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Underground gas storage (UGS) is the most economical and effective means
to guarantee stable gas supply. During gas production process, the evaporation
of formation water leads to the increase of water content in the gas, and the
salinity of the remaining formation water increases. This work applied numerical
simulation to analyze the effect of salt deposition on flowing bottomhole
pressure, production capacity and storage capacity. The simulation results show
that the minimum and maximum pressure of UGS is more likely to be reached
duringmulti-cycle production under the conditions of salt deposition. Under the
initial water condition, reservoir drying can improve the gas storage capacity. At
the end of the tenth cycle, the storage capacity increases by 1.4%. It is concluded
that the study on the impact of formation water evaporation on storage capacity
is helpful for the prevention and control of salt formation water in UGS with
high salinity.
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1 Introduction

Theuse of fossil energy is a key factor in environmental change and pollution (Wu et al.,
2016; Liu et al., 2018; Pachiannan et al., 2019; Tang et al., 2022). The large amount of fossil
energy consumption causes greenhouse gas emissions, which increase the concentration of
greenhouse gases in the atmosphere (Tang et al., 2015; Han et al., 2017; Mac Kinnon et al.,
2018; Tong et al., 2020). Low carbon energy has been recognized as a key means to
achieve sustainable development (Dostál and Ladányi, 2018). Natural gas is known as a
clean energy source that produces less carbon dioxide pollution than other fossil fuels
such as coal and oil (Tang et al., 2021a; Hu et al., 2021; He et al., 2022; Zhu et al., 2022).
Compared to conventional energy sources, natural gas has relatively low carbon emissions
and is considered an important energy source for the transition to renewable energy
(Ullah Khan et al., 2017;Whiting et al., 2017; Gillessen et al., 2019; Zeren andAkkuş, 2020).
The peak shaving are a challenge for the efficient use of natural gas. UGS peak shaving
has the advantages of large storage capacity, good safety, and low storage costs. It is the
main and economic way of gas supply peakingmethod (Chen et al., 2018; Firme et al., 2019;
Jelušič et al., 2019; Sedaee et al., 2019; Animah and Shafiee, 2020).
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According to the experience of countries around the world,
the use of underground gas storage for regulation is the most
effective way to ensure the safe and stable supply of natural
gas (Zhang et al., 2020; Molíková et al., 2022; Li et al., 2023). In
2021, China’s natural gas consumption reaches 354.2 billion m3,
up 8.6% compared with 2020. China’s natural gas consumption
is expected to reach 430 billion m3 by 2025, with an average
annual increment of 21 billion m3 (Braungardt et al., 2019;
Kvamme and Saeidi, 2021; Wei et al., 2021; Zhu et al., 2022). The
construction of UGS has accelerated with the increase in natural
gas consumption. Hence, achieving efficient development of UGS
has become one of the difficulties faced by the natural gas industry
(Xiao et al., 2020).

Chinese UGS industry started late compared to developed
western countries (Zhang et al., 2017; Bian et al., 2020). Depleted
reservoir UGS is the most common and economical form of
UGS. At present, there are more than 400 such reservoirs in the
world, covering more than 75% of the total number of UGS. Salt
deposition occurs when the initial salinity of formation water is high
(Zeidouni et al., 2009; Spycher and Pruess, 2010; André et al., 2014;
Miri et al., 2014; Peysson et al., 2014; Tang et al., 2015; Miri et al.,
2015; Jeddizahed and Rostami, 2016; Tang et al., 2021b). However,
the study of salt deposition mainly focuses on the process of
CO2 geological sequestration (Kim et al., 2013; Cui et al., 2018;
Li et al., 2021; Zhao et al., 2021). However, there are few studies
on the changes of production capacity and storage capacity due
to formation water evaporation after multi-cycle production of
UGS. Water evaporation in the reservoir can enhance formation
permeability and porosity without formation water supply. The
porosity and permeability of the cores after evaporation are
elevated compared with the porosity and permeability under initial
water saturation conditions, with an average increase of 42% in
porosity and 39% in permeability (Tang et al., 2022). The improved
storage volume can be calculated based on the drying radius
of the gas well during the production of the gas storage. The
drying radius of gas storage is increasing with the increase of
production cycle.

