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The shakedown state of the subgrade is crucial for the sustainable design and
long-term stability evaluation of pavement structures. In order to characterize
the plastic deformation and shakedown behavior of subgrade soil in seasonal
frozen regions, cyclic triaxial tests were conducted on the thawed subgrade
soil after seven cycles of freeze-thaw. The influences of the numbers of cycle
loading, the amplitude of cyclic deviator stress, and the confining stress were
considered variables. The evolution features of accumulative plastic strain,
accumulative plastic strain rate, and critical dynamic stress were experimentally
analyzed. Based on the shakedown theory, the ensuing discoveries were that
the accumulative plastic strain response-behavior of thawed subgrade soil was
typically divided into plastic shakedown, plastic creep, and incremental collapse
under the long-term cyclic loading. Furthermore, the shakedown standard
for thawed subgrade soil was also proposed based on the evolution of the
accumulative plastic strain rate. The critical dynamic stresses can be obtained
by the proposal formula to determine the different plastic deformation ranges.

KEYWORDS

shakedown theory, accumulative plastic strain, subgrade soil, freeze-thaw cycles,
critical dynamic stress

1 Introduction

The subgrade is regarded as the support layer for the pavement or railway structures
and undertakes the dynamic stress induced by the moving traffic loadings (Beskou and
Theodorakopoulos, 2011; Krechowiecki-Shaw et al., 2016; Bian et al., 2018; Cui et al., 2022;
Cui et al., 2023a; Cui et al., 2023b; Cui et al., 2024). Under long-term cyclic loadings,
the accumulative plastic deformation of subgrade soils gradually increases, where the
accumulative plastic deformation induced by long-term traffic loading accounts for the
majority (75%–90%) of the total permanent deformation of the subgrade (Li and Selig,
1996; Chai and Miura, 2002; Puppala et al., 2009; Cui et al., 2014; Cai et al., 2018; Lu et al.,
2018; Zhang et al., 2020a; Zhao et al., 2024). The overlarge permanent deformation in
the subgrade layer will lead to pavement failures, such as uneven settlement, rutting, or
cracking disasters in the asphalt layer (Brown, 1996). It is worth noting that when the
pavement infrastructures are constructed in the seasonal frozen regions, the development
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trends of permanent deformation of subgrade soils will accelerate
dramatically subject to the coupled effect of cyclic loading and
freeze-thaw cycle (Lin et al., 2017; Wang et al., 2018; Lu et al., 2019;
Hao et al., 2022; Hao et al., 2023; Pei et al., 2024). Meanwhile, the
shakedown behavior of subgrade soils can be considered a reliable
evaluation of the long-term performance of subgrade structures
in the service period (Werkmeister et al., 2011). Thus, the credible
understanding of accumulative plastic strain and the shakedown
response of thawed subgrade soil can be considered an urgent
demand for pavement and subgrade engineering in seasonal
frozen regions.

The permanent deformation under traffic loading and critical
dynamic stress are the essential parameters for pavement structure
designs and performance maintenance that meet the allowable
deformation limit based on the shakedown theory. The shakedown
theory was first applied to reveal the dynamic behavior-response
of the ideal elastic-plastic materials subjected to cyclic loadings.
In the field of pavement engineering, the shakedown theory was
introduced into the design of pavement structure and assessment of
in-service life by Sharp and Booker (1984) and has been used widely
to explore the plastic permanent deformation behavior of pavement
materials (Boulbibane et al., 2005; Chazallon et al., 2009; Xiao et al.,
2017; Qian et al., 2019; Wang and Yu, 2021; Liu et al., 2022;
Lei et al., 2023). Then, S. Werkmeister et al. (Werkmeister et al.,
2011) developed the primary concept of shakedown theory for
application in subgrade engineering, which illustrated that the
plastic deformation characteristics of subgrade materials can be
classified into three types based on the shakedown theory (Figure 1).

1. Plastic shakedown (range A) means that when the cyclic
load level is low, the granular material first appears as
small plastic deformation, and then the overall deformation
behavior changes to resilient deformation with the increase of
loading cycles. This deformation type indicates that the plastic
permanent deformation behavior of the subgrade structure
is safe, which is considered the ideal state of the subgrade
material in the design.

2. Plastic creep (range B) means that when the cyclic load level
is higher, the granular material first appears as a certain plastic
deformation, and then with the increase in loading cycles, the
plastic deformation gradually increases but the accumulative
deformation rate basically remains stable. This deformation
type indicates that the permanent deformation behavior of the
subgrade structure is controllable and safe within a certain
service life, which is considered the controllable allowable state
of the subgrade material in the design.

