
TYPE Original Research
PUBLISHED 23 April 2024
DOI 10.3389/feart.2024.1352958

OPEN ACCESS

EDITED BY

Manoj Khandelwal,
Federation University Australia, Australia

REVIEWED BY

Kun Fang,
China University of Geosciences Wuhan,
China
Ze Zhou Wang,
National University of Singapore, Singapore

*CORRESPONDENCE

Ning Ma,
maning1989@swjtu.edu.cn

RECEIVED 09 December 2023
ACCEPTED 05 March 2024
PUBLISHED 23 April 2024

CITATION

Ma N and Yao Z (2024), Analysis of slope
stochastic fields using a novel deep learning
model with attention mechanism.
Front. Earth Sci. 12:1352958.
doi: 10.3389/feart.2024.1352958

COPYRIGHT

© 2024 Ma and Yao. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Analysis of slope stochastic fields
using a novel deep learning
model with attention mechanism

Ning Ma* and Zaizhen Yao

Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu,
Sichuan, China

This paper proposes a novel deep learning model incorporating attention
mechanisms for the analysis of slope stochastic fields. Initially, a deep learning
model is designed to digitally image the stochastic field features of soil strength
variability. This is achieved by discretizing the slope soil stochastic field using the
Karhunen-Loeve expansion method and transforming the discrete results into
digital images. These images are then used to establish a Convolutional Neural
Network (CNN) surrogate model that maps the implicit relationship between
stochastic field images and slope functional function values, thus calculating
the probability of slope failure. The precision of the CNN surrogate model
is enhanced through Bayesian optimization and five-fold cross-validation.
Moreover, to overcome the limitations of existing data-driven landslide stability
prediction models, this study also introduces a Spatial-Temporal Attention (STA)
mechanism. By combining the CNN with Long Short-Term Memory (LSTM)
networks, the model can accurately approximate the actual results of slope
stability calculations in scenarios of high-dimensional representation imaging
of stochastic fields and low-probability slope instability. Consequently, this
significantly improves the computational efficiency of slope reliability analysis
considering stochastic field simulations.

KEYWORDS

spatial variability, slope reliability analysis, convolutional neural network, digital image,
attention mechanism

1 Introduction

The physical and mechanical properties of soil are influenced by complex
geological processes during formation and environmental changes, leading to spatial
variability (Griffiths and Lane, 1999). In geotechnical engineering uncertainty
analysis, many studies have highlighted the importance of soil parameter spatial
variability for reliability index calculations (Poulos, 1995; Wu and Sidle, 1995;
Zhang et al., 2003).

Numerical modeling of spatial variability is crucial in geotechnical engineering.
Stochastic field theory offers an accurate framework for characterization in this domain
(Sidle, 1992; Malkawi et al., 2000; Zhang et al., 2013). In practical numerical computations,
this typically involves discretizing spatial variability into a certain number of random
variables, followed by reliability analysis. Although the direct Monte Carlo Simulation
(MCS) is favored for its simplicity and ease of implementation, it is computationally
intensive and inefficient when dealing with problems of small failure probabilities (Pf)
or highly nonlinear implicit function expressions (Liu and Chen, 2007; Lu and Godt,
2008; Zheng et al., 2010). To overcome these challenges, scholars have proposed various
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surrogate model methods to approximate these implicit
relationships (Fang et al., 2023; Wang et al., 2023). For example,
Rahimi et al. (2019) analyzed the Pf of spatially variable soil slopes
using an adaptive Kriging method based on error rates. Tan et al.
(2020) used a conventional quadratic polynomial response surface
for reliability analysis of clay slopes. However, in certain high-
dimensional scenarios, traditional surrogate model methods like
polynomial response surface and Polynomial Chaos Expansion
(PCE) might encounter accuracy and efficiency issues, a problem
known as the ‘curse of dimensionality’ leading to fitting difficulties.
Hence, there’s a need for more robust surrogate model methods
capable of handling high-dimensional situations.

With advances in computing technology, traditional numerical
methods are gradually shifting towards intelligent methods,
increasingly applied in geotechnical big data and landslide stability
prediction. Methods like Artificial Neural Networks (ANN)
(Tan et al., 2020), SupportVectorMachines (SVM) (Rosenbaumand
Rosenbaum, 2003), Extreme Learning Machines (ELM) (Ma and
Zhang, 2012), Reciprocal Velocity Method, and Long Short-Term
Memory (LSTM) (Shao et al., 2015) neural networks have been
instrumental in analyzing complex relationships between landslide
displacement and external triggering factors (Ma and Zhang, 2012;
Xue, 2016; Chakraborty and Goswami, 2017; Zhang et al., 2021).
These intelligent methods, particularly deep learning approaches
such as Convolutional Neural Networks (CNNs), have shown great
potential in learning the intricate patterns of spatial variability in
soil properties and predicting slope stability with high accuracy.
Wang and Goh, (2021) introduced a deep learning approach to
study slope reliability analysis in spatially variable soils, finding
that Convolutional Neural Networks (CNNs) can effectively learn
information about random variabilities in both spatial distribution
and intensity. The proposed CNN method significantly reduces
computational costs while maintaining high prediction accuracy
compared to direct random field finite element Monte Carlo
simulations. Wang, (2022) introduced a deep learning technique
to study geotechnical reliability analysis with multiple uncertainties,
finding that Convolutional Neural Networks (CNNs) can effectively
handle multiple uncertainties and efficiently predict failure
probabilities.

