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An efficient method for modeling
and evaluating the bench terrain
of open-pit mines
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General Research Institute of Mining and Metallurgy, Beijing, China, 3Academy of Deep Earth
Sciences, Chinese Institute of Coal Science, Beijing, China

In order to quantitatively analyze the roughness of the bench floor during open-
pit mine blasting, this study proposes a real-time measuring method for the
three-dimensional terrain of the bench floor during the excavation process.
Real-time monitoring is conducted at the boundary and discrete internal points
of the workbench floor during electric shovel operation, utilizing real-time
kinematic global navigation satellite system (RTK-GNSS) positioning technology.
An improved convex hull algorithm is introduced to automatically extract the
optimal boundary of discrete point clouds based on their spatial distribution
characteristics. This study establishes a digital elevation model (DEM) using five
interpolation algorithms for 3D terrain visualization simulation. Through cross-
validation, a comparative analysis of the DEM accuracy, the simulation results
of the ordinary kriging interpolation algorithm were found to be optimized.
The optimized interpolation algorithm is applied to simulate the 3D terrain in
the Dexing open-pit copper mine, and the relevant terrain parameters were
calculated. This dataset can serve as a precise foundation for the real-time path
planning of elevation blasting design and ground leveling operations.
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1 Introduction

The effectiveness of blasting techniques in open-pit mining significantly influences
economic outcomes and project timelines (Wei et al., 2022). For example, an unavoidable
rock bank after a blast can affect the efficiency of shoveling and transportation and the
location and depth of subsequent precise drilling. Mining technicians depend on their
experience to survey the terrain of the bench surface after blasting and determine the
reference height and smooth operation path; this leads to low operational efficiency and
difficulty in providing digital support for subsequent bench blasting designs. Consequently,
a rapid measurement technology for open pit bench floor terrain is here studied. In recent
years, the global navigation satellite system (GNSS) has been widely used in the terrain
measurement of open-pit mines for terrain mapping, mining area deformation monitoring,
control measurement, and laying out drilling holes (Duan et al., 2015; Fang, 2019; Wang,
2020; Zhang et al., 2022a). A digital elevationmodel (DEM) for the bench floor is established
here by collecting GNSS data. Digital information on the bench floor DEM is used for
subsequent leveling operations and blasting design.

The measurement technology for bench terrain is mainly divided into vehicle carrying
and unmanned aerial vehicle carrying methods. The latter requires data acquisition after
excavation of the rocks that cover the surface of the bench by electric shovel. Due to
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limitations in battery life, unmanned aerial vehicles are unable
to continuously conduct real-time measurements. Therefore, many
research institutions have developed vehicle carrying GNSS rapid
terrain survey methods. For example, Hokkaido University in Japan
developed a laser range finder and GNSS to measure a 3D terrain
map by autonomous vehicles (Yokota et al., 2004; Huang et al.,
2017). Meng developed an airborne 3D terrain survey system
based on real-time kinematic (RTK)-GNSS, verifying that the
system had higher measurement accuracy when the vehicle runs
at low speed (Meng et al., 2009). Li H.P. developed a GNSS rapid
terrain measurement system for farmland to obtain static elevation
measurement accuracy of less than 1 cm (Li et al., 2014). Fan et al.
(2019) and Jing et al. (2019) adopted a terrain survey method
based on the combination of a GNSS double antenna, an attitude
heading reference system, and the RTK positioning algorithm with
double antenna configuration; this effectively reducedmeasurement
error by 10% compared to single antenna measurement. RTK
technology can be employed to further improve GNSS positioning
accuracy with reasonable environmental adaptability and stability
(Wang et al., 2023).

The original positioning data obtained by airborne GNSS
have the problems of voids, non-uniformity, and high degree of
dispersion, which need to undergo filtering, classification, and
interpolation to obtain high-precision DEM. The accuracy of
DEM is directly affected by the interpolation algorithm, which
makes the application of airborne GNSS in the study of terrain
process difficult.Ordinary kriging (OK), radial basis function (RBF),
inverse distance weighting (IDW), irregular network triangulated
mesh (TIN), and natural neighbor (NN) interpolation algorithms
can be used to simulate DEM and address the problems of
voids (Bater and Coops, 2009; Erdogan, 2009; Guo et al., 2010;
Shen et al., 2012; Chu et al., 2014; Lv et al., 2015; Montealegre et al.,
2015; Montealegre et al., 2015; Viswanathan et al., 2015; Chen et al.,
2018; Hekmatnejad et al., 2019; Gao et al., 2021). Previous studies
have shown that DEM accuracy is significantly affected by factors
such as interpolation methods, sampling density, spatial resolution,
and terrain changes. Anderson discussed the influence of data
density simplification on DEM accuracy (Anderson et al., 2006).
Aguilar compared the effects of different interpolation methods and
resolutions on DEM accuracy (Aguilar et al., 2003; Aguilar et al.,
2005; Huang et al., 2020). However, few studies have applied
different interpolation algorithms to airborne GNSS point clouds
and explored the errors of the DEM obtained.

It is a challenge to simulate the whole flat and local
roughness of the bench floor in an open-pit mine. The unknown
accuracy error of DEM is one of the main reasons limiting
the application of airborne GNSS in the 3D terrain research of
bench floors.

In this paper, the real-time acquisition of coordinate data is
based on the RTK-GNSS positioning acquisition system installed
with an electric shovel. Five interpolation algorithms were used to
simulate the bench floor DEM. The influencing factors and errors
of DEM accuracy are compared and analyzed A three-dimensional
terrain model of the bench floor is developed by Python.The model
allows further analysis of the terrain parameters related to the
bench floor and provides an assessment of the flatness of the bench
floor during the electric shovel’s digging process after blasting. The
critical analysis enables mining engineers a timely understanding

FIGURE 1
Position measurement during movement of the electric shovel.

of the changes in bench floor height, ensuring efficient and safer
operations.

2 Data acquisition and research
methods

2.1 Data acquisition

During the loading operation of the electric shovel, real-time
measurement of the bench floor terrain is achieved by tracking
the coordinates of the moving point of the shovel. As Figure 1
shows, the shovel is equipped with a RTK-GNSS positioning
device as the research platform of terrain real-time measurement,
and the vehicle body coordinate system is established with the
ground projection of the positioning antenna phase center as
the origin. The 3D surface coordinates of the walking path of
the electric shovel were accurately measured according to the
fixed elevation difference between the GNSS antenna and the
ground. The Trimble BD982 GNSS dual antenna satellite board
was chosen as the positioning system, offering an RTK positioning
accuracy of approximately 0.015 m and 0.008 m vertically
and horizontally.

As shown in Figure 2, the data acquisition system was installed
on an electric shovel in an open-pit mine to monitor the coordinate
data of the bench floor, including four feature vectors: longitude (X),
dimension (Y), elevation (Z), and time (T). In order to quantitatively
evaluate the terrain of the bench floor, it was difficult to construct
the global bench floor DEM at the one time. In this study, according
to the continuity and spatial distribution characteristics of data
acquisition over time, six groups of representative regions with
varying terrains were selected for research during the operational
period of the electric shovel. Table 1 presents the statistical
information of the data, including the number of points, elevation
range and standard deviation, and the average distance between the
discrete points.
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FIGURE 2
Data acquisition system based on RTK-GNSS positioning. (A) Positioning base station. (B) GNSS and radio antenna. (C) Acquisition terminal equipment.

TABLE 1 Collection information on the datasets.