3. Incremental collapse (range C) means that when the cyclic
load level is high, the development of plastic deformation
of granular materials increases sharply with the increase in
loading cycles, and the accumulative deformation rate keeps
increasing, which finally leads to structure failure due to
the excessive permanent deformation. This deformation type
indicates that the permanent deformation behavior of the
subgrade structure is uncontrollable and unsafe, and this state
should be avoided for the subgrade materials in the design.

For the subgradematerials, many researchers proposed different
standards to judge the permanent deformation behaviors and
calculated the different deformation areas boundaries and critical

FIGURE 1
Schematic drawing of shakedown theory for subgrade materials.

dynamic stress, such as for unbound granular material (Gu et al.,
2017; Xiao et al., 2018a; Xiao et al., 2018b; Zhao et al., 2022),
coarse-grained soil (Leng et al., 2017; Zhai et al., 2020; Wang and
Zhuang, 2021), fine-grained soil (Zhang et al., 2020b; Li et al., 2021;
Cui et al., 2023c), and frozen soil (Wang et al., 2018; Zhou et al.,
2020; Zhou et al., 2022). For the highway engineering practice, the
sustainable design and hazard prevention of pavement structures
demand an in-depth understanding of the plastic deformation and
shakedown behavior of the thawed subgrade soils to further meet
the requirement of long-term serviceability. However, according
to the above literature review, there is a lack of comprehensive
understanding for analyzing the shakedown response-behavior of
thawed subgrade soils.

Thus, this paper aims to experimentally reveal the evolution of
the accumulative plastic strain behavior of thawed subgrade soils
by freeze-thaw and cyclic triaxial tests conducted on the subgrade
soils. Furthermore, the classification standards for different limits
of plastic deformation ranges and calculations for critical dynamic
stress are established based on the shakedown theory.

2 Experimental investigation

2.1 Tested soil and specimen

The subgrade soils used for plastic deformation tests were
selected from the low liquid silt (ML) that had a strong freeze-
thaw sensitivity and poor water stability, whereas these typical silt
soils have been widely constructed in seasonally frozen subgrade
engineering (Xiao et al., 2014; Zhang et al., 2020b; Li et al., 2021;
Hao et al., 2022; Cui et al., 2023a; Hao et al., 2023; Zhang et al.,
2023). Meanwhile, the silt soils in this paper were taken from
the highway construction site of the Rizhao-Lankao highway in
Shandong Province, China (Hao et al., 2023). The gradation curve
and basic physical properties are presented in Figure 2 and Table 1.
Besides, the cylinder specimens were prepared and remodeled with
a diameter of 39.1 mm and height of 80 mm, where the compaction
degree and initial moisture content were set as 96% and optimal
moisture content, respectively.
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FIGURE 2
Gradation curve of tested soil.

TABLE 1 Basic physical properties of tested soil.

Liquid
limit/%

Plastic
limit/%

Plastic
index/%

Maximum dry
density/g·cm-3

Optimal
moisture
content/%

25.2 17.6 7.6 1.81 12.1

TABLE 2 Test conditions.

Deviator
stress

amplitude/kPa

Confining
stress/kPa

Number
of

freeze-
thaw
cycles

Loading
frequency/Hz

30, 60, 90, 120, 150 15, 30, 45, 90 7 1

2.2 Test procedure

2.2.1 Freeze-thaw setting
According to existing literature, the mechanical properties of

fine-grained soils would be a stable state after 7–10 times of freeze-
thaw cycles in the seasonal frozen environment (Qi et al., 2006;
Qi et al., 2008; Wang et al., 2015; Liu et al., 2016; Lin et al., 2017;
Zhang et al., 2021), and combining the previous studies of silt by our
group, the tested subgrade soils were chosen as thawed silt subjected
to the 7 times of freeze-thaw cycles (Hao et al., 2022;Hao et al., 2023;
Zhang et al., 2023). Moreover, the freezing temperature and thawing
temperature were set as −10°C and 15°C, respectively.

2.2.2 Cyclic loading setting
The cyclic loading mode takes the single-stage loading used by

the triaxial repeated loading device, and the half-sine wave was
adopted to simulate the dynamic stress of subgrade soil induced
by traffic loading (Ramos et al., 2020). The stress levels were set
as 30, 60, 90, 120, and 150 kPa for amplitude of cyclic deviator

FIGURE 3
Loading curve for cyclic triaxial test in this study.

stress and 15, 30, 45, and 60 kPa for confining stress, which is
considered the stress state of subgrade under traffic loading and
the further development of load level of heavy-haul traffic loading,
and the determination of stress levels were based on the subgrade
dynamic response of the theoretical model and in situ test by
our research group (Cui et al., 2022; Cui et al., 2023a; Cui et al.,
2023b). The loading progress is divided into the consolidation
stage and cyclic loading stage, where the consolidation stress is
equal to the confining stress of the soil specimen, and the number
of loading cycles is 10000, as shown in Table 2 and Figure 3,
where the loading frequency is set as 1 Hz considering the moving
speed of highway (Cui et al., 2023a). Meanwhile, due to freeze-
thaw cycles occurring mostly on the surface of the subgrade
and the persistence and instantaneity of traffic loads, the fine-
grained soil subgrade generally has no time for drainage during the
melting stage. Therefore, the cyclic triaxial test in this manuscript
is selected as the undrained test. Besides, the failure standard
of the soil specimen was taken as 10% axial strain that stops
loading, or else the loading stage continues to the 10000 numbers of
loading cycles.

3 Results and discussions

3.1 Analysis of plastic deformation behavior

Figure 4 shows the development of an accumulative plastic
strain of thawed silts under different stress states. It can be concluded
obviously that the accumulative plastic strain increases with the
increase of deviator stress amplitude. Taking Figure 4B as an
example, it can be known that when the amplitude of cyclic deviator
stress is smaller (σd = 30 and 60 kPa), the accumulative plastic strain
of soil specimens increases rapidly only at the initial stage of the
cyclic loading, then the development of accumulative plastic strain
remains in a stable state, where the value of accumulative plastic
strain is 0.23% and 1.58% at the 10000 numbers of loading cycles,
corresponding to σd = 30 and 60 kPa, respectively.With the increase
of amplitude of cyclic deviator stress to 90 kPa, the development
of accumulative plastic strain not only increases rapidly at the
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FIGURE 4
Development of accumulative plastic strains under different stress states.

initial stage of cyclic loading but also maintains a certain increased
trend at the subsequent loading stage. Although the soil specimen
remains in a stable state at the end of the loading (N = 10000),
the accumulative plastic strain and accumulative strain rate of
the soil specimen are large at this state. If the soil specimen
continues to be cyclically loaded, the specimen may fail due to
excessive accumulative plastic strain.Thereafter, when the amplitude
of cyclic deviator stress is further increased to 120 and 150 kPa, the
accumulative plastic strain increases dramatically until it reaches
the experimental termination standard at the initial stage of the
cyclic loading.

Furthermore, Figure 4 shows that with the increase in confining
pressure, the accumulative plastic strain of soil specimen decreases
obviously under the same amplitude of cyclic deviator stress. When
the confining stress is at a high level, the accumulative plastic strain
increases sharply at the initial stage of cyclic loading, and with the
increase in the number of loading cycles, the accumulative plastic
strain gradually slows down and remains in a stable state. However,
when the confining stress is at a low level, the accumulative plastic
strain under the same amplitude of cyclic deviator stress does not
tend to be stable at the subsequent loading stage but still increases
at a certain accumulative deformation rate, and the soil structures
present eventually become incremental plastic failure. The reason
is that the radial constraints on the soil skeleton are produced

FIGURE 5
Criteria for classifying plastic deformation behaviors based on the
shakedown theory.

by increasing confining stress, which means that a more compact
soil skeleton structure can resist greater cyclic load manifested as
a process of accumulative plastic strain reduction from a macro
perspective.
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FIGURE 6
Accumulative plastic strains versus accumulative strain rates.

FIGURE 7
Accumulative strain rates at different plastic deformation behaviors.

3.2 Shakedown standard for typical
deformation range

In order to determine the deformation range that belongs to
which dynamic state of thawed subgrade soil, it is indispensable
to propose a classification standard for different accumulative

plastic strain behaviors of thawed soils under long-term cyclic
loading. Based on the shakedown theory, S. Werkmeister et al.
(Werkmeister et al., 2011) proposed two methods for analyzing the
plastic deformation behavior of subgrade soils. One method is that
the difference of accumulative plastic strain corresponding to fixed
loading times (3,000 and 5,000) is used as the standard of plastic
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deformation behavior.The othermethod is the relationship between
the accumulative plastic strain and the accumulative strain rate. S.
Werkmeister et al. (Werkmeister et al., 2011) observed that there
were significant differences in the variation rules of accumulative
plastic strain rate corresponding to different types of deformation
behaviors as shown in Figure 5, and the accumulative plastic strain
rate changes under different types of plastic deformation properties
were statistically analyzed to establish a classification criterion based
on the accumulative plastic strain rate for three plastic deformation
behaviors of coarse-grained soil. However, the first method was
not suitable for thawed subgrade silt under long-term traffic
loading because, for the incremental collapse specimen, the loading
numbers were approximately 3,000 times lower, corresponding to
the failure state. Thus, the second method was selected for this
paper. Meanwhile, the accumulative plastic strain rate is defined and
calculated as Eq. 1.

Then, by using this method mentioned above, Li et al. (2021)
and Wang et al. (Wang and Zhuang, 2021) were the proposed
shakedown standard for silty soil and coarse-grained soil under
cyclic loading, respectively.Thus, this paper established a shakedown
standard for thawed subgrade soils by analyzing the accumulative
plastic strain rate.