Considering the significant spatial correlation in landslide
deformation, particularly in large-scale landslide cases, deformation
characteristics at monitoring points vary with spatial location.
Recently, some scholars have conducted beneficial research, such
as using Segmental Inverse Regression (SIR) for dimensionality
reduction of stochastic field expansion coefficients, thereby
establishing efficient surrogate models. These methods based on
Polynomial Chaos Expansion effectively alleviate high-dimensional
problems. Simultaneously, incorporatingmachine learningmethods
like Support Vector Machines and Artificial Neural Networks
further enhances the accuracy of spatial variability-based analyses
of slope stability and foundation bearing capacity. Aminpour et al.
(2023) explore the efficiency of machine learning (ML) models
and Artificial Neural Networks in predicting slope stability and
the probability of failure in spatially variable random fields, with
and without factor of safety (FOS) computations. Their study

demonstrates that ML predictions can be highly accurate across
a wide range of soil heterogeneity and anisotropy, significantly
reducing computational costs by approximately 100 times while
maintaining a low error rate in predicted failure probabilities.
He et al. (2023) present a framework for ready-to-use deep-
learning surrogate models for problems with spatially variable
inputs and outputs, introducing three innovations: the creation
of surrogate models covering a wide range of material properties
and boundary conditions, the handling of large-scale spatially
variable data, and the first attempt to use U-Nets as surrogate
models for geotechnical problems. Their results demonstrate that
while fully connected networks are suitable for simple problems,
deep neural networks that account for data structure, such as
modified U-Nets, provide better results for complex problems.
Sameen et al. (2020) developed a deep learning-based technique for
landslide susceptibility assessment in Southern Yangyang Province,
South Korea, using a one-dimensional convolutional network
(1D-CNN) with Bayesian optimization. The study demonstrated
that CNN outperformed traditional models like ANN and SVM,
achieving higher accuracy and area under the receiver operating
characteristics curve (AUROC) due to its complex architecture and
ability to handle spatial correlations. Bayesian optimization further
enhanced CNN accuracy by approximately 3%.This approach could
be useful in developing landslide susceptibility maps in complex
scenarios with non-linear variable contributions. Furthermore,
this paper proposes an innovative surrogate model method that
transforms the results of stochastic field characterization into digital
images and then constructs the STA-CNN-LSTM model using
Convolutional Neural Networks (CNN) combined with a Spatial-
Temporal Attention (STA) mechanism. This approach establishes
a deep learning surrogate model linking stochastic field digital
images with functional function values. Bayesian optimization is
employed to determine the model’s hyperparameters, and five-
fold cross-validation is used to enhance the model’s accuracy and
reliability.Thementioned Spatial-Temporal Attentionmechanism is
an attention model that integrates spatial and temporal dimensions,
aiming to capture the spatiotemporal correlations in landslide
deformation data. In our STA-CNN-LSTM model, the STA
mechanism is designed as two parallel modules: a Spatial Attention
Module (SAM) and a Temporal Attention Module (TAM). The
SAM improves the model’s ability to capture spatial variability by
aggregating spatial features with weighted emphasis on important
spatial regions. Specifically, SAMutilizes the output of convolutional
layers to generate a spatial attention map, which is normalized by
a SoftMax function and then multiplied by the original spatial
features to enhance the representation of important regions.
The TAM focuses on the temporal dimension by weighting and
combining features from different time steps, emphasizing time
points with significant impact on slope stability. TAM calculates
temporal attention weights using the hidden states of LSTM layers
and applies these weights to the time-series features to highlight
critical points in reliability analysis. This approach demonstrates
the effectiveness and applicability of the STA mechanism
in enhancing model performance for reliability analysis of
slope stability.
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FIGURE 1
The structure of the STA-CNN-LSTM model.

2 Materials and methods

2.1 STA-CNN-LSTM modeling process and
model structure

This research proposes a new STA-CNN-LSTM model based
on spatial-temporal attention mechanisms for landslide stability
analysis (Ding et al., 2020; Chaudhary et al., 2021; Xu et al., 2023).
The Convolutional Neural Network (CNN) is utilized to extract
correlations in spatial displacement data, and the Long Short-
Term Memory (LSTM) neural network is employed to capture the
temporal features of external environmental factors. Additionally,
a spatial-temporal attention mechanism is introduced to these
two deep learning networks. Its role is to reflect the spatial-
temporal characteristics of landslide deformation from various
aspects and reveal significant triggering factors, thus providing
physical interpretability to the predictive model. Specifically, the
model is constructed by integrating the Convolutional Neural
Network (CNN) with the Long Short-TermMemory (LSTM) neural
network. Figure 1 depicts the structure of the proposed landslide
deformation prediction model based on spatial-temporal attention
mechanisms, the STA-CNN-LSTM.Themodel, which processes two
types of input data (temporal and spatial), consists of two modules:
a spatial module and a temporal module. These modules process
different types of landslide data in parallel. Spatial Module (CNN)
Parameters: Convolutional Layer 1: Contains 32 filters, filter size is
3x3, activation function is ReLU. Pooling Layer 1: Usesmax pooling,
pooling window size is 2x2. Convolutional Layer 2: Contains 64
filters, filter size is 3x3, activation function is ReLU. Pooling Layer
2: Uses max pooling, pooling window size is 2x2. Fully Connected
Layer: Contains 128 neurons, activation function is ReLU. Temporal
Module (LSTM) Parameters: LSTM Layer 1: Contains 64 units,
activation function is tanh. LSTM Layer 2: Contains 32 units,
activation function is tanh.