Sample number Number of
points

Elevation
range/m

Standard
deviation of
elevation/m

Design
elevation/m

Average
distance of
points/m

Tb.175-1 108713 (174.5–176.8) 0.38 175 2.04

Tb.218-1 92518 (215.0–216.2) 0.32 218 1.7

Tb.218-2 102356 (217.6–219.2) 0.26 218 1.23

Tb.230-1 103229 (229.8–232.5) 0.88 230 1.11

Tb.230-2 231678 (228.7–230.8) 1.00 230 1.50

Tb.232-1 141233 (232.2–233.2) 0.33 232 1.12

2.2 Materials and methods

The Python programming language was utilized for analysis
of the monitoring data, incorporating algorithms such as discrete
points boundary identification, interpolation, and terrain factor
calculation. Figure 3 shows the DEM modeling analysis process
of the bench floor. First, the discrete points identification
boundary algorithm is introduced to delineate the research area
of the bench floor. Second, the discrete points in the effective
region are randomly divided into two parts: 80% training sets
and 20% test sets. Third, various algorithms are employed to
interpolate the training sets within the study area, leading to
a discussion on the errors in the DEM generated by different
algorithms. Furthermore, an analysis is conducted on the impact of
interpolation parameters, data density, the terrain characteristics of
the interpolationmethods, ultimately culminating in the selection of
the optimal interpolation algorithm. Finally, the relevant parameters
and indices of describing the bench floor are calculated based
on DEMmodel.

2.2.1 Discrete point boundary extraction
algorithm

This study proposes an improved algorithm that can
automatically extract the optimal boundary of an arbitrary point
distribution based on the convex hull model algorithm (Qian
and Liu, 2007; Liu et al., 2011; Yang, 2021). In the improved
algorithm, the α-shape algorithm which automatically adjusts
the 2α value is used to extract the boundary in the two-
dimensional mesh. Figure 4 shows the process of extracting
the boundary.

Coordinate points are projected onto a two-dimensional plane
along theZ-axis, maintaining the X and Y values.The neighborhood
grid point detection method determines the internal and boundary
grids. Hengl demonstrated that the optimal DEM grid resolution
should be half the average point distance (Heng, 2006). Therefore,
the size of the grid should be set to half the average distance of
the points.

The vertical lines of the x and y-axes were drawn according to
the boundary grid points to generate rectangular bounding boxes.
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FIGURE 3
DEM modeling analysis process of the bench floor.

FIGURE 4
Flowchart of the point cloud boundary extraction algorithm.

The discrete points in the non-boundary grid were excluded by
triangular meshing in the inner point cloud of the rectangular
region, and the discrete points in the boundary grid were
identified using the convex hull algorithm (He et al., 2023).
Figure 5A shows an example of a minimum convex algorithm. The
minimum rectangular bounding box (A-B-C-D) is first determined;
subsequently, the uppermost point ymax and the lowest point ymin
are connected.The rectangular bounding box is divided into left and
right parts. On the left side of the data, the top, bottom, and leftmost
points are connected to each line segment; points a and b are furthest
from the outside of the line segment and connect a to ymax, a to xmin,
b to ymin, and b to xmin, respectively. The same method was applied
to the four lines formed by points a and b, and all boundary points of
the left half were found in turn.The right half of the data is processed
according to the samemethod.The algorithm is capable of effectively
extracting the minimum convex deformation boundary; however, it
cannot concave the boundary.

The proposed improved algorithm was used to extract the point
cloud concave boundary. It sets 2α based on the convex boundary
segment lengths. Shorter lengths indicate adjacent points, while
longer lengths suggest non-adjacent points. Therefore, the quartile
of each length value of the convex boundary line is counted. The
value of 2α is determined as the highest quartile. Subsequently, the
concave boundary points are extracted. Concave boundaries are
then found where convex boundary lengths exceed 2α, using the
α-shape algorithm.

As shown in Figure 5B, First, the α-shape algorithm is usedwhen
line segment PQ > 2α. A circle with PQ′ as its diameter is rolled
counterclockwise fromP toQ (|PQ′| = 2α, PQ′⊥PQ).When the first
point is P1 in the 2α neighborhood, calculate the modulus of P1Q. If
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FIGURE 5
Simulated point cloud and its boundary extraction. (A) Convex hull boundary extraction. (B) Improved algorithm for concave boundary extraction.

TABLE 2 Number of sample points after data reduction.