This paper analyzes the effect of reservoir salt deposition on
bottomhole flow pressure, production capacity and storage capacity
based on a numerical model. Taken the Wen23 UGS as an example,
the changes in production capacity and storage capacity after
multiple-cycle production are studied.

2 Building model of salt deposition in
reservoir

During the development of the gas reservoir, the pressure
drop in the near-wellbore causes the gas to flow towards the
well and the water vapor content in the gas phase increases. Salt
deposition occurs when the salinity of the formation water reaches
its maximum solubility. Evaporation of formation water and salt
formation have a major impact on the gas-liquid phase balance
and solid phase precipitation in the system, and they also have an
impact on gas flow capacity and reservoir storage capacity during
gas production.

FIGURE 1
The schematic diagram of the volume element of the single well
model.

2.1 The water saturation model
near-wellbore

Figure 1 shows the schematic diagram of the volume element of
the single well model.

Pore volume of volume elements within the formation:

ΔV = 2πrhφdr (1)

Where △V is the pore volume of volume element, cm3; r is the
reservoir radius, cm; h is the thickness of reservoir, cm; ϕ is the
porosity, %.

The amount of change in the volume of the water phase is as
follows due to the decrease of water saturation in the system caused
by the evaporation of the water phase:

dVw = 2πrhφdSwdr (2)

WhereVw is the amount of change in the volume of the water phase,
cm3; Sw is the water content saturation, %.

The pressure in the near-well zone decreases, causing
evaporation of the aqueous phase and an increase inwater saturation
as the gas flows through. The water phase change within the volume
element can also be expressed as follows:

dVw = qdtdω (3)

Where q is the gas production volume, cm3/s; t is the production
time, s; ω is the saturated content of water vapor in natural gas,
cm3/cm3.

And the content of water vapor in natural gas is as follows:

ω = ApB (4)
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FIGURE 2
The idea of solving the near-well water content saturation
distribution model.

Where p is the pressure, MPa; A and B are the correlation factor.
In steady seepage, the radial pressure drop in a gas well based on

Darcy’s law is as follows;

dp
dr
=

μgBg

2πrhKKrg
q (5)

Where μg is the viscosity of gas, mPa·s; Bg is the volume factor;
K is the reservoir permeability, mD; K rg is the gas phase relative
permeability.

Combining Eqs 3–5, the following equations are obtained:

dSw

dt
=
ABμgBgq2pB−1

4π2r2h2φKKrg
(6)

The expression of the volume factor is as follows:

Bg =
TpscZ
Tscp

(7)

Combining Eqs 6, 7, the following equation is obtained:

dSw

dt
=
ABμgTpscZq2pB−2

4π2r2h2φTscKKrg
(8)

The formation water has a certain salinity, the presence of salt
inhibits the evaporation of the water phase, reducing the water
vapor content in the gas phase, according to Morin’s theory, certain
modifications to Eq 8:

dSw

dt
=

ABμgTpscZq2pB−2

4π2r2h2φTscKKrg(1− 0.02865c1.44)
(9)

Where c is the molar concentration of salt in formation
water, mol/L.

The value of c is mainly based on whether the formation water
is in a saturated state during salt deposition, and c is expressed
as follows:

c =
{{
{{
{

Swi

Sw
ci

cc

ci < cc
ci ≥ cc

(10)

Where ci is the molar concentration of salt in formation water under
initial conditions, mol/L; cc is the molar concentration of salt when
the formation is saturated with water, mol/L; Swi is the initial water
content saturation, %.

