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Editorial on the Research Topic
Applications of gravity anomalies in geophysics

With the progress of cheap, lightweight, and efficient gravimeters (Carbone et al., 2020;
Stray et al., 2022; Kim and Choi, 2023), gravity anomalies are expected to receive wider
attention in the future, opening up new perspectives for increasing the capability of
gravimetry to Earth sciences. Since the knowledge of the crustal density of a planet is
important in determining its interior structure, gravity anomaly is widely used in Solid
Earth and exploration geophysics, and also extended to the moon and Mars. In addition to
the routine applications focusing on the crustal density structure, contributing to the
characterization and definition of underground structures at various scales, time-varying
gravity, microgravity survey, and gravity admittance are widely applied in order to supply
unique information on the dynamics of underground processes. The goal of this Research
Topic is to highlight the various extracted information from gravity anomalies in
applications, toward an understanding of choosing appropriate methods dealing with
gravity anomalies in varying study cases.

There are ten accepted papers on this Research Topic focusing on the following four
research questions.

The first question is about the equivalent-layer technique (Oliveira Junior et al.) which
present a comprehensive review of the computation aspects concerning the equivalent-layer
technique. The equivalent-layer technique is used widely in processing gravity andmagnetic
anomalies, e.g., the downward continuation and the reduction to the pole at low latitudes.
While such method is very inefficient for dealing with massive data sets, lots of
computationally efficient methods have been proposed to reduce its computational cost.
The authors from Observatório Nacional and Universidade do Estado do Rio de Janeiro
(Brazil) present a comprehensive review of diverse strategies to solve the linear system of the
equivalent layer in which the advantages and disadvantages for the existing strategies are
described in detail.

The second question is about the time-varying gravity (Zhu et al.) which is used in
monitoring the subsurface mass variation. Zhu et al., from China Earthquake
Administration, have conducted numerous applications focusing on the time-varying
gravity in earthquake research in the Chinese Mainland. The gravity changes before
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and after the earthquakes were found in several earthquakes, and
thus the high-precision mobile gravity observations used to survey
the gravity changes possibly induced by the earthquake had attracted
people’s attention. Reports show that the gravity observation
network in the Chinese Mainland made a relatively successful
medium-term prediction for a series of earthquakes since
2008 after the serious Wenchuan Ms8.0 earthquake. Zhu et al.
introduce some case studies and progress using the time-varying
gravity in earthquake monitoring in the Chinese Mainland which
put forward the gravity applications in earthquake prediction. The
time-varying gravity is also applied widely in investigating the
hydrological and volcano-tectonic processes controlling the
present day activity of the volcano (Pivetta et al., 2023). The
present studies show that the role of time-varying gravity in
earthquake prediction would become increasingly significant with
the progress of cheap, lightweight and efficient gravimeter. In
addition to the high precision ground time-varying gravity, the
time-varying gravity from satellites has played an extremely
important role in hydrology, seismology, geodesy, and geophysics
(Liu and Sun, 2023).

The third question is about mapping the structural lineaments
(Ganguli and Pal; Sun et al.) which is used widely in geological
mapping (Altinoğlu, 2023; Ashraf and Filina, 2023; Bayou et al.,
2023; Ibrahim et al., 2023; Lghoul et al., 2023; Mnasri et al., 2023;
Qadir et al., 2023). Such applications are based on the qualitative
interpretation of gravity anomalies in which the edge detection
filters are usually applied to enhance the lineament. Sun et al.
propose a modified edge detection method based on the second
order spectral moment to detect edges on potential field which can
enhance the weak anomalies and eliminate the false edges caused by
the associated anomalies. Ganguli and Pal applied second vertical
derivative and tilt derivative on the potential field data to reveal very
prominent NESW trending linear gravity high and low.

The fourth question is about the quantitative interpretation of
gravity anomalies. Harash et al. and Liu et al. apply the gravity inversion
to obtain the Moho topography. For the Moho inversion from gravity
anomalies, the Parker–Oldenburg methods in Fourier domain are
powerful tools (Zhang et al., 2020; Elmas and Karsl, 2021; Borghi,
2022). The other contributions in this Research Topic are focusing on
the subsurface density structures modeling using gravity anomalies
(Nigussie et al.; Nigussie et al.; Moura and Marangoni; Pánisová et al.).
Modeling the crustal density is very useful to reveal its composition and
structure, and hence it is also significantly related to the tectonic
evolution and geodynamics in Earth, Moon and Mars (Affatato,
2023; Haas et al., 2023; Smith et al., 2023).

In addition to the above-mentioned research questions, the
gravity anomalies have been widely used in estimation of the
elastic thickness and have been extended from Earth to other
planets where gravity data is available (Broquet and Wieczorek,
2019; Genova et al., 2023). Since the routine Pratt and Airy
compensation modes require a lithosphere with an unrealistic
and highly anisotropic mechanical behavior, the flexure model
has been extensively used to interpret short-wavelength gravity

anomalies due to variations in crustal thickness. The parameter
that characterizes the apparent strength of the lithosphere is the
effective elastic thickness (Te) of the lithosphere, and thus the
estimation of Te value is important to measure of the integrated
strength of the lithosphere which can be compared from region to
region and interpreted in terms of the thermal and mechanical
structure of the continental lithosphere. Gravity/topography
admittance is first proposed to estimate Te, and the related
improvements on Te estimation are becoming the focus of attention.

We hope this Research Topic would provide a helpful source of
references for those working in gravity anomalies.
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