Sample
number

Maximum
sampling
rate (%)

Number of sampling points

70% 60% 50% 40% 30% 20% 10%

Tb.175-1 74 11936 10231 8,526 6,821 5,116 3,410 1705

Tb.218-1 44 \ \ \ 3,348 2,512 1,675 837

Tb.218-2 45 \ \ \ 3,484 2,613 1742 871

Tb.230-1 63 \ 3,099 2,582 206 1,549 1,033 516

Tb.230-2 70 11008 9,435 7,863 6,290 4718 3,145 1,573

Tb.232-1 76 4564 3,912 3,260 2,608 1956 1,304 652

P1Q > 2α is still true, the next point P2 is found according to the
above method. Repeat the process until Pn is found where PnQ ≤ 2α
at which point the process stops. Finally, the optimal boundary is
found by connecting all the boundary points in turn.

2.2.2 Interpolation method
Spatial interpolation transforms spatially continuous points into

continuous data surfaces (Mao, 2007; Tang, 2014; Huang et al.,
2023). Five interpolation methods (IDW, RBF, TIN, NN, and OK)
were selected for DEM construction, with a comparative analysis
conducted to evaluate accuracy and factors affecting interpolation
errors.

(1) Interpolation method

The IDW calculated the weighted average using the distance
between the sampling point and the interpolation point as the
weight. The IDW interpolation is expressed as Eq. 1 (Achilleos,
2008):

f (x,y) =
∑n

i=1
z i
dpi

∑n
i=1

1
dpi

, (1)

where f(x,y) is the elevation value of the point to be measured,
n is the number of sample points, zi is the elevation value
of the ith sample point, di is the Euclidean distance from the
measured to the sample point, and p is a power with a value in
the range of 1–3.

The RBF is more appropriate for computing homologous spatial
interpolations. RBF established in Eq. 2:

f (x,y) = ∑n
i=1

αiφ(‖x − xi‖2), (2)

where φ(‖x− xi‖2) is the radial basis function, ‖x− xi‖2 is
the Euclidean distance from the point to be interpolated to
the sampling point, αi is the interpolation coefficient, and n
neighborhood points are searched by reference to a kd-tree
(Zhou et al., 2008).

The TIN builds triangles using a sequence of points (Cao et al.,
2014). However, it has the disadvantage that there may be sudden
changes in the edge gradient (Li and Heap, 2014).

The NN is based on the mesh division within the
sample region, and attribute values of the mesh vertices
and interior are obtained using the linear interpolation
method (Mao, 2007).
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FIGURE 6
Experimental and theoretical variogram models of Tb.175-1.

TheOK is a geostatistical method that uses the variance function
as weights to unbiased optimal estimation. The OK interpolation
method uses the variation function to express the spatial variation
(Anderson et al., 2006; Viswanathan et al., 2015;Hekmatnejad et al.,
2019), according to Eq. 3:

f (x,y) = ∑n
i=1

λiz i, (3)

where λi is the weight coefficient. The weight coefficients can be
obtained by the theoretical variogram model. The variogram model
and its related parameters (nugget value, variation range, and partial
base value) are key factors that affect the interpolation accuracy
(Zhang, 2014). Variogram function models include spherical,
Gaussian, and exponential model (Zhang et al., 2022b). It is crucial
to select a reasonable theoretical variogram function model and
parameters for simulation accuracy. First, semi-variance values
for different lag distances are calculated using the sample data,
leading to the construction of an experimental variogram.The chart
illustrates the spatial correlation of the sample data as distance varies.
Second, the best model describing the spatial structure of data is
selected based on the experimental value. Third, the nugget, range,
and sill of the theoretical variogram model are estimated using the
nonlinear least squares fitting method. It is necessary to evaluate
the degree of fit by observing the residual, calculating the fitting
coefficient, or comparing graphs.

(2)Data density

Due to the presence of duplicate and null values in the original
data, the study area is divided into grids of equal spacing. Duplicate
data points within each grid were filtered to retain the mean value.
Themaximum sampling rate is defined as the ratio of the number of
original samples to the total number of grids.

The error of DEM is constructed by different density point
clouds. The training data is set down to the grid resolution under
densities of 70%, 60%, 50%, 40%, 30%, 20%, and 10%. The amount
of extracted data is shown in Table 2.

(3) Error evaluation

Some test data are used to verify DEM accuracy. Grid elevation
values from the DEM are extracted at verification point locations.