2.2 Spatial module

(1) CNN

A Convolutional Neural Network is a type of feedforward
neural network primarily used for processing data in Euclidean

space (Hakim et al., 2022). When dealing with color digital images
(as shown in Figure 2A), data is stored in pixels and represented
by values (ranging from 0 to 255) across three channels (red,
green, blue). The spatial data input from monitoring points
in this paper differs from that of color digital images. For a
slope monitoring system (Figure 2B), deformation information
is recorded by monitoring points, where the locations of the
monitoring points correspond to pixel positions. Different types
of deformation data (displacement, velocity, and acceleration)
correspond to different channels (Li et al., 2008). Therefore, for the
CNN model input, the deformation data from monitoring points
will be processed as three-channel images.

Compared to other neural networks, the CNN model includes
convolution and pooling operations that extract spatial features
by integrating deformation information from different monitoring
points. A typical CNN model consists of three layers: the
convolution layer, the pooling layer, and the fully connected layer.
In the convolution layer, the output feature matrix M is generated
by performing convolution operations, which involve moving a
filter over the input feature F. Pooling operations usually follow the
convolution layer, where adjacent elements of the feature matrix
M are integrated using max pooling, average pooling, or other
methods. The method of convolution calculation is as Eq. 1:

mi,j =∑
c
∑k • fi,j (1)

Where m is an element of the matrix M; ∑ represents the sum of the
matrix elements; c is the number of channels in F; fi,j is a submatrix
of F, of the same size as the filter; i and j are the row and column
movement steps of the filter k, respectively.

As the filter moves over the input feature, it repeatedly acts
on different submatrices fi,j of the input feature map. This is the
parameter sharing mechanism of CNN, which reduces the number
of parameters and the complexity of the model. Convolution and
pooling are specialized mathematical operations on matrix data,
giving CNNs an advantage in extracting local spatial features.
In training the CNN model, the selection and optimization of
hyperparameters are crucial. We adopt the following strategy for
hyperparameter optimization:

Learning rate: A learning rate decay strategy is used, with an
initial learning rate set at 0.001, decreasing by 10% every five
training epochs.
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FIGURE 2
Presentation of data in CNNs for (A) color digital images and (B) spatial deformation data in monitoring network.

FIGURE 3
Overview of the CBAM.

Batch size: Set to 64, based on available memory and
computational resources.

Training epochs: Set between 0 and 1750 epochs, based on
the model’s performance on the validation set, with early stopping
employed to prevent overfitting.

(2) CBAM

CBAM is a lightweight yet effective module that combines
channel and spatial attention components. The feature map
outputted by a CNN can be represented as the feature X in Figure 3.
During the learning process, CBAM determines which channels
and location information are more meaningful. For the original
feature X ∈ RC×H×W, CBAM successively infers the channel feature
map Xc ∈ RC×H×W, and the spatial feature map Xs ∈ RC×H×W

(Figure 3). During the attention process, the size of the original
feature does not change, and the detailed feature maps can be
represented as Eqs 2, 3.

Xc = Ac(X) ⊗X (2)

X′ = As(Xc) ⊗Xc (3)

Where ⊗ represents matrix multiplication, Xc is the result of
channel attention, and X′ is the feature enhanced by CBAM.
Ac is the channel attention weight, and As is the spatial
attention weight.

Channel attention differentially focuses on different channels of
the feature map by increasing the weight of effective channels and
reducing the weight of useless channel information. For the original
feature map X ∈ RC×H×W, average pooling andmax pooling are used

to integrate spatial information within each channel, which can be
represented as Eqs 4, 5.

A = AvgPool(X) (4)

M =MaxPool(X) (5)

Then, A and M are processed through a shared-weight network
composed of a multi-layer perceptron (MLP). The output vector
elements are then summed up to obtain the final channel weights,
represented by Eq. 6.

Ac = σ(MLP(AvgPool(X)) +MLP(MaxPool(X)))

= σ(MLP(A) +MLP(M))
(6)

Where Ac is the channel attention weight and σ is the sigmoid
activation function. The depth C of Ac ∈ RC×1×1 is the same as the
number of channels in the original feature map F, so each position
of Ac assigns a weight corresponding to a channel of the original
feature map.