2.2 Water saturation model in the
near-wellbore considering evaporation of
formation water

Water vapor content in the gas phase is related to
temperature, pressure and salinity. During the flow of
gas to the wellbore, the pressure gradually decreases
and the water vapor content in the gas phase increases.
The salinity of the formation water around the wellbore
increases, and even salt deposition occurs. Assume that no
transport of formation water occurs in the reservoir, so
the salt ion content remains constant at any point in the
formation:

Swi ×Ci = Const (11)

As the pressure decreases, evaporation of formation
water accelerates and the salinity of formation water
will change

Swi ×Ci = Swi+1 ×Ci+1 (12)

Therefore, the salinity of the formation water under a certain
moment is as follows:

Ci+1 =
Swi ×Ci

Swi+1
(13)

Salt deposition occurs in the formation when C > Ccritical.
Where Swi is the water content saturation at moment i, %;

Swi+1 is the water content saturation at moment i+1, %; Ci is
the salinity of formation water at moment i, mol/L; Ci+1 is
the salinity of formation water at moment i+1, mol/L; Const
is the constant.

The p, Ci, Swi at time i is brought into the Eq 13 to obtain the
salinity of the formationwater at time i+1.Thephase software is used
to calculate the solubility of NaCl at different pressure and salinity,
and when the salinity of the formation water exceeds the solubility
of NaCl, which is used to determine the values Ci in Eq 13 at
different times:

Ci+1 =
Swi ×Ci

1
−0.53
[ln(

0.53ABμgTpscZq2pB−2

4π2r2h2φTscK(1−0.02865Ci
1.44)

ti+1 + 4.65)− 1.75]
(14)

The formation salt deposition model is more complex,
and the solution needs to rely on numerical simulation
software before it can be calculated. The idea of solving the
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FIGURE 3
Gas-water relative permeability curve.

FIGURE 4
Numerical model grid division diagram.

near-well water content saturation distribution model is shown
in Figure 2.

3 Numerical simulation model of
single well

The numerical simulation software CMG is used to model the
radial mechanism of a single well with multi-cycle production UGS.
This model can be used to study the effect of water evaporation and
saltdepositiononproductioncapacityandreservoir capacity inUGS.

3.1 Rock physical properties, fluid
properties and phase parameters

To simplify the simulation, pure CH4 is used for both the
formation fluid and injection gas composition for the simulation.
The model mainly considers the effect of salt deposition on the
production capacity and storage capacity of UGS. Na+ and Cl−

in the formation water are supersaturated to precipitate NaCl
crystals. NaCl crystals affect the reservoir properties by depositing
in the pore space. The main chemical reaction equation is
shown in Eq 15.
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TABLE 1 Model setting parameters.

Parameter Value

Permeability (mD) 10.66

Porosity (%) 11.16

Bound water saturation 0.35

Thickness (m) 200

Radius(m) 120

Current formation pressure (MPa) 4

Upper operating pressure (MPa) 38.6

Lower operating pressure (MPa) 20

Gas reservoir temperature (°C) 120

Formation water salinity (mg/L) 300000

FIGURE 5
Comparison of bottomhole flow pressure in considering salt
deposition conditions and without considering salt deposition
conditions of injection well.

Na+ +Cl−⇔NaCl (15)

Salt deposition and evaporation of formation water can lead
to changes in reservoir porosity and permeability. The pore-
permeability relationship is given by the experimental data.

K = 0.0016e55.281ϕ (16)

The relative permeability curve is taken from laboratory long
core experiments. The relative permeability is shown as in Figure 3.

3.2 Basic program setting

In order to study the effect of formation salt formation caused by
formation water evaporation on the production and storage capacity
of gas storage, the radial mechanism model of multi-cycle injection

FIGURE 6
Comparison of bottomhole flow pressure in considering salt
deposition conditions and without considering salt deposition
conditions of production well.