Based on the extracted grid elevation values and the corresponding
verification point’s elevation values, the error index is calculated, and
the error of the interpolation algorithm is evaluated.

The root mean square error (RMSE), calculated as Eq. 4, and
goodness of fit (R2), calculated as Eq. 5,methods are selected as error
evaluation indices. When the RMSE value is smaller or R2 is closer
to 1, the error of the DEM simulation is optimal.

RMSE = √ 1
n
∑n

i=1
(Zi − Ẑi)

2, (4)

R2 = 1−
∑n

i=1
(Zi − Ẑi)

2

∑n
i=1
(Zi −Zi)

2 , (5)

where Ẑi is the predicted value, Zi is the truth value, n is the
number of samples used to validate the test sets, and Zi is the
average elevation.

2.2.3 Terrain parameters
In order to quantitatively analyze the roughness of the bench

floor, three evaluation indexes are defined as regional area, surface
slope, and roughness.

(1) Regional area

The set boundary coordinates are [(xi,yi), i = 1,2⋯,n], and n is
the number of boundary points. The regional area is expressed as:

S1 =
1
2
∑n−1

i=1
(xi+1 + xi) · (yi+1 − yi). (6)

(2) Surface slope

Assuming that the fitting slope equation could be written as Z =
AX+BY+D, the coefficients A, B, andDwere obtained by using the
least-squares method to fit the interpolated data. The surface slope
(θ) is calculated thus:

θ = tan(arccos 1
√A2 +B2 + 1

). (7)

(3) Surface roughness

Surface roughness refers to the degree of deviation between
real and ideal surfaces in the vertical direction. The standard
deviation of the vertical distance from each point to the fitting
surface is calculated as Sd. If Sd is smaller, the roughness
is smaller.

The vertical distance from each point (xi,yi,zi) to the fitting
surface after interpolation is expressed as follows:

di =
|Axi +Byi +D − z i|

√A2 +B2 + 1
. (8)

All points on the fitting surface d have a vertical distance average
and standard deviation Sd such that

d = 1
K
∑K

i=1
di, (9)

Sd =
√∑

K
i=0
(di − d)

2

K − 1
. (10)

The overcut or undercut areas can be used for terrain indexes.
These areas are determined by judging whether the distance (di)
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FIGURE 7
Distribution of original discrete points.

from each point to the fitting surface exceeds the threshold range
∆d (∆d=0.3 m). sgrid is the size of the model grid.

{{{{
{{{{
{

Sc =∑
m
i=1

di · sgrid ifdi < −∆d

So =∑
m
i=1

di · sgrid ifdi ≤ |∆d|

Sq =∑
m
i=1

di · sgrid ifdi > +∆d

. (11)

3 Results and discussion

3.1 Interpolation algorithm parameters

Parameters of the interpolation algorithms were considered
as follows: the power of the IDW was set to 2, and 30 adjacent
points were searched. The RBF used a Gaussian RBF to search
for 30 adjacent points. The TIN constructed triangular mesh for
linear interpolation. Parameters of the OK were obtained through
fitting the experiment and theoretical variance functions from
each sample data. The fitting process utilized the nonlinear least
squares method, iteratively adjusting the model parameters to
minimize the differences between the theoretical and experimental
variograms. Consequently, the range, sill, and nugget of the
theoretical variograms were determined through this iterative
refinement process.

Theoretical variogram models such as the Gaussian,
exponential, and spherical models are selected based on the
experimental variogram graph. As shown in Figure 6, the scatter of
the experimental variation function and the curve of the theoretical
variation function were fitted. The fitting coefficients (R2) for the
spherical, Gaussian, and exponential models are 0.968, 0.937, and
0.899, respectively. The optimal variogram model is the spherical
model, its range β, nugget value C0, and range value C being 106,
0.02, and 0.192, respectively.

3.2 DEM of the bench floor

Taking the Tb.175-1 as a case (Figure 7), the visualization
effects of different interpolation algorithms to simulate bench floor

DEM are compared. The DEMs from five interpolation algorithms
fill gaps and capture terrain trends yet differ markedly in visual
quality. In Figure 8A, the IDW is easily affected by the density of
extreme points. Enhancing the sample count improves terrain detail
retention. In the cavity regions, the interpolation outcomes were
similar, resulting in a smooth surface influenced by neighboring
points. In Figure 8B, the surface is not continuous and smooth, and
the fluctuation phenomenon at the boundary position is especially
significant. In Figure 8C, TIN adopts linear interpolation to generate
multiple abnormal “step” surfaces in the dotted cavity area, which
is completely different from the real bench floor terrain. The
NN (Figure 8D) offers smoothness in uniformly sampled areas
but generates a “sawtooth” edge effect where samples are lacking.
The OK (Figure 8E) considers global points distribution in the
interpolation calculation of terrain in the void and nonuniform
scattered areas, delivering a smooth DEM that accurately delineates
terrain undulations and effectively reflects local variations.

After comparing the DEM results, the accuracy of each
interpolation method is verified by using the truth value on the
simulated elevation data. As shown in Figure 9, the desired value
(black line) indicates that the estimated value is the same as the truth
value. The distance between the estimated value of each algorithm
and the black line segment indicates the error value.

The weight value of the OK interpolation optimizes continuity
and smoothness by considering the distance between the
interpolation and sampling points and their spatial distribution
relationship. Conversely, other algorithms have limited weights,
resulting in poor simulation results in blind areas and edges.

3.3 DEM error of different interpolation
methods

3.3.1 Data density factor
By studying the variations in RMSE values at different data

densities, we aim to uncover the performance of DEM interpolation
methods in the Tb.175-1 area and understand the impact of data
density on DEM error.

Figure 10 shows the RMSE of five interpolation methods as
influenced by data density. Increasing data density leads to a
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FIGURE 8
DEM results of different interpolation methods. (A) IDW interpolation
result. (B) RBF interpolation result. (C) TIN interpolation result. (D) NN
interpolation result. (E) OK interpolation result.

gradual RMSE reduction before stabilization. Notably, RBF is less
affected by lower data density (<40%). However, RMSE values
exceed 0.2 m for all algorithms between 10% and 40% density.
IDW is notably sensitive to sampling density in terrain fluctuating
areas. Between 40% and 60% density, errors decrease notably,
with NN showing the largest reduction (0.27 m–0.154 m) and

FIGURE 9
Verification of the truth and estimated values of Tb.175-1 elevation.

FIGURE 10
RMSE of the algorithm for different data densities.

FIGURE 11
RMSE of DEM-generated different interpolation algorithms.

TIN the smallest (0.24m–0.15 m). Above 60% density, errors
plateau below 0.2 m, indicating minimal impact on DEM accuracy.
This shows that the interpolation methods have less influence
on DEM accuracy when data density is larger. The maximum
sampling rate of TB175-1 is 74% of the whole grid due to
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FIGURE 12
(Continued).

the reduction of sampling data and sampling blind area. At the
maximum sampling rate, the RMSE values for OK, RBF, IDW,
TIN and NN are 0.101 m, 0.13 m, 0.144 m, 0.152 m, and 0.156 m,
respectively.

FIGURE 12
(Continued). Simulation results of the bench floor contour map. (A)
Tb175-1 contour map. (B) Tb218-1 contour map. (C) Tb218-2 contour
map. (D) Tb230-1 contour map. (E) Tb230-2 contour map. (F)
Tb232-1 contour map.(a)(b)

3.3.2 Regional terrain factor
The DEM errors of six test areas were compared and analyzed

under the maximum sampling rate. As shown in Figure 11, OK
interpolation demonstrates the highest accuracy, with an RMSE
below 0.22 m and R2 exceeding 0.909 for the same sample data.
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TABLE 3 Calculation results of terrain parameters of the bench floor.