For the channel feature map Xc ∈ RC×H×W, average pooling and
max pooling operations are applied on the channel dimension.Then,
the features after the two pooling operations are integrated and
passed through a standard convolution layer. The spatial attention
weights can be generated as Eq. 7.

As = σ( f7×7([AvgPool(X):MaxPool(X)])) (7)

Where σ is the sigmoid activation function, and f 7×7 is the
convolution layer with a kernel size of 7×7.
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2.3 Temporal module

(1) LSTM

Long Short-Term Memory (LSTM) networks are a branch of
Recurrent Neural Networks (RNNs). Compared to Artificial Neural
Networks (ANNs), RNNs add a state body between hidden layers
to store information, enabling RNNs to learn relevant information
from time series data inputs. In the structure of LSTM, the state
body is replaced by a self-loopingmemory block, consisting of input
gates, forget gates, output gates, and memory cells, providing LSTM
with long-term memory and forgetting capabilities. The forget gate
determines how much historical information can be stored in the
memory cell, the input gate decides how much information can be
saved in the memory cell at the current moment, and the output
gate’s role is to transform the current cell state in LSTM into the next
cell state. The gate operations and cell states of the LSTMmodel can
be represented by Eqs 8–13.

it = σ(wxvxt +whuht−1 + bt) (8)

ft = σ(wxyxt +whjht−1 + b f) (9)

ot = σ(wxoxt +whoht−1 + bo) (10)

gt = tan h(wxcxt +whcht−1 + bc) (11)

ct = ft ⋅ ct−1 + it ⋅ gt (12)

ht = ot ⋅ tanh(ct) (13)

Where it , ft , ot , and ct are the four outputs of the input gate, forget
gate, output gate, and storage cell, respectively; bi, bf , bo, and bc are
their corresponding bias vectors.wxv,wxy,wxo,wxc andwhj,whu,who,
whc are the inputmatrices and hiddenmatrices of the three gates and
storage cell mentioned above. σ is the sigmoid function, and tanh is
the hyperbolic tangent function.

(2) Temporal Attention Module

A temporal attention mechanism is added to the original LSTM
to select hidden states throughout thememory cycle. Figure 4 briefly
illustrates the process of temporal attention. Initially, the hidden
states of LSTM units at different time steps, when presented as input
data, are processed through a fully connected neural network, which
then outputs temporal attention weights; at each time step, temporal
attention weights are allocated to the hidden states. The method of
weight distribution by the temporal attention mechanism and its
final output are as Eqs 14–16:

H = [h1,h2,…,hk]k×s (14)

β = so ftmax(Ai(H)) = [β1,β2,…,βk]1×k (15)

hat =
k

∑
i=1

βihi (16)

Where hk is the hidden state of the LSTM unit at the kth

step, and s is the size of each hidden state. Ai is the fully

connected neural network, and hat is the final output of
the LSTM unit.

2.4 Bayesian optimization model

The Bayesian optimization model is a statistical method for
global optimization, particularly suitable for optimizing black-
box functions with high computational costs or without analytic
expressions. It is based on Bayesian theory and Gaussian processes,
guiding the search process through a probabilistic model of the
objective function, thereby finding the global optimumwithin fewer
iterations. The main steps include:

Prior distribution: Select an appropriate prior distribution
(usually a Gaussian process) to describe the uncertainty of the
objective function.

Acquisition function: Define an acquisition function to
determine the location of the next evaluation point. Common
acquisition functions include Expected Improvement (EI) and
Probability of Improvement (PI).

Posterior update: After obtaining the observation value of the
objective function at the new evaluation point, use the Bayesian rule
to update the prior distribution to obtain the posterior distribution.

Iterative optimization: Repeat the above steps until the stopping
condition is met (such as reaching a predetermined number
of iterations or satisfying the convergence criterion). By fitting
a surrogate function to the true objective function and using
the acquisition function to automatically select the next optimal
sampling point for evaluation, unnecessary sampling is avoided,
reducing evaluation costs, and obtaining the optimal solution in
fewer iterations. The Bayesian formula used in the hyperparameter
optimization process is as Eq. 17.

P( f ∣ D1:n) =
P(D1:n ∣ f)P( f)

P(D1:n)
(17)

In the formula, P( f ∣ D1:n) represents the posterior probability,
is the basis for the continuous revision of the unknown objective
function f through the observed data set D1:n; P( f) represents the
prior probability distribution of f; P(D1:n) is the marginal likelihood
of D1:n; P(D1:n ∣ f) is the likelihood of D1:n given f.

x∗ = argmin
x∈R

f(x)

 or 

x∗ = argmax
x∈R

f(x)

(18)

In the Eq. 18: f(x) represents the objective function of Bayesian
optimization. x represents the random variable to be optimized; x∗

represents the optimal value obtained after optimization.

2.5 Cross-validation

Cross-validation is a statistical analysis method used to evaluate
classifier performance. The basic idea is to divide the original data
into groups, with one part serving as the training set and the
other part as the validation set. The classifier is first trained on the
training set, and then the trained model is tested on the validation

Frontiers in Earth Science 05 frontiersin.org

https://doi.org/10.3389/feart.2024.1352958
https://https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Ma and Yao 10.3389/feart.2024.1352958

FIGURE 4
Illustration of the temporal attention operation.

FIGURE 5
Five-fold cross-validation.

set to evaluate the classifier’s performance. K-Fold Cross-Validation
(KCV) divides the original data into K groups, extracting one
subset as the validation set without repetition, and combining the
remaining K-1 subsets as the training set. This process results in K
models, and the average accuracy of theseKmodels on the validation
sets is used as the performance indicator of the K-fold cross-
validation classifier. K-fold cross-validation can avoid overfitting
andunderfitting, and the final results aremore convincing.As shown
in Figure 5, this paper adopts the five-fold cross-validation method.

2.6 Model evaluation metrics

The performance evaluation metrics for the model include
Root Mean Square Error (RMSE), Mean Absolute Percentage
Error (MAPE), and Coefficient of Determination (Rˆ2), with their
respective formulas being:

RMSE = √ 1
n

n

∑
j=1
(Y f −Ti)

2 (19)

MAPE = 1
n

n

∑
j=1
|
Y f −Tl

Tl
| × 100% (20)

R2 = 1−
n

∑
i=1
(Yi −Ti)

2/
n

∑
i=1
(Tl −Tave)

2 (21)

In these Eqs 19–21, n represents the number of test samples;
Y and T are the predicted and actual values, respectively; Tave
is the average of the actual values of the test samples. This
paper utilizes three metrics - Mean Absolute Error (MAE), Root
Mean Square Error (RMSE), and Coefficient of Determination
(R2) - to evaluate the model’s prediction accuracy on the
validation and test sets by comparing the predicted values with the
actual values.

2.7 Spatial variability of soil parameters

To account for the spatial variability of soil parameters, it
is generally necessary to specify the mean, standard deviation,
and autocorrelation function of soil properties. Commonly used
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autocorrelation functions in the literature include the exponential
and Gaussian types:

ρ(τh,τv) =
{
{
{

exp(−τh/LL − τv/Lv)

exp[−(τh/LL)2 − (τv/L2)
2]

(22)

In Eq. 22, τh and τv represent the horizontal and vertical
distances between two points, respectively, while LL and Lv are the
horizontal and vertical autocorrelation distances, respectively.

A stationary Gaussian random field assumes that the mean and
variance of soil property parameters do not varywith soil layer depth
and follow a normal distribution. The expression for the Karhunen-
Loève (KL) expansion of such a field as Eq. 23:

Ĥ(x) = μ+ σĤD(x) = μ+ σ
M

∑
i=1

√λiφi(x)ξi (23)

In the equation, μ and σ respectively are the mean and
standard deviation of the normal variable; ĤD(x) represents
the standard Gaussian random field; x is the coordinate of
the spatial point within the discretized domain of the random
field; M is the number of truncation terms; λi and φi(x)
are the ith eigenvalue and eigenfunction of the autocorrelation
function, respectively; ξi is an independent standard normal
random variable.

∫
Ω
ρ(x1,x2)φi(x2)dx2 = λiφi(x1) (24)

In Eq. 24, Ω represents the discretized domain of the
random field, and x1 and x2 are the coordinates of any two
points within the discretized domain. For the exponential
autocorrelation function, the eigenvalues and eigenfunctions have
analytic solutions, the specific forms of which can be found
in the literature. For the Gaussian autocorrelation function,
solutions can be obtained through numerical methods such as the
Galerkin method.

Non-Gaussian random fields can be derived from Gaussian
random fields through equivalent probability transformations. For
soil property parameters that follow a log-normal distribution, the
discretization results of the random field as Eq. 25

Ĥ(x) = exp(μln X + σln XĤ
D(x)) (25)

In the formula, μlnX and σlnX respectively represent the
mean and standard deviation after normalization of the log-normal
variable.When considering the inter-correlation ofmultiple random
fields, the ξi in Eq. 21 needs to be replaced with correlated standard
normal random variables ξi, χi,χ = ξL,L

TL = R0 where L is the
upper triangularmatrix obtained from theCholesky decomposition,
and R0 is the matrix of equivalent inter-correlation coefficients in
the standard normal space. For the log-normal random field, the
relationship between R0 and the inter-correlation coefficient matrix
R in the original space is:

R0ij =
ln(1+Rijδiδj)

√ln(1+ δ2i )√ln(1+ δ
2
j )

(26)

In Eq. 26, δ represents the coefficient of variation of the soil
property parameters.

When discretizing the random field, it is common practice
to only retain the first M largest eigenvalues and eigenfunctions
from the Karhunen-Loève (KL) expansion to reduce the number
of random variables and lower the dimensionality. To ensure the
accuracy of the random field discretization, the expected energy
ratio factor ε is used to measure the accuracy of the random field
discretization. The number of expansion terms M is determined
based on the ε threshold value (typically taken as ε = 0.95).

ε =

M

∑
i=1

λi
∞

∑
i=1

λi

=

M

∑
i=1

λi

LhLv
(27)

In Eq. 27, Lh and Lv respectively represent the horizontal
and vertical lengths of the discretized domain of the
random field.

