C from RGB images to grayscale images and then
utilized Canny and Sobel edge detection operators and marked
the areas in the images where segmenting the boundaries along
the water body was challenging using red boxes, as illustrated in
Figure 7. These challenging regions exhibit characteristics such as
shallow water bodies near the shore, with a color that appears closer
to the shore, and contain various undesirable elements, including
scum, garbage, and power lines. All these interferences directly affect
the edge detection effect of the two operators. However, it is evident
that Canny detection retains more edge information than Sobel

detection and provides amore refined detection.Therefore, we chose
the Canny operator as the pre-extraction segmentation algorithm
before the detection of the watershed algorithm.

The watershed algorithm was used to segment the results of
Canny and Sobel edge detection for Figures 1A–C, as shown in
Figure 8. It can be seen from the images that the segmentation results
based on the Canny operator are more accurate. As indicated by
the yellow boxes in the images, we can observe that for Figure 1B,
the segmentation result based on the Canny operator successfully
separated non-water areas locally (Figure 8B), while the result from
the Sobel operator did not (Figure 8E). Similarly, for Figure 1C,
the segmentation result based on the Canny operator segmented
water areas locally (Figure 8C), while the result from the Sobel
operator did not (Figure 8F). Comparing Figure 1 and Figure 8,
we can see that although Figure 8 shows some oversegmentation,
water bodies and potential vegetation were separated into different
colour areas. Therefore, after extracting the potential vegetation
areas, vegetation extraction can be achieved using vegetation
indices.

4.2 Choice of visible light vegetation
indices

Several visible light vegetation indices are currently proposed,
depending on the purpose of the application. Each of these indices
has advantages and disadvantages in distinguishing land cover types.
In order to select the most appropriate index, six visible light
indices were selected for testing in this paper. First, a UDD5 scene
image (Figure 6A) was selected. After removing the water body
interference using the method in this paper, the potential vegetation
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TABLE 3 Mean extraction accuracy of different vegetation indices.

Vegetation index Overall accuracy/% User’s accuracy/% Producer’s accuracy/% Kappa/%

VDVI 86.75 98.16 57.94 64.23

DEVI 82.94 99.48 44.95 52.48

RGBVI 85.99 98.69 55.50 62.13

MGRVI 84.49 82.50 63.78 60.64

NGRDI 84.56 80.78 68.00 61.77

NGBDI 85.49 98.18 55.18 61.62

FIGURE 9
Histograms of different vegetation indices: (A) VDVI, (B) DEVI, (C) NGRDI, (D) MGRVI, (E) RGBVI, (F) NGBDI for Figure 1C).

areas were extracted by vegetation segmentation usingVDVI, DEVI,
RGBVI, MGRVI, NGRDI, and NGBDI, respectively. Following the
vegetation extraction approach used in Figure 6A, we also processed

Figure6B,C. As shown in Table 3, for different vegetation indices,
we calculated the average of each evaluation metric across the
three images.
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FIGURE 10
The effects of different p values for Figure 1B: Specifically, (A) and (D) correspond to P equaling 0.3, (B) and (E) represent P equaling 0.5, while (C) and
(F) depict P equaling 0.7.

As can be seen from Table 3, VDVI has the highest accuracy,
with the overall accuracy and kappa coefficient reaching 86.75%
and 0.6423, respectively. Secondly, for the sub-map with relatively
complex land cover types (Figure 1C), Figure 9 presents the
histograms of the six visible vegetation indices of the potentially
vegetated areas after removing the water body using this method.

As can be seen in Figure 9, although the histogram distributions
of the different vegetation indices varied greatly, they basically
maintained a bimodal distribution. This ensures the correctness
of the subsequent segmentation of vegetation and non-vegetation
using the OTSU method. The optimal segmentation thresholds
for subplots from (a) to (f) in Figure 9 are 0.11, 0.88, 0.07,
0.13, 0.2, and 0.06, respectively. Among them, the histogram
distribution of the VDVI indices satisfies both the undulating
and smooth requirements, leading to more accurate segmentation
results.

4.3 Selection of P parameter values in
marked watershed algorithm

In Figure 2, the maximum value resulting from the Distance
Transformation is multiplied by a percentage value (denoted as P),
and this product is set as a threshold. This threshold is then used
for threshold segmentation of the Distance Transformation image
I3 to obtain the Seed Areas image I4. By adjusting the value of P,
we can influence the number of Seed Areas and, consequently, the
segmentation results that follow. The marked watershed algorithm
utilizes the P parameter value to regulate the smoothness of
boundaries and the fineness of segmentation results. Higher p
values produce smoother boundaries and more consistent area

segmentation, while lower p values generate more detailed but less
consistent boundaries. As a key factor in determining the efficacy
and outcome of the algorithm, the P parameter value significantly
impacts the overall performance. For instance, Figures 10A–C
presents an example where P is systematically increased at 0.2
intervals from 0.3 for Figure 1B. The figures clearly illustrate the
decrease in the number of seed areas with an increase in P.
However, too few seed areasmay result in certain water bodies being
overlooked in the segmentation process, leading to their inclusion in
the potential vegetation areas. This, in turn, may cause errors in the
final vegetation segmentation, as depicted in the red-boxed portion
of Figures 10D–F.

4.4 Defects and deficiencies—special
textures and shadows

The segmentation process, which involves distinguishing water
body areas from potential vegetation areas, relies heavily on the
disparity between the textures of water bodies and vegetation.
Consequently, areas with water bodies exhibiting similar textures to
vegetation textures will likely be erroneously classified as potential
vegetation areas during the segmentation. Additionally, if such areas
also exhibit high values for the VDVI index, it becomes challenging
to differentiate them from actual vegetation using the approach
outlined in this paper. This challenge is demonstrated by the red
and yellow boxed sections in Figures 11A, B and the white boxes in
Figures 11C, D. However, if the water body areas do not exhibit high
VDVI values, themethod outlined in this paper can still successfully
remove these areas at the OTSU segmentation stage, as shown in the
blue box portion of Figures 11E, F.
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FIGURE 11
Vegetation extraction results for different water colours and ripples, (A–D): High-strength water ripple, (E F): Low-strength water ripple.

Table 2 demonstrates that the method proposed in this paper
achieves a high overall accuracy and a high user accuracy, implying
that our approach has fewer instances of misclassification. However,
the lower producer accuracy suggests that the method occasionally
fails to correctly classify certain categories, as illustrated in Figure 6.
This discrepancy can be attributed primarily to the time and angle
at which the image was captured. As can be seen in Figure 6, the
images of the UDD5 dataset were basically taken in the evening
with insufficient light, while the sun was tilted at a large angle.
The low illumination condition (C) in Figure 6 was utilized for

vegetation extraction with the method described in this paper, and
the results are depicted in Figure 12, this lighting condition results
in darker shadows on vegetation (indicated by the red box) and
shaded water bodies (indicated by the yellow box). These darker
shadows cause a loss of textural information in the areas where
the watershed algorithm cannot flood, and as such, they cannot
be excluded from the segmentation process (as indicated by the
yellow box). Additionally, these darker shadows significantly lower
VDVI values, resulting in a greater loss of vegetation categories
(as indicated by the red box). However, these problems can be
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FIGURE 12
Effect of shadows and reflections on vegetation extraction: (A) Original image, (B) Vegetation extraction results of the method in this paper..

easily overcome by selecting a clear and cloudless midday period for
data acquisition, which avoids low light and strong shadows, thus
achieving high segmentation accuracy.

5 Conclusion

In this study, we have introduced a straightforward and
efficient approach capable of automatically extracting riparian zone
vegetation from aerial UAV images containing only visible bands
despite the numerous disturbing factors encountered in complex
riparian zones. Some of these factors include shallows, green algae,
flotsam, sunlight reflections, and tree shadows. Specifically:

1 The method proposed in this paper presents a novel idea
to solve the challenge of vegetation extraction in riparian
zones and can achieve this goal solely based on the visible
band vegetation index. This approach has significant practical
applications.

2 Although the method proposed in this paper demonstrates
some ability to mitigate factors that interfere with vegetation
extraction, further research is required to address other
characteristic interferences that are similar to vegetation. This
includes optimizing the method for scenarios characterized by
high-intensity ripple interference.

3 Regarding the accuracy assessment, the dense vegetation
and high image resolution in the study area pose challenges
in manually labeling images to obtain ground-truth data.
This complexity may introduce limitations to the accuracy
of the truth-value images used in our accuracy validation.
Consequently, future research should aim to further investigate
this issue, with the goal of acquiring more accurate
vegetation distribution maps of the riparian zone to serve
as reference data.

4 Currently, research on vegetation extraction has expanded to
the field of deep learning. However, there is still a lack of deep
learning techniques for semantic segmentation of riparian

zone vegetation due to the challenges in manually labeling
images for training. The proposed method in this article can
provide helpful vegetation labels for riparian zone images,
addressing the issue of insufficient existing datasets and serving
as a reference for future research on deep learning-based
vegetation extraction.
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