Sample
number

Regional
area/m2

Slope % Roughness/m Overcut
area/m2

Undercut
area/m2

Overcut
rate %

Undercut
rate %

Tb.175-1 7052.0 1.03 0.14 296.80 1453.92 4.20 20.61

Tb.218-1 4393.55 0.57 0.39 296.48 1084.64 6.74 24.68

Tb.218-2 5294.34 1.18 0.15 139.30 540.84 2.63 10.21

Tb.230-1 5164.50 3.41 0.24 154.40 397.92 2.98 7.70

Tb.230-2 8679.91 0.75 0.12 617.50 1637.28 7.11 18.86

Tb.232-1 6519.9 1.10 0.21 575.8 533.1 8.83 8.17

Average \ 1.34 0.21 \ \ 5.40 15.03

Conversely, IDW exhibits the largest RMSE, with three test areas
(Tb.218-1, Tb.218-2, and Tb.230-2) exceeding 0.32 m and R2

below 0.853. Based on the algorithm’s principle, IDW estimates
cannot surpass the elevation range of sampling points, leading to
significant errors in terrain with limited sampling. RBF, TIN, and
NN algorithms show similar RMSE values, with consistent trends
across all samples.

The overall variation trend of DEM error is positively
correlated with surface roughness. For example, the RMSE
of the DEM errors in Tb.218-1 considering roughness are
highly significant. Therefore, when the floor is very rough, the
number of samples should be increased to the highest possible
extent to enhance the terrain detail retention ability and reduce
interpolation errors.

The above analysis shows the following. 1) The interpolation
algorithms can be ranked according to RMSE values, from smallest
to largest: OK, TIN, RBF, NN, and IDW. 2) When the sampling
density is low, IDW shows the highest error while RBF exhibits
the lowest. For sampling rates exceeding 60%, all five interpolation
methods demonstrate minimal errors, showcasing good robustness.
3) OK is least impacted by terrain features when sampling density
requirements are met. Therefore, the optimal OK interpolation
yields the minimum accuracy error RMSE, which is close to that of
the real surface.

3.4 Analysis of bench floor terrain

The DEMs were established using the OK interpolation
algorithm. As shown in Figure 12A−F, contour maps are visualized
for the floor terrain.

According to Eqs (6–11), the bench floor terrain parameters
are calculated as shown in Table 3. The average slope of
the bench floor in six test areas is 1.34%, with an average
roughness of 0.21 m and average undercut rate approximately
three-times higher than the overcut rate. The presence of
concave and convex terrain on the bench floor locally
obstructs the digging operation of the electric shovel bucket,
impacting efficiency of transportation by electric wheels.

In particular, the undercut rates of Tb175-1 and Tb218-2
exceed the average, reaching 20.61%, 24.68%, and 18.86%,
respectively. This higher undercut rate post-blasting may be
the underlying cause of the challenges faced during shovel
digging operations. Moreover, the overall slope of Tb230-
1 exceeds the average value by 3.41%, and Figure 12D
depicts a significant elevation difference between the highest
and lowest points of the bench floor DEM; the standard
deviation of the actual elevation at 0.88 indicates unfavorable
conditions for subsequent vertical drilling activities. The
local roughness of the Tb.218-1 is 0.39 m, highlighting the
undulating terrain.

4 Conclusion

To meet the practical demands of production management
in open-pit mines, this study proposes a method for
assessing the terrain of the bench floor. The conclusions
as follows:

(1) An optimized convex hull boundary recognition algorithm
is proposed. The algorithm automatically determines the
boundary of discrete points and determines the valid
interpolation region for the DEM.

(2) Considering the influence of sampling data density and
terrain features on the accuracy of different interpolation
algorithms, the results show that DEM errors decrease
gradually and tend to be stable with increased sampling
density. For complex terrain features, the accuracy of DEM
can be improved by increasing the sampling density to
more than 60%. The general terrain features can reduce
the number of samples appropriately to improve calculation
efficiency.

(3) By comparing the terrain quality on the bench floor
achieved by five interpolation algorithms, it is observed
that the OK interpolation algorithm can fill the holes
of the original points. This resulted in smoother DEMs
with enhanced visualization effects. In this study, the
theoretical variogram and related parameters of OK
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interpolation were determined by the algorithm fitting. It
improved the accuracy of the DEM, minimizing fluctuations
in RMSE values.

(4) The digital quantification index of the roughness
of the bench floor is established. These parameters
offer essential data for mining technologists, enabling
them to assess the blasting effects and implement
refined management practices for bench floor leveling
operations.
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