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Clustering methods aim to categorize data or samples into distinct groups
based on their similarity. When applying clustering methods to earthquake
events, it is crucial to establish a metric for quantifying the similarity between
these events. Directly applying this clustering method to a catalog of mining-
induced seismicitymay lead to clustering earthquake events induced by different
mining activities or accidents into the same group. To address this issue, a
two-step clustering method has been proposed and applied for analyzing a
catalog of mining-induced seismicity. The first step involves spatial distance-
based clustering of seismic events, while the second step focuses on moment
tensor analysis-based clustering of these events. The results obtained from
the MT-based clustering method are visualized using Hudson Graphs, and box
plots serve as an evaluation tool for assessing the quality of MT clustering.
Most box plots demonstrate desirable quality in terms of MT cluster results,
indicating successful outcomes. By the proposed two-step clustering method
combined with actual mining activities, the potential accident locations and
categories can be hypothesized while valuable recommendations provided for
mining operations.

KEYWORDS

clustering methods, mining-induced seismicity, spatial clustering, moment tensor
clustering, box-plot evaluation

1 Introduction

Data clustering methods aim to categorize large datasets into distinct groups
based on the similarity among the data points, with those within the same group
exhibiting higher similarity compared to those in different groups. These clustering
techniques find applications across various domains, including seismology. In seismology,
they enable differentiation of diverse types of seismic activity, aiding seismologists
in identifying dominant source mechanisms and classifying earthquake events. This
facilitates a comprehensive understanding and analysis of earthquakes occurring in
specific regions. Prominent clustering methods employed include K-means, hierarchical
clustering, Density-Based Spatial Clustering of Applications with Noise (DBSCAN),
among others. Each method necessitates a defined metric for measuring event similarity,
which significantly influences the resulting clusters obtained. Furthermore, these
clustering approaches can be effectively utilized for tasks such as data inversion,
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hydrofracturing characterization, identification of rock
discontinuity sets, etc (Hammah and Curran, 1999; Jimenez, 2008;
Li et al., 2015; Mukhopadhyay and Dasgupta, 2015; Sun and Li,
2017; Chen et al., 2018).

When applying clustering methods to earthquake events, it is
essential to establish a suitable metric for measuring the similarity
between these events. Earthquakes are characterized by various
parameters such as occurrence time, spatial location, moment
tensor, P and T axis, waveform, etc. Metrics based on occurrence
time or spatial location can be easily defined (e.g., Euclidean
distance between locations or temporal intervals), and many
clustering techniques utilize these spatial or temporal distances
(DiCaprio et al., 2008; Ouillon and Sornette, 2011; Zaliapin and
Ben-Zion, 2016; Shang et al., 2018; Woodward et al., 2018; Fan and
Xu, 2019; Vijay and Nanda, 2019; Lurka, 2021; Ortega-Romo and
Chen, 2021).

The metric based on waveform similarities is also an important
method. A lot of work has been done based on waveform
similarity (Akuhara andMochizuki, 2014; D’Alessandro et al., 2013;
Igarashi et al., 2003; Matoza et al., 2013; Maurer and Deichmann,
1995; Petersen et al., 2021, P. Shearer et al., 2005, P. M. Shearer,
2012; Wang et al., 2020). Besides the spatio-temporal metric and
the waveform similarity, The metric based on the moment tensor
can also measure the similarity of the seismicity. Moment tensor
is a common description for the focal mechanism under the point
source assumption, and it is a symmetric matrix containing six
independent elements. A widely adopted decomposition method
for moment tensor decomposes the moment tensor into three
components: ISO, DC, and CLVD (Knopoff and Randall, 1970).
They respectively represent the volume change of the source,
the shear failure of the source, and the compensation for the
volume change.

Numerous scholars have extensively researched themetric based
on the moment tensor. Kagan (1991) introduced the Kagan angle as
a metric for comparing pure DC sources by considering the rotation
of two DC sources. Willemann (1993) proposed representing the
moment tensor as a vector in 6-dimensional space. Cesca et al.
(2014) incorporated uncertainty in their metric by introducing a
weighted cosine-based approach to account for moment solution
variability. In contrast to these aforementioned approaches, Lasocki
(2014) devised a novel method that transforms all parameters into
an equivalent dimensional space and defines the metric within this
equal dimensions space rather than its original form.

The MT-based clustering methods, which utilize metrics
based on the moment tensor, have demonstrated favorable
performance in previous studies. However, when applied to
mining-induced seismicity, these methods may occasionally lead
to misinterpretation of earthquake events. In order to elucidate
the challenges encountered by MT-based clustering methods in
analyzing mining-induced seismicity, it is imperative to identify
the various types of mining-induced seismicity and ascertain the
corresponding stress environments that give rise to them.

The mining-induced seismicity can be categorized into three
types. The first type of seismicity is directly associated with mining
activities. Excavation alters the stress state of the rock surrounding
the stope, transitioning it from stable triaxial compression to
unstable biaxial compression, thereby inducing seismic events.
These earthquakes primarily occur in proximity to the stope. The

second type of seismicity is indirectly associated with mining
activities, where fault slip serves as the triggering mechanism.
Excavation alters the stress distribution within the mining region,
subsequentlymodifying the stress state of the surrounding rock near
existing faults and potentially inducing fault slippage, leading to
seismic events.These earthquakes primarily occur in close proximity
to faults, with their moment tensors predominantly characterized
by a DC component. The third type of earthquake is induced by the
interaction of the two types beyond.The significant fault slip triggers
the seismic wave, which carries the energy spreading to the rock
around the stope. The wave disturbs the high-energy rock around
the stope and causes the rock-burst.

Now, the potential issue that may arise with the MT-based
clustering method has been illustrated. Consider the following
example: Two faults in the same mining region have caused
seismicity through slipping events. Based on empirical observations,
it is evident that the moment tensors of seismicity induced by fault
slip are predominantly characterized by the DC component. Given
the complexity of mining-induced seismicity, direct application of
the MT-based clustering method may result in clustering seismic
events caused by different fault slips into a single group, which does
not align with expected outcomes.

It is worