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Improved Gaussian regression
model for retrieving ground
methane levels by considering
vertical profile features

Hu He1, Tingzhen Zheng1, Jingang Zhao1, Xin Yuan1,
Encheng Sun1, Haoran Li1, Hongyue Zheng1, Xiao Liu1,
Gangzhu Li1, Yanbo Zhang1, Zhili Jin2* and Wei Wang2

1Sinopec Shengli Oilfield Technology Testing Center, Dongying, China, 2School of Geosciences and
Info-Physics, Central South University, Changsha, China

Atmospheric methane is one of the major greenhouse gases and has a great
impact on climate change. To obtain the polluted levels of atmosphericmethane
in the ground-level range, this study used satellite observations and vertical
profile features derived by atmospheric chemistry model to estimate the
ground methane concentrations in first. Then, the improved daily ground-level
atmospheric methane concentration dataset with full spatial coverage (100%)
and 5-km resolution in mainland China from 2019 to 2021 were retrieved
by station-based observations and gaussian regression model. The overall
estimated deviation between the estimated ground methane concentrations
and theWDCGG station-basedmeasurements is less than 10 ppbv. The R by ten-
fold cross-validation is 0.93, and the R2 is 0.87. The distribution of the ground-
level methane concentrations in the Chinese region is characterized by high in
the east and south, and low in the west and north. On the time scale, ground-
level methane concentration in the Chinese region is higher in winter and
lower in summer. Meanwhile, the spatial and temporal distribution and changes
of ground-level methane in local areas have been analyzed using Shandong
Province as an example. The results have a potential to detect changes in the
distribution of methane concentration.

KEYWORDS
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1 Introduction

Methane is a major greenhouse gas and studies have shown it to be the second
largest contributor to the enhanced greenhouse effect in the atmosphere (Skeie et al.,
2023). Atmospheric methane levels have been rising steadily since 2007. Up to now,
current atmospheric methane levels have reached approximately 2.5 times pre-industrial
levels (Basu et al., 2022). Between 2008 and 2017, researchers estimated that approximately
60% of total global methane emissions were directly attributable to human activities
(Saunois et al., 2020). Unlike the long-lived gas carbon dioxide, methane is a short-
lived gas whose accumulation in the atmosphere can be reduced in a relatively short
time (Rotmans et al., 1990). This means short-term changes in methane are directly
reflected in climate change, allowing anthropogenic interventions to significantly impact
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global warming over a short timeframe. Therefore, monitoring
changes in atmospheric methane concentration levels is crucial,
but there are presently some shortcomings in the monitoring of
methane concentration changes (Wang et al., 2021; Pei et al., 2023;
Tianqi et al., 2023).

The European Copernicus Atmospheric Monitoring Service
(CAMS) uses atmospheric retrieving modeling incorporating
physical and chemical mechanisms to produce reanalyzed data
on the global spatial and temporal distribution of methane
(Agustí-Panareda et al., 2023). This is based on a priori inputs,
including emission inventories and surface station observations.
However, the resolution of the CAMS reanalyzed data is relatively
coarse. Moreover, the accuracy of the reanalyzed data depends
heavily on the a priori inputs from the sparse surface monitoring
network (Stein et al., 2014). The current ground-based monitoring
network is mainly the Global Atmosphere Watch (GAW) program,
coordinated by the World Meteorological Organization (WMO)
through collaboration with approximately 100 participating
countries globally. The observational data is archived in the
World Data Centre for Greenhouse Gases. The heterogeneous
geographic distribution of the ground-based data results in
significant uncertainty in the reanalyzed data for regions with sparse
distribution of monitoring stations (Pei et al., 2022; Liu et al., 2023;
Zhang et al., 2023).

Remote sensing techniques provide a large amount of large-
scale methane concentration data in contrast to traditional ground-
based monitoring methods, including the use of satellites such
as TROPOMI and GOSAT (de Gouw et al., 2020; Sadavarte et al.,
2021; Suto et al., 2021; Wu et al., 2022). However, it is important to
note that the methane concentrations obtained by satellites mainly
consist of molar fractions of methane in the atmospheric column-
averaged dry air (Schneising et al., 2019), which may not precisely
reflect ground-level methane levels (Shi et al., 2021; Shi et al., 2023).
Considering the high concentration of human production and living
space on the ground, it is necessary to acquire ground methane
concentration data for monitoring sources and changes in methane
(Yang et al., 2023).

Due to the constraints and specific qualities of the mentioned
data sources, one could potentially infer the level of methane
concentration at the ground by consolidating numerous sources
of information, such as the vertical distribution of methane in
the atmospheric chemistry model data and satellite observation
data. Relevant researchers obtained methane concentrations at the
ground by fitting the atmospheric chemistry model simulation data
with a Gaussian function to compute the methane concentration
data at the ground level (Xu et al., 2021). However, due to the
highly inadequate resolution of the atmospheric chemistry model
data, the outcome achieved is also a general statistical result.
Based on this method, researchers compared the simulated ground-
level methane concentration data using a Gaussian function based
on an atmospheric chemistry model with total methane column
concentrations (Qin et al., 2023). After determining the proportion
of ground-level methane concentration in the total methane column
concentration, researchers can use this to convert the methane
column concentration data collected by the satellite to ground-
level methane concentrations. As a result, the ground methane
concentrations can be obtained with greater accuracy. However,
the results were influenced by the satellite and atmospheric model

products, resulting in monthly average CH4 levels that were gridded
to a coarse resolution of 0.1°× 0.1°.

In this study, we proposed an improved method for retrieving
ground methane concentrations. It combines the strengths and
limitations of each dataset by considering the shortcomings of
previous studies. First, we obtained the high-coverage methane
column concentrations derived from satellite observations by filling
the missing pixels caused by invalid retrievals or cloud masks. This
expands our temporal and spatial coverage. Then, the scale factor
data were retrieved by fitting altitude and concentration data from
atmospheric chemistry model simulations by linear interpolation
instead of the Gaussian function. The result of this method can be
used for the calculation of the ratio of the ground-level methane
concentration to the methane concentration of the column. The
ground-level methane concentrations and the methane columns
observed by satellites can be used to calculate the ratio. Finally,
the results are further corrected using ground station observations
according to the Gaussian regression model to obtain highly
accurate ground-level methane concentration data.

2 Materials and methods

2.1 Materials

As shown in Figure 1, the study area covers the geographical
region of China, extending from 70°E to 140°E and 10°N to
55°N. The data used in our study include the atmospheric
methane stratification data of CAMS global greenhouse gas
reanalysis (EGG4), the CH4 product data of TROPOMI as the
real observed atmospheric methane column average concentration
data, the ground methane concentration data collected by the
Global Atmosphere Watch (GAW) network in the world data
center for greenhouse gases, which is provided by the Copernicus
atmospheric monitoring service, the atmospheric reanalysis data of
ERA5 and the ground elevation data of Shuttle Radar Topography
Mission (SRTM).

According to the relevant studies, the EGG4 data from CAMS
can display the global trend and seasonal cycle of greenhouse gas
concentrations (Inness et al., 2019; Custódio et al., 2022; Agustí-
Panareda et al., 2023). This is achieved by combining the model
with measurements from different locations using physical and
chemical mechanisms, which produces data on the concentration of
greenhouse gases globally at different heights from the ground to the
top of the atmosphere (Custódio et al., 2022). In this way, methane
concentrations at different levels from EGG4 can be used to evaluate
changes in the vertical distribution of methane in the atmosphere at
different spatial and temporal scales. The EGG4 dataset is divided
into 60 model levels, which correspond to 60 altitude layers ranging
from the Earth’s ground to the top of the atmosphere (Agusti-
Panareda et al., 2017). Our study collected EGG4 data between 1
January 2019, and 31 December 2021.The dataset includes methane
column-average molar concentration and vertical profile features,
with the former measured in part per billion volume (ppbv) and the
latter in kilograms per kilogram (kg·kg-1). Further conversion and
processing of this data is required.

Our study used groundmethane concentrations from theWorld
Data Centre for Greenhouse Gases (WDCGG) monitoring station
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FIGURE 1
Research area considered in this study. It mainly includes the region where the Chinese Mainland is located. Marked are the locations of the ground
stations used for validation. The ground-based measurements (WDCGG) from CPA, WLG, PDI, AMY, HAT, and YON are used as validation data.

located in the study area.The station offers observation from several
modes, including surface, tower, aircraft, and ship. This research
focused on the primary modes of data collection: surface and tower.
Because of the different geographical locations and observation
modes of the stations, the heights of the observations vary from
one station to another. To validate the data, it is necessary to
calculate the observed values of methane concentration at the height
of the observation station. The number of WDCGG stations in
the 70° to 140°E and 0° to 55°N region is limited, with only six
stations: CPA, WLG, PDI, AMY, HAT, and YON. However, the
data acquired by EGG4 correspond to only three stations: CPA,
WLG, and PDI.

To accurately calculate ground methane concentrations, it is
necessary to collect ground elevation to estimate the ground
methane concentration. The provided methane concentration data
from the atmospheric model has a limited resolution of 0.75°×0.75°
and is obtained from simulations, which may differ from actual
measurements. Therefore, we use the entire average concentration
of methane columns, obtained by inverting the data for XCH4 from
TROPOMI, as actual measurements to correct the result of the
atmospheric model.

Details of the dataset used in this study are summarized in
Table 1, and all data were resampled to a uniform spatial resolution
of 0.05° × 0.05° (equal to approximately 5 km) and averaged daily.

2.2 Methods

2.2.1 Methane profile fitting
Firstly, the atmospheric methane profile data was fitted to

obtain the methane profile function. This is mainly based on
the atmospheric methane layer concentration data provided in
CAMS/EGG4 data. The EGG4 atmospheric methane layer data
comprises the layer height and the concentration data, which were
divided into a total of 60 model levels ranging from the ground to
the atmospheric top. The pressure levels corresponding to different
model levels are 1000, 950, 925, 900, 850, 800, 700, 600, 500, 400,
300, 250, 200, 150, 100, 70, 50, 30, 20, 10, 7, 5, 3, 2, 1 hPa (Agusti-
Panareda et al., 2017). For each location, we obtain the level height
and level concentration data and fit them into a function to obtain
the atmospheric methane profile function. The specific functions to
be used are discussed in the following paragraphs. Here, the symbol
“f ” is used as an example of the function, and the fitting results
are as follows:

C(h) = f(h,c) (1)

Where the fitted atmosphericmethane profile function is denoted by
C(h), and the methane concentration C at the corresponding height
can be obtained by inputting the height h.The function f(h,c) has the
height h and the level concentration data c as variables.
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TABLE 1 Dataset used in this study (2019–2021).

Used data Variable Unit Spatial resolution Time resolution Source

CH4 column-mean molar fraction from CAMS C_XCH4 ppbv 0.75°×0.75° 3-houry ECMWF

Methane CH4 Kg·kg-1 0.75°×0.75° 3-hourly ECMWF

digital elevation model DEM m 90 m —— USGS

CH4 column-mean molar fraction from TROPOMI T_XCH4 ppbv 0.05°×0.05° day TROPOMI

It should be noted that the methane stratification data at
each spatial and temporal location was fitted by f(h,c) to obtain
the methane profile function corresponding to the spatial and
temporal locations. The study aims to estimate the ratio between
the ground-level methane concentration and the column methane
concentration. Therefore, the atmospheric methane concentration
and altitude data must be accurately fitted by a methane profile
function to obtain an accurate relationship between the methane
concentration at a given altitude and the methane concentration
in the atmospheric column. Gaussian functions have been used in
previous studies to fit the atmospheric methane profile (Qin et al.,
2023). As in formula (2-5), in this study, we compared the fitting of
Gaussian functions, multinomial Gaussian functions, smooth curve
fitting, and linear interpolation fitting, as shown in Figure 2. The
following is an introduction to the four fitting methods, and the
Gaussian function has the formula,

f(h) = a ⋅ exp(
−(h− b)2

c2
) (2)

where f (h) indicates that the independent variable of the fit
is a function of height h, that is the methane concentration
at height h, and a, b, and c are the parameters of the
Gaussian function.

The multiple Gaussian functions fit shall be of the following
formula, with two to six Gaussian functions fitted separately to each
raster image element, the number of fits taken from related studies
(Qin et al., 2023),

f(h) = ∑n
i=1

ai ⋅ exp(
−(h− bi)

2

ci
2 ) (3)

where f (h) is the methane concentration at height h and a, b, and
c are parameters of a Gaussian function where n = 2, 3, 4, 5, 6.
By setting n=2 to 6 respectively, the fitting error can be calculated,
and the n-value corresponding to the minimum fitting error can
be found, which will be used as the n-value for fitting multiple
Gaussian functions at that position. Smooth linear fitting constructs
a coefficient by weighting the sum of the squared residuals and the
sum of the rates of change of the curves of one of the fitted functions.
This is used to find the best-fitting function.

RSS(f,p) = p∑n
i=1

wi[Ci − f(hi)]
2 + (1− p)∫(

d2 f
dh2
)
2

dh (4)

Where f (h) is the methane concentration at height h. The wi is
the weight, which is 1 if it is not present. Here the weight refers
to the importance of the different altitudes and the corresponding

methane concentration data. As the importance of all the data is
the same, the weight is ‘not present’. Therefore, the weight is 1. The
variable p is a value in the range [0,1] and is called the smoothing
parameter (smoothing coefficient), and the smaller the value of
p, the smoother the fitting result. Because the height h and the
methane concentration c of different layers obtained in the study are
unweighted,wi is always 1.The purpose of this fitting is to obtain the
atmosphericmethane profile function, so no smoothingwas applied,
and then p was set to 1. This allows the fitted function curve to pass
through as many points as possible, which are composed of fitted
elevation and methane concentration data.

Considering that non-smoothing of the data better meets the
requirements of the study, while linear interpolation does not
perform any operations on the data, the study considers using
the linear interpolation method for testing. The formula for linear
interpolation is as follows.

f(hx) = f(h1) +
f(h2) − f(h1)
h2 − h1

× (hx − h1) (5)

where f (H) is the methane concentration at height h.
The 60 model levels of EGG4 data were used to fit the

atmospheric methane profile function and the results are shown
in Figure 2. Compared with direct Gaussian regression, multiple
Gaussian regression and smooth linear fitting can fit the results
better, but there is still an error between the results and the
sample data. The R (Correlation Coefficient) between the linear
interpolation results and the real values is 1 and the RMSE (Root
Mean Square Error) and the MAE (Mean Absolute Error) are both
0. Compared with the other three methods, linear interpolation
can provide the best results and thus estimate the surface methane
concentrationmore accurately.Therefore, linear interpolation fitting
was used to obtain information on the vertical distribution of
atmospheric methane.

2.2.2 Extracting methane profile features
After fitting the atmospheric methane profile function by linear

interpolation fitting, the methane concentration can be calculated
by substituting the data at any height into the function. Then,
as shown in Eq. 6, it is possible to obtain the ratio of the
methane concentration at any height to the total atmospheric
methane column concentration, or the ratio of the methane
column concentration to the total atmospheric methane column
concentration in any range of heights.

Ratio =
C(h)
Col

(6)
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FIGURE 2
Effectiveness of vertical profile features of atmospheric methane via various methods: (A) Gaussian Fit, (B) Multiple Gaussian Fit, (C) Smoothing Spline
Fit, and (D) Liner Interp Fit. The blue color in the figure represents the real data, while the orange color represents the fitting results, and the R, RMSE,
and SSE of the fitting results using different methods are labeled.

where Ratio is the calculated scaling factor, C(h) is the methane
concentration at height h, and Col is the methane column
concentration corresponding to the model data.

It is important to note that the methane profile function
and concentration data here are both methane data simulated by
the atmospheric model. Here, the atmospheric methane profile
function at each image position is calculated separately for that
position, and the profile function and scale information are also only
applicable to that position and time point to improve the accuracy
of the estimation.

2.2.3 Estimating ground methane concentrations
Using the above method, we have obtained the characteristics

of the vertical distribution of the atmospheric methane from
the atmospheric model data. The above methods can be used
to obtain preliminary surface methane concentrations. However,
the data used in the above methods are inherently uncertain,
especially in areas with fewer ground stations (Stein et al.,

2014; Danilo et al., 2022). Therefore, the uncertainty of the
surface methane concentration obtained by the above method
is relatively high. However, satellite observation data, which has
broader coverage and is not influenced by the distribution of
ground stations, is recommended for obtaining more accurate
results. Satellite data provides more accurate observations of the
situation (Inness et al., 2022). Therefore, it is recommendable to
use satellite methane data instead of methane data simulated
by an atmospheric model as real data. Additionally, the scale
information obtained from the atmospheric model data is
used to transform the CH4 column-mean molar fraction data
into ground-level methane concentration data, which needs
standardization of unit measurements. The satellite-based methane
data displays the average methane concentration throughout the
entire atmospheric column.

To enhance accuracy and reduce computational steps, the
methane ratio calculation has been adjusted to the ratio of methane
concentration at any height to the average concentration of the entire
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methane column. This result is unchanged. Thus, the ground-level
methane concentration is calculated.

Sur faceCH4 = T_Col×Ratio

= T_Col
C(h)
Col

=mean(T_Col)
C(h)

mean(Col)
(7)

where SurfaceCH4 is the ground methane concentrations, T_Col is
defined as the total column concentration of methane observed by
satellites, which is the cumulative value of methane concentration
in the column from the surface to the atmosphere. However, the
result of the satellite observation data is the average concentration
of the methane columns, which means that it is the average
value of T_Col, also known as the mean(T_Col). C(h) is the
methane concentration at height h, and Col is the methane column
concentration corresponding to the EGG4 data. Therefore, when
calculating the column concentration based on EGG4 data, it is
necessary to calculate the column average concentrationmean(Col)
to facilitate unit unity with satellite data. The atmospheric model
data were calibrated using CH4 column-average molar fraction data
observed by satellite through the method described above.

2.2.4 Correcting ground methane concentrations
Significant deviations were observed between the ground

methane concentration data collected through this method and the
actual data. Our research uses Gaussian Process Regression (GPR)
(Rasmussen et al., 2003) models to construct machine-learning
regressionmodels to address this bias. Gaussian process regression is
the use ofGaussian processes for the solution of regression problems.

h(x)Tβ+ f(x) (8)

Where f (x) follows a Gaussian distribution GP(0,k(x,x′)). k(x,x′)
denotes the basis function, which is the covariance between the
features of each variable that can be modeled by a Gaussian process
kernel. h(x) denotes the transformation function that transforms the
sample feature x into the target feature h(x). Therefore, the response
function of the Gaussian process regression can be described as,

p(yi| f(xi),xi) ∼ N(yi|h(xi)
Tβ+ f(xi),σ2) (9)

Where yi is the target characteristics under xi, σ
2 is the error

variance, β is the coefficients, all estimated from sample data.
GPRmodels are nonparametric, kernel-based, and probabilistic.

As a result, they do not need specific model forms and can deal
with nonlinear associations. Additionally, the covariance matrix is
used by the Gaussian process regression to represent the correlation
between the sample data. This enables a seamless transition and
generalization of the model, making it very helpful for dealing with
data with correlation. The method provides excellent generalization
ability even with small sample sizes. This study constructed a
Gaussian process regression model using the station’s observed
ground methane concentration as the dependent variable and
the pre-estimated ground methane concentration, topographic
data, time variables, and location information as the independent
variables. Using this method, ground-level methane concentration
data can be computed with a high degree of precision.

2.2.5 Accuracy verification
To ensure the accuracy of themodeling of ground-levelmethane

concentrations, real methane data observed at ground stations were
used for validation. Due to the varying heights of the stations, it was
necessary to estimate methane concentrations at the station heights
for comparison with the station data during validation.

In addition, to ensure the accuracy of the calibration of
the Gaussian regression model, the accuracy of the model can
be evaluated using ten-fold cross-validation. Cross-validation can
reduce the possibility of evaluation results being affected by data
partitioning methods and verify the generalization performance of
themodel, compared to simply dividing the training and testing sets.
Due to limitations in the number of ground stations and research
time frame, the sample data used in the experiment is limited.
Additionally, cross-validation can more fully utilize the limited data
since the amount of the final sample data used for training the
model is only 1710. It is common to choose a 5 or 10 fold cross
validation when using this method. Due to smaller datasets, 10-fold
cross-validation may be more suitable as it provides more training
data and more frequent model evaluations. The data are randomly
divided into ten parts, with one segment reserved as the test set
and the remaining nine used as the training set. After repeating
this process ten times, the accuracy of the simulated CH4 column
concentrations is evaluated using R2, RMSE, and MAE calculations
(He et al., 2021).

These formulas are calculated as follows:

R2 =(
∑Cn

i=1(xi − x)(yi − y)

√∑Cn
i=1(xi − x)

2 ⋅∑Cn
i=1(yi − y)

2
)

2

(10)

where x, y represent the CH4 measurements and the model-fitted
CH4 levels, respectively.

RMSE = √
∑Cn

i=1(Xi −X)
2

n− 1
(11)

where Xi is the model fitted CH4 result, X is the mean of the model
fitted result and n is the total number of data bars.

MAE = 1
n

n

∑
i=1
|Y−Yi| (12)

where Yi is the model fitted CH4 result, Y is the mean of the model
fitted result and n is the total number of data bars.

3 Results

3.1 Accuracy verification of the proposed
method

As shown in Figure 3, comparing the ground-level methane
concentration corrected by satellite observation data with the station
observation methane concentration data, it can be found that there
is still a general bias, and the correlation coefficient between the
estimatedmethane concentration at the height of the station and the
real methane concentration is 0.66, with an average bias of 44 ppbv.

Frontiers in Earth Science 06 frontiersin.org

https://doi.org/10.3389/feart.2024.1352498
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


He et al. 10.3389/feart.2024.1352498

FIGURE 3
Comparison of ground-level methane concentration data after correction of satellite data with station observations of methane concentrations. The
figure on the left (A–C) shows the average of the model’s fitting results at station CPA, PDI, and WLG with the real data, as well as the correlation
coefficient R (rounded to one decimal place) between the two. The figure on the right presents the number of real data and fitting results at each site
location, the correlation coefficient R (rounded to two decimal places), the RMSE, the MAE, and the univariate linear functions fitted from the data.

The estimated surface methane concentration reflects the trend of
methane concentration over time to some extent when compared
with actual observation data from ground stations. However, there
is an overall deviation between the estimated surface methane
concentration and the actual observed data.

As shown in Figure 3, there is a bias in the estimated ground
methane concentration, so the study used a Gaussian process
regression model for correction. To ensure the reliability of the
corrected model, it was tested by ten-fold cross-validation. The
model’s results were different because of the different settings of
the kernel function in the Gaussian regression model. Therefore,
we compared the results of the model for different cases of kernel
functions. Figure 4 shows some typical fit cases, and all the results
can be found in Appendix A. The optimal results are achieved by
selecting the rational-quadratic kernel function (Figure 4D), which
is a parameterized rational-quadratic kernel function. With this
kernel function, the tenfold cross-validation correlation coefficient
R of the model is 0.93, with an R2 of 0.87. The mean absolute error
(MAE) is 9.6 ppbv, and the root mean square error is 16.1 ppbv.
These values demonstrate the high generalization capability of the

model, indicating its ability to estimate the ground-level methane
concentration in the unknown region.

After applying the Gaussian regression model correction shown
in Figure 5, the overall model accuracy improved with an average
correlation coefficient R of 0.93. In addition, the mean absolute
error (MAE) between the data from the site and the estimated data
was 9.6 ppbv. By using the Gaussian regression model to correct
the ground-level methane concentration estimated from the satellite
data, ground-level methane concentration data can be obtained with
a resolution of 0.05° for full coverage of the study area.

3.2 Spatiotemporal characteristics of
ground methane concentrations

After collecting data on ground-level methane concentration,
we summed the results for each season and year and created
a distribution map, as shown in Figure 6. The study found that
ground-level methane levels showed an increase to the east and
a decrease to the west, as well as a decrease to the north and an
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FIGURE 4
Partial Gaussian process regression kernel function selection and results. In panel (A), the squared exponential means Squared exponential kernel. In
panel (B), the exponential means Exponential kernel. In panel (C), the ard squared exponential means Squared exponential kernel with a separate length
scale per predictor. In panel (D), the ard rational quadratic means Rational quadratic kernel with a separate length scale per predictor.

increase to the south of China. The study estimates the ground-
level methane concentration, which is significantly influenced by
both human activities and ecosystems, with local human activities
playing a particularly prominent role. Multiple factors contribute
to the distribution of ground-level methane. In southeastern
China, abundant water resources, a dense population, and frequent
agricultural activities result in higher methane emissions from
livestock and rice cultivation than in the northwestern region
(Peng et al., 2016). Abundant water resources support abundant
wetlands, which provide more suitable conditions for anaerobic
bacteria to produce methane (Keppler et al., 2006; Bloom et al.,
2010). In contrast, the western region has fewer water resources
and more arid areas, resulting in more methane from this source
in the east and south than in the west. The southeastern region,
due to its proximity to the ocean and higher temperature, has
more water vapor, which is more conducive to methane production.
This condition also encourages the cyclic reaction of methane
in the atmosphere, resulting in greater methane production in
the coastal areas of the east and south compared to the inland

regions (Rotmans et al., 1990; Sass et al., 1991). However, certain
special circumstances, such as increased chemical reactions in the
atmosphere, can cause atmospheric methane levels to be lower in
this region (Methane escapes from major city, 2015). In addition,
CH4 emissions from urbanization and industrialization can increase
in economically developed regions. As a result, a distribution pattern
is formed, as shown in Figure 6.

Figure 6 shows ground-level methane concentration
distribution in different seasons. The seasons are divided into
March-May for spring, June-August for summer, September-
November for autumn, andDecember-February forwinter.Ground-
level methane concentrations show higher levels during autumn
and winter and lower levels in spring and summer. In urban areas,
methane concentrations are higher in winter, similar to previous
studies (Thomas and Zachariah, 2012; Vinogradova et al., 2022).
During autumn and winter, lower temperatures result in reduced
atmospheric movement, which leads to increased stability and
weak upward diffusion of atmospheric methane (Guo et al., 2023).
In addition, vegetation respiration is reduced, and this reduced
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FIGURE 5
Comparison of station-based observations and ground methane concentrations retrieved by the improved Gaussian regression model at stations (A)
CPA, (B) PDI, and (C) WLG, using ten-fold cross-validation. The figure on the left (A–C) shows the average of the model’s fitting results at station CPA,
PDI, and WLG with the real data, as well as the correlation coefficient R (rounded to two decimal places) between the two. The figure on the right
presents the number of real data and fitting results at each site location, the correlation coefficient R (rounded to two decimal places), the RMSE, the
MAE, and the univariate linear functions fitted from the data.

respiration may reduce the ability of vegetation and soils to absorb
atmospheric methane, contributing to increased ground-level
methane concentrations (Han et al., 2023). Methane production
is more favorable during periods of high humidity and anaerobic
conditions in autumn and winter than in spring and summer
(Thauer, 2010; Song et al., 2021). Moreover, energy consumption
increases during the autumn and winter months, while human
energy activities may lead to an increase in methane emissions
(Hmiel et al., 2020).

In the southern part of the studied region, the change in
methane concentration is relatively small and its concentration
is lower. So, as shown in Figure 6, after annual averaging
of the data and displaying the results on a larger scale, the
southern part of the study area in the figure seems to have
the same CH4 concentration. We have therefore narrowed
down the range of concentrations displayed and the spatio-
temporal range, as shown in Figure 7, which shows the methane
concentration in the southern part of the study area on a
single day. As shown in the figure, the study can discover fine

changes in the daily surface methane concentration, which
can be used to monitor changes in methane concentration in
small areas.

3.3 Distribution of the ground methane
concentrations in Shandong Province

In this study, we thoroughly explored the ground-level methane
concentration in Shandong Province. As shown in Figure 8, we
obtained the monthly mean distribution graph of the ground-
level methane concentration in Shandong Province. By looking
carefully at the graph, we found that the ground-level methane
concentration in Shandong Province showed an increasing and then
a decreasing trend during the year. It is worth mentioning that, the
methane concentration in the inland areas of Shandong Province is
significantly higher than that in the coastal areas. From the data,
it is clear that the surface methane concentration in Shandong
Province shows cyclical changes over time, and that these cyclical
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FIGURE 6
Ground-level Methane Concentration distribution in different seasons: (A–D) shows the average results of ground methane concentration for the four
seasons in 2019, and (E–H) shows that for 2020. The seasons are divided into March-May for spring, June-August for summer, September-November
for autumn, and December-February for winter.

FIGURE 7
Distribution of ground-level methane concentrations in southwest China over 1 day.

changes may be influenced by factors such as temperature and
vegetation cover. This result provides important information for
a better understanding of the spatial and temporal distribution
of methane and also provides insight into the search for the
specific sources leading to the large increase inmethane.Meanwhile,
comparing methane concentrations in inland and coastal areas of
Shandong Province, we found a clear difference in the geographical
distribution. Such differences may be related to human activities,
land use, and other factors in different regions. An accurate study

of these differences will help us gain a more detailed insight
into the sources and influencing factors of methane emissions.
Taking Shandong Province as an example, based on the trends of
methane concentration in different regions, the government can
take targeted measures to reduce methane emissions and promote
the application of low-carbon development policies. This targeted
policy formulation will be more precise and help improve the
effectiveness of environmental protection and carbon emission
reduction, providing a scientific basis for sustainable development.
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FIGURE 8
Distribution of monthly mean values of ground-level methane concentration in Shandong Province from 2019 to 2020: (A–J) show the distribution of
surface methane concentration from January to December. The colors in the picture correspond to the color bar on the right.

4 Discussion

4.1 Comparison with other studies

In comparison to the existing satellite observation data products
and ground station observation data products (Alexe et al., 2015),
the method in this study can estimate the ground-level methane
concentration data in any land area. Additionally, the satellite
observation data primarily provide column concentration data
products from the ground to the top of the atmosphere, rather
than ground-level methane concentration data. The distribution
of ground stations is too sparse, and their observations can
only describe the methane concentration within a certain range
around the stations.

Compared to the atmospheric model data (DalsøRen et al.,
2016), the atmospheric model estimated methane concentration
data include methane column concentration data in the whole
atmosphere as well as layered atmospheric methane concentration
data. However, the resolution of the atmospheric model data is
extremely low and it is only suitable for studying the variation of
methane concentration at ground level on a large scale, such as the
world. Our method used in this study has the ability to estimate
ground-level methane concentrations with greater accuracy at a
resolution of 0.05°× 0.05°. Therefore, it is possible to study changes
in the ground-level methane distribution at a more detailed scale.
Moreover, the distribution of ground stations has a strong influence
on the methane data source for the atmospheric model data.

Compared with other related methods (Qin et al., 2023;
DalsøRen et al., 2016), some of their sources of methane
concentration data are atmospheric model data, which may
have a bias between them and the actual atmospheric methane
concentration, and some of them use satellite observation data as

their sources of methane concentration data, but the resolution of
their acquired data products is lower than 0.1°in the Chinese region,
and the time resolution is monthly. Our research method balances
the advantages of the abovemethods. In this study, the temporal and
spatial resolution of the estimated ground-level methane data was
improved to the daily resolution and 0.05°×0.05°resolution based on
the satellite observation data as the real methane concentration data.
Our results are highly accurate, with a ten-fold cross-validation R of
0.93, an R2 of 0.87, a mean absolute error (MAE) of 9.6 ppbv, and a
root mean square error (RMSE) of 16.1 ppbv.

4.2 Methodology critical analysis

The method used in this study has the advantage of obtaining
large-scale, high spatiotemporal resolution surface methane
concentration data, as demonstrated in the previous text. However,
it is important to note that this study has some limitations due to
factors such as the data and methods used in the study. Firstly, the
atmospheric methane vertical profile function fitted by atmospheric
model data was used to calculate ground methane concentration
in the previous part of the study. However, atmospheric model
data inherently contains uncertainty, and the fitting function may
not be able to produce completely realistic results. This can affect
the simulated atmospheric methane vertical profile function and
the calculation of ground methane concentration, resulting in
uncertainty. Furthermore, satellite observation data will be used
as real observation data to correct the simulated ground methane
concentration mentioned above. However, satellite observation
data provides high-coverage reconstructions, which can introduce
uncertainty when used for estimation. Finally, the Gaussian
regression method cannot perfectly estimate all the data, and R
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is not equal to one. Therefore, as shown in Figure 5, the estimated
ground-level method concentrations may exhibit a high level of
agreement with the site data in terms of mean bias, but there may
be either a lower or upper bias on a daily basis.

5 Conclusion

At present, it is difficult to obtain large-scale ground-level
methane concentration data from satellite and ground station
observations. In this paper, a method is provided to estimate the
ground-level concentration based on satellite monitoring data and
atmospheric model data by using Gaussian regression correction
and atmospheric methane profile fitting. Through this method, our
study obtained highly accurate ground-level methane concentration
data. Compared with WDCGG ground-level monitoring station
data, the basis of estimated ground-level methane concentration is
less than 10 ppbv, and ten-fold cross-validation has R of 0.93 and
R2 of 0.87. The current results will be affected by the uncertainty of
the atmospheric model data and satellite observation data used, as
well as the influence of the Gaussian regression correction model
used, resulting in the estimated surface metal concentration being
a small bias daily. Of course, the estimated ground-level method
concentrations may exhibit a high level of agreement with the site
data in terms of mean bias.

Overall, the method used in this paper can estimate the ground-
level methane concentration in different regions for a long period.
Through experimental analysis, the method can be used to study the
distribution and cyclical changes of ground-level methane, which
has potential applications in carbon source monitoring, carbon
emissionmeasurement, and analysis of spatial and temporal changes
of greenhouse gases.

In the future, we will evaluate the performance of the proposed
model at different time intervals (including monthly, seasonal,
and annual scales) and test methane concentrations at different
surface altitudes.
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Appendix A

FIGURE A1
Gaussian process regression kernel function selection and results. (A) squared exponential means Squared exponential kernel. (B) exponential means
Exponential kernel. (C) matern32 means Matern kernel with parameter 3/2. (D) matern52 means Matern kernel with parameter 5/2. (E) rational
quadratic means Rational quadratic kernel. (F) ard exponential means Exponential kernel with a separate length scale per predictor. (G) ard squared
exponential means Squared exponential kernel with a separate length scale per predictor. (H) ardmatern32 means Matern kernel with parameter 3/2
and a separate length scale per predictor. (I) ardmatern52 means Matern kernel with parameter 5/2 and a separate length scale per predictor. (J) ard
rational quadratic means Rational quadratic kernel with a separate length scale per predictor.
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