3 Reliability analysis method for
network models based on slope
stochastic field digital images

3.1 Generation and preprocessing of
stochastic field digital images

In the complex field of geotechnical engineering, transforming
a discretized random field into a digital image represents an
innovative approach. This process begins with the discretization
of the random field, followed by its mapping onto digital images
through a meticulously designed method. In this transformation,
each coordinate of the random field’s discretization point
corresponds to a pixel in the image, with its value converted into
the pixel’s grayscale or color intensity, thereby creating a richly
detailed visual representation. To preserve the spatial distribution
characteristics of the random field, this study adopted a unique
approach: initially mapping the random field onto the cell grid
of a FLAC3D model, then converting this data into a grayscale
image. This method not only retains the spatial relationship of
the random field but also sets the stage for subsequent machine
learning analysis.

Once transformed, the random field images undergo a series
of meticulous preprocessing steps before being inputted into the
deep learning model. In the Python environment, we first convert
the image from RGB mode to a more concise grayscale mode,
emphasizing the image’s structural features over color information.
Next, to enhance processing efficiency, we remove excess blank
areas from the image. Additionally, converting the data type is
a crucial step, transforming the original uint8 data type (range
0–255) into a double-precision type (range 0–1) to meet the input
requirements of deep learning models. Lastly, we adjust the image
size to match the specifications of the CNN input layer. It should
be noted that although rounding errors occur when scaling the
random field to an integer range of 0–255, careful analysis shows
that such errors are generally negligible and haveminimal impact on
model accuracy.
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FIGURE 6
Flow chart of slope reliability analysis using random field images and STA-CNN-LSTM.

3.2 Reliability analysis based on simulation
methods

After establishing the STA-CNN-LSTM surrogate model,
simulation methods like the Monte Carlo Simulation (MCS) can
be employed to calculate reliability indices. Latin Hypercube

Sampling (LHS) improves sampling efficiency, thus reducing
computational load. Hence, this study uses LHS to generate
samples. Slope stability analysis can be performed according
to Eq. 28.

g(X) = Fs(X) − 1 (28)
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FIGURE 7
Deterministic analysis of a single layer clay slope under undrained condition.

FIGURE 8
One realization of random fields (A) and corresponding gray image after preprocessing (B).

TABLE 1 Architecture of the CNNmodel.

Layer type Number of filters Filter size Activation function Output size

Input - - - 12x40xNf

Convolutional 32 3x3 ReLU 12x40x32

Pooling - 2x2 - 6x20x32

Convolutional 64 3x3 ReLU 6x20x64

Pooling - 2x2 - 3x10x64

Fully Connected - - ReLU 128

Regression Output - - - 1 (MAE as loss)

In the formula, X represents the random variable of soil
property parameters.The stochastic field images of the samples, after
preprocessing, are directly processed by the CNN surrogate model
to calculate the slope safety factor Fs, with the probability of failure
Pf given by Eq. 29.

Pf = P(g(x) < 0) ≈
n′(Fs(x) < 1)

n
(29)

In this equation, n is the number of simulations, and
n′(Fs(x) < 1)/n represents the number of times Fs is less than 1.The
corresponding reliability index β is approximately:

β ≈ −Φ−1(Pf) (30)

In Eq. 30, Φ−1(Pf) represents the inverse function of the standard
normal cumulative distribution function.
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TABLE 2 Bayesian optimization of CNN hyperparameters.

Hyperparameters Optimization range Default value Optimal hyperparameter

Initial Learning Rate 0.0001–0.1 0.001 0.0838

L2 Regularization Coefficient 0.00001–0.01 0.0001 0.0038

Dropout Rate 0–0.5 0.5 0.1157

Number of Filters Nf 2–256 64 16

FIGURE 9
Relationship between minimum MAE of validation set and times of Bayesian optimization.

FIGURE 10
One training progress of CNN model.
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FIGURE 11
Comparison of Fs of slope between FDM and SAT-CNN-LSTM 5-fold
cross validation.

3.3 Computational procedure and program
implementation

The computational procedure of the method proposed in this
paper is shown in Figure 6. This process includes four parts:
establishing a numerical model considering the spatial variability
of parameters (initialization), constructing a sample database,
training the STA-CNN-LSTM surrogate model, and calculating
reliability indices.

3.4 Case study verification

In the paper, an analysis is conducted on an undrained saturated
clay slope, as shown in Figure 7. The slope has a height of 5 m and
an angle of 26.6°. The undrained shear strength Cu is considered
as a log-normal random field, with a mean value of 23 kPa
and a coefficient of variation of 0.3. The horizontal and vertical
autocorrelation distances are 20 m and 2 m, respectively, using an
exponential autocorrelation function. The saturated unit weight of

the soil γsat is 20 kN/m³, the modulus of elasticity E is 100 MPa, the
Poisson’s ratio is 0.3, and the acceleration due to gravity is 9.8 m/s2.