FIGURE 7
Comparison of cumulative gas production under different water
production conditions without considering movable water.

and production single well of gas storage was established by using
numerical simulation software CMG. The model grid was divided
into 10×1×5, and the radial mesh size was 1m, 2m, 3m, 5m, 8m,
13m, 21m, 34m, 40 m and 47 m, respectively. The layer is 40 m
thick and 200 m longitudinally. The grid plane distribution and
three-dimensional distribution are shown in Figure 4. The reservoir
parameters are set according to the field data of the gas reservoir.
The average permeability is 10.66mD, the average porosity is 11.16%,
the bound water saturation is 0.35, and the formation water salinity
is 300000ppm. Table 1 shows the parameters used in modeling and
their values.

A well of UGS is set up in the middle of the model, and all
layers are shot open. The basic program is set up in 2 phases,
including cushion gas stage and UGS multi-cycle
production stage.

(1) Cushion gas stage: The gas injection volume of single well is
about 400,000 m3/d.

(2) UGS multi-cycle production stage: In this stage, UGS is
injected to the maximum pressure of 38 MPa, then gas is
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FIGURE 8
Comparison of cumulative gas production under different water
production conditions with considering movable water.

exploited to the minimum pressure of 20 MPa. The maximum
injection volume and maximum gas extraction volume are
both 600,000 m3/d in a single cycle. The natural gas is injected
in the UGS from July to December and extracted from January
to June every year. This work can predict the changes in
production capacity and storage capacity after multiple-cycle
production by simulating salt deposition in the near-wellbore.

4 Analysis of salt deposition

The model is calculated separately for two sets of schemes,
including considering salt deposition and not considering salt

deposition. The rest of the model conditions are the same. The
results of the two schemes are compared to analyze the gas
production capacity.

4.1 Effect of salt deposition on bottomhole
pressure

The bottomhole pressures in injection wells and production
wells are shown in Figures 5, 6. There is no significant change
in bottom flow pressures in injection wells and production wells
without considering salt deposition. In the condition of considering
salt deposition, the bottom flow pressures of injectionwell rise to the
maximum pressure as the production cycle increases.The reason for
this phenomenon is that salt deposition is more severe in the near-
well zone and a larger pressure is required to inject the same amount
of gas. Similarly, the bottom flow pressure of injection well reaches
the minimum pressure earlier without considering salt deposition.

4.2 Effect of salt deposition on production
capacity

The impact of salt deposition on production capacity of gas well
can be divided into two parts. Firstly, the evaporation of formation
water increases the flow space and the flow capacity of gas, thus
increasing the production capacity. In addition, salt crystals can
block the pores in the formation and reduce the production capacity
of the gas well.These twomechanisms affect the production capacity
of gas well.

Two scenarios with different conditions are calculated in this
work. The first is a comparison of the effect of salt deposition on

TABLE 2 The calculation results of the drying volume, working gas volume and the proportion of increase in geological reserves with the various
production cycle.

Production cycle The drying
volume (104m3)

The increase
of working gas
volume (106m3)

The proportion
of increase in geological

reserves (%)

Cushion gas stage 0.31 0.84 0.22

The first cycle 0.52 1.41 0.37

The second cycle 0.68 1.87 0.50

The third cycle 0.85 2.32 0.61

The fourth cycle 1.06 2.90 0.77

The fifth cycle 1.21 3.30 0.88

The sixth cycle 1.35 3.70 0.98

The seventh cycle 1.48 4.06 1.08

The eighth cycle 1.65 4.50 1.19

The ninth cycle 1.81 4.96 1.32

The tenth cycle 1.99 5.44 1.44
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FIGURE 9
Cumulative gas production curve at a production rate of 80×104 m3/d.

FIGURE 10
Cumulative gas production curve at a production rate of 60×104 m3/d.

gas well production capacity under considering water evaporation
conditions and without considering water evaporation conditions.
Then this work investigates the effect of salt deposition on gas
well production capacity with formation water supplement. The
results are shown in Figure 7. The evaporation of formation
water increases the gas phase flow capacity without formation
water supply.