̇εp = dεp/dN (1)

where dεp is the increment of accumulative plastic strain in each
loading cycle, and N is the number of loading cycles.

Figure 6 shows the accumulative plastic strain rates of thawed
subgrade soils by processing the experimental data. It can be
concluded clearly that the accumulative plastic strain rates of
thawed subgrade soils can be classified into three categories: first,
with the increase in loading cycles, the accumulative plastic strain
rate of the specimen continues to decrease to a lower level,
and the accumulative plastic strain is basically stable, which is
determined to be plastic shakedown state, namely, range A; second,
although the accumulative plastic strain rate decreases with the
increase in loading cycles, it still maintains a certain level, and
the accumulative plastic strain is still in a continuous development
state, which is determined to be plastic creep state, namely, range
B; third, the accumulative plastic strain rate decreases with the
increase in loading cycles, but it still remains at a high level,
and the accumulative plastic strain still increases rapidly, which
is determined to be incremental collapse state, namely, range
C. According to the above analysis, the classification results of
thawed subgrade soils under various stress states have been noted
in Figure 6.

The distributions of accumulative plastic strain rates of different
plastic deformation behaviors are plotted, using counting minimum
values of accumulative plastic strain rates of different ranges, as
shown in Figure 7. Then, it can be indicated that the accumulative
plastic strain rates under different plastic deformation behaviors
show obvious differences and limits. The limit between plastic
shakedown and plastic creep is defined as the plastic shakedown
limit. The limit between plastic creep and incremental collapse is
defined as the plastic creep limit. Furthermore, the intermediate
values of the upper and lower boundary values are used as the
critical rates for different plastic deformation behaviors, and the
results are calculated by Eqs 2–4, which is the shakedown standard

FIGURE 8
Critical dynamic stress for plastic shakedown and plastic creep.

for determining the plastic deformation behavior of the thawed
subgrade soils.

Plastic shakedown range:

̇εp < 3.84× 10−5%/cycles (2)

Plastic creep range:

3.84× 10−5%/cycles ≤ ̇εp < 2.49× 10−4%/cycles (3)

Incremental collapse range:

̇εp ≥ 2.49× 10−4%/cycles (4)

3.3 Critical dynamic stress formula

In the shakedown theory, the critical dynamic stress for plastic
shakedown and plastic creep limits can be expressed by the following
equation (Werkmeister et al., 2011):

σ1 max = α(
σ1 max

σ3
)
β

(5)

where the σ1max is the maximum of axial stress, σ3 is the confining
stress, α and β are the material parameters.

According to the above method, it can be seen from Figure 8
that the different plastic deformations have obvious boundaries, and
the plastic shakedown, plastic creep, and incremental collapse are
located in the left, middle, and right regions, respectively. Based on
the distribution as shown in Figure 8, the calculation formulas can
be fitted by Eq. 5. The fitted results and the calculations for critical
dynamic stress are obtained and listed as Eqs 6 and 7 for plastic
shakedown limit and plastic creep limit, respectively. It should be
noted that due to the limited experimental conditions and data in
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this paper, the empirical formula for the critical dynamic stress still
needs more experimental data for improvement.

Plastic shakedown limit:

σ1 max = 4802.1(
σ1 max

σ3
)
−3.32

(6)

Plastic creep limit:

σ1 max = 3957.4(
σ1 max

σ3
)
−2.23

(7)

4 Conclusion

In this paper, a series of cyclic triaxial tests were conducted on
the thawed subgrade soil to explore the accumulative plastic strain
behavior under long-term traffic loading where the low liquid silt
was selected as the typical subgradematerial.The shakedown theory
was adopted to analyze the evolution of the accumulative plastic
deformation of the thawed subgrade soil, the shakedown standards
for classifying different deformation ranges were investigated, and
the calculations for critical dynamic stress were proposed based
on the experimental results. The conclusions are summarized
as follows:

(1) The development of an accumulative plastic strain of thawed
subgrade soils was classified into three categories: plastic
shakedown, plastic creep, and incremental collapse under
different stress states. The dominant influences on the plastic
deformation were caused by the amplitude of cyclic deviator
and confining stress levels.

(2) By using the concept of accumulative plastic strain rate, the
plastic deformation ranges were analyzed in detail, and the
criteria of range classification were also defined, that is, the
accumulative rate was greater than 2.49×10−4%/cycles for
incremental collapse range, less than 3.84×10−5%/cycles for
plastic shakedown range, and the other range for plastic
creep state.

(3) The boundary functions for three different ranges were
established through the confining stress (σ3) and axial stress
maximum (σ1max), which is defined as the calculations for
critical dynamic stress of plastic shakedown limit and plastic
creep limit. This can provide a theoretical guideline for the
evaluation of subgrade stability in the design and dynamic
control in the service period.
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