In our study, we utilized a FLAC3D model to precisely simulate
the geological structure of an undrained saturated clay slope. The
model was designed with a mesh cell edge length of 0.5 m, resulting
in a total of 906 cells. This meshing strategy ensures that the mesh
refinement level can capture geological details, adhering to a key
criterion: the cell size should be less thanhalf the correlation distance
(i.e., the range of fluctuation) to ensure data accuracy (Chugh,
2002; Chugh et al., 2007). For the constitutive model, we adopted
the ideal elastoplastic Mohr-Coulomb model combined with a non-
associated flow rule, providing reliable predictions of mechanical
behavior. With the undrained shear strength (Cu) parameter set to
its mean value, our deterministic analysis yielded a slip coefficient
(Fs) of 1.332, indicating slope stability.

To further analyze the stochastic field, we employed the
Karhunen-Loève (KL) expansion method to discretize the Cu
random field. Our findings revealed that increasing the number of
expansion terms (M) from 100 to 200 significantly improved the
discretization accuracy, with the ratio factor (ε) increasing from 0.92
to 0.95.This improvement highlights the importance of choosing an
appropriate number of expansion terms for accurate representation
of the stochastic field. In contrast to traditional surrogatemodels that
rely on random variables, our approach directly inputs the stochastic
field digital images into the STA-CNN-LSTM model, effectively
overcoming the limitations of truncation terms in KL expansion.
Consequently, we selectedM = 200 to achieve a high discretization
accuracy of ε = 0.95 for the Cu random field.

Using independent standard normal random variables
generated by the Latin Hypercube Sampling (LHS) method, we
simulated 100 Cu random fields (Ns = 100). Figure 8 presents
one realization of the Cu random field and its corresponding
preprocessed grayscale image. In Figure 8A, the spatial distribution
of the Cu random field is depicted. Based on this distribution, the
calculated factor of safety (Fs) value is 0.963. Figure 8B displays the
preprocessed grayscale image, sized 20 × 60 × 1, with each grid
representing a pixel. The pixel grayscale values range from 0 to 1,
corresponding to Cu values in the interval [0, 60 kPa], covering
99.97% of possible values. These 100 samples will be utilized for
training the STA-CNN-LSTM surrogate model, demonstrating the
model’s capability to predict slope stability accurately.

For the CNN model, a 10-layer architecture was employed. In
the input layer, zero-center normalization was used, which involves
subtracting the average value from the input data to reduce bias.The

TABLE 3 Comparison of reliability results of single-layer undrained clay slope.

Method Model Sample size Fs mean Fs standard deviation Pf β

LHS FDM 2000 1.240 0.205 0.104 1.259

STA-CNN-LSTM-LHS FDM 100 1.236 0.203 0.107 1.243

MCS BSM 100,000 1.267 0.199 0.076 1.433

CNN-LSTM-LHS FDM 100 1.237 0.204 0.110 1.240

CNN-LHS FDM 100 1.239 0.205 0.114 1.237
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filter size for the first convolutional layer was set to 9×21×Nf, where
Nf is one of the key hyperparameters determined through Bayesian
optimization. Since the ReLU activation function maintains the size
of the feature map, the size of the feature map becomes 12×40×Nf
after the first convolution and activation. Subsequently, a 2×2
average pooling further reduces the feature map size, shrinking it to
25% of its original size, i.e., 6×20×Nf. In the second convolutional
layer, the filter size is 3×9×2Nf, doubling the number of filters
from the first convolutional layer and further reducing the feature
map size to 2×6×2Nf. The subsequent part of the network includes
dropout layers, fully connected layers, and a regression output layer
with Mean Absolute Error (MAE) as the loss function, as shown in
Table 1.

In terms of sample database usage, 30%of the datawas randomly
allocated as a validation set, with the remaining 70% used as the
training set for Bayesian optimization of CNN hyperparameters.
During the optimization process, the maximum number of training
epochs for each hyperparameter combination was set to 3,000,
and the maximum number of evaluations for different parameter
combinations was limited to 30. This setting was aimed at reducing
the time required for optimization. Table 2 details the optimization
ranges for four hyperparameters, along with their default values
and optimized best values. This approach not only improved
the performance of the CNN model but also ensured efficient
adjustment of the model to accommodate complex datasets.

Figure 9 shows the relationship between the minimum MAE
on the validation set and the number of optimization iterations.
Since the MAE of the validation set is fixed at the end of each
optimization, the estimated minimum target value is equal to the
observed value. The optimal hyperparameters listed in Table 1 are
the results of the 18th optimization, corresponding to an MAE
of 0.019, RMSE of 0.0238, and R2 of 0.985 on the validation set,
indicating high accuracy.

Training the STA-CNN-LSTM model with the optimal
hyperparameters listed in Table 1, we employed a five-fold cross-
validation approach to enhance its generalization capability.
Figure 10 illustrates the training process of the STA-CNN-LSTM,
showcasing the decreasing curves of the loss function values and
RMSE for both the training and validation sets as the number of
iterations increases. It is evident that the error for both datasets
decreased rapidly and stabilized after the first 200 iterations. Due to
the random dropout effect, the error in the training set is slightly
higher than that in the validation set, as depicted in the figure.
The error in the validation set gradually decreased and stabilized
throughout the training process, with no overall upward trend,
indicating that no overfitting occurred during training. Training
was prematurely stopped after 1802 epochs, lasting approximately
2 min, demonstrating the efficiency of the STA-CNN-LSTMmodel’s
training time in this case.