The comparison of cumulative gas production under different
water production conditions with considering movable water is
shown in Figure 8.The damage of salt deposition gradually increases
and the production capacity of gas wells is severely reduced under
the conditions of formation water supplement.

4.3 Effect of salt deposition on storage
capacity

A pressure drop funnel is formed in the near-wellbore during
production of a gas well. The natural gas in the reservoir evaporates
the formation water causing ion oversaturation during the gas from
the far-end to the bottom of the well, resulting in salt deposition.,

FIGURE 11
Cumulative gas production curve at a production rate of 40×104 m3/d.

FIGURE 12
Histogram of gas production capacity decline rate.

The dry gas flows from the bottom of the well to the far-end and
evaporates formation water during the gas injection process. More
space can be used to store natural gas, enhancing the storage capacity
of the UGS.

The drying volume is the volume of evaporation of formation
water under reservoir conditions. The proportion of increase in
geological reserves is the percentage of increased reserves to the
control reserves of a single well. The calculation methods of the
drying volume and the proportion of increase in geological reserves
are as follows.

Vm = πr2hSw (17)

where Vm is the drying volume, “r” is the drying radius, “h” is the
thickness of reservoir and Sw is the initial water saturation.

Vp =
Vm

Bg
(18)

where Vp is the volume of natural gas underground conditions and
“Bg” is the volume factor of natural gas.

K =
Vp

G
(19)
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where K is the proportion of increase in geological reserves and “G”
is geological reserves of natural gas.

Table 2 shows the calculation results of the drying volume,
working gas volume and geological reserves with the various
production cycle. The drying radius of reservoir is expanding with
the increase of production cycle under initial water saturation
conditions. The working gas volume increased by 5.4×106 m3 by the
tenth cycle. The geological reserves increased by 1.4% compared to
the control reserves of single well.

4.4 Effect of production rates

Four groups of schemes were set, and salt formation damage
under different production rates was studied by comparing the
daily production rates (20, 40, 60 and 80×104 m3/d), the salinity
was 300000ppm, the lower limit of bottom-hole flow pressure in
production Wells was 20MPa, and the upper limit of gas injection
Wells was 38.6 MPa.

The cumulative gas production curves under different
production rates are shown in Figures 9–12. When the production
rate is 40×104 m3/d, there is no significant change in cumulative gas
production. When the output is 60×104 m3/d, there is a significant
decrease in daily gas production in the 7th cycle. When the yield
was 80×104 m3/d, the salt formation damage was aggravated in the
5th cycle. As shown in Figure 12, the cumulative gas production
capacity decline rate histogram shows that when the production
is 60×104 m3/d, the gas production capacity decline rate rises to
22.89% after ten cycles, and the salt formation damage is serious.
The conclusions are as follows: the higher the production, the greater
the salt formation risk and the more serious the formation salt
formation. When the production is greater than 60×104 m3/d, the
daily gas capacity decreases significantly and the salt formation is
serious. Low gas production is conducive to controlling the risk
of salt formation, and it is recommended to produce less than
60×104 m3/d.

5 Conclusion

In this work, numerical simulation is performed to analyze the
effect of salt deposition on flowing bottomhole pressure, production
capacity and storage capacity in UGS.

(1) Salt depositionmakes the buttonhole pressure of the well more
dramatic, and the minimum and maximum pressure of UGS is

more likely to be reached duringmulti-cycle production under
the conditions of salt deposition.

(2) The evaporation of formation water increases the gas phase
flow capacity without formation water supply. The damage
of salt deposition gradually increases and the production
capacity of gas wells is severely reduced under the conditions
of formation water supplement.

(3) The working gas volume increased by 5.4×106 m3 by the tenth
cycle. The geological reserves increased by 1.4% compared to
the control reserves of single well.
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