Consequently, the STA-CNN-LSTM surrogate model has been
successfully established. Building on this, slope reliability analysis
was conducted for the case study. Initially, 2000 random fields
(2000 LHS) were simulated using the Latin Hypercube Sampling
(LHS) method, and a total of 2000 stochastic field grayscale images
were generated using the image processing method proposed in
this paper. These images, once predicted by the STA-CNN-LSTM
surrogate model, yielded corresponding responses, i.e., the slope’s

safety factor (Fs). Probability of failure (Pf) calculations for the slope
were then performed based on this data.

To validate the method proposed in this paper, direct Finite
DifferenceMethod (FDM) stability analysis was performed on these
2000 simulated random field slopes using FLAC3D, obtaining the
‘true values’ of Fs. Figure 10 compares the true values of Fs calculated
by FDM and the predicted values of Fs calculated by the CNN
model. The MAE, RMSE, and R2 shown in the figure are the results
calculated for the 2000 LHS data. In Figure 11, a few scatter points
show predicted values greater than the true values, with some
significant deviations. The maximum absolute error was 0.257 (for
the point where the true value of Fs is just under 1.5), but overall, the
model demonstrates high prediction accuracy.

Table 3 presents the results of the reliability analysis for a single-
layer undrained saturated clay slope calculated by differentmethods.
The Pf calculated directly by FDM for 2000 LHS simulations is
10.4%, with a 95% confidence interval of 9.06%–11.74%. The Pf
calculated by the SAT-CNN-LSTM-LHS method is 10.7%, which,
compared to the former, results in a relative error of 2.88%.
Simultaneously, the number of calculations for the SAT-CNN-
LSTM surrogate model is only 1/20th of the former. Since FDM
calculations are time-consuming, themethod proposed in this paper
significantly reduces computation time.The Pf obtained using BSM-
MCS is 7.6%, which differs considerably from the results of this
paper, mainly because the Fs calculated by FDM is smaller than
that by BSM, resulting in a relatively higher Pf. The failure rate for
the STA-CNN-LSTM-LHS method is 10.7%, slightly higher for the
CNN-LSTM-LHS method at 11.0%, and highest for the CNN-LHS
method at 11.4%.This indicates that among these threemethods, the
STA-CNN-LSTM-LHS method performs the best in predicting the
failure probability of slopes, while the CNN-LHS method performs
the worst.

4 Conclusion

This study proposes a novel STA-CNN-LSTM model that
incorporates a spatial-temporal attention mechanism for slope
stability analysis in geotechnical engineering, particularly for the
reliability analysis of single-layer undrained saturated clay slopes. By
digitizing the stochastic field and applying deep learning technology,
we transformed the slope’s stochastic field characteristics into digital
images and used a deep learning model to predict the slope’s safety
factor (Fs) and failure probability (Pf). Moreover, by optimizing the
CNN model’s hyperparameters through five-fold cross-validation
and Bayesian optimization methods, the model’s generalization
ability and prediction accuracy were effectively enhanced, leading
to the following conclusions:

(1) For the case study in this paper, the CNN surrogate model
accurately predicted the slope’s safety factor, enabling a rapid
and reliable assessment of slope stability. With the optimal
hyperparameters based on Bayesian optimization, the STA-
CNN-LSTM model achieved a Mean Absolute Error (MAE)
of 0.019, a Root Mean Square Error (RMSE) of 0.0238,
and a Coefficient of Determination (R2) of 0.985 on the
validation set.

(2) The STA-CNN-LSTM surrogate model based on stochastic
field digital images does not require dimensionality reduction
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for high-dimensional problems, demonstrating independence
from the method of stochastic field discretization and good
versatility. The model’s prediction results on 2000 simulated
stochastic field samples showed high accuracy compared to
the direct Finite Difference Method (FDM) stability analysis
results, with a maximum absolute error of 0.257.

(3) The FLAC3D model accurately simulated the stochastic field
and was compared with the direct Finite Difference Method
(FDM) stability analysis results. The results showed that the
STA-CNN-LSTM model had high accuracy in predicting the
slope’s safety factor, closely aligning with the ‘true values’
obtained from FDM calculations. Additionally, compared
to traditional FDM methods, the STA-CNN-LSTM model
significantly reduced computation time, proving its efficiency
and feasibility in practical engineering applications.

Despite the excellent performance of the proposed STA-
CNN-LSTM model in slope stability analysis, there are still
some limitations and challenges. Future research can improve
the model’s generalization ability and robustness by introducing
more diversified data sources and employing data augmentation
techniques and explore more efficient network structures and
algorithms to enhance the model’s computational efficiency and
prediction accuracy. Additionally, although the failure probability
presented in the current case study is relatively high, the proposed
method still has potential advantages in dealing with low failure
probability situations. Future research can further explore and
validate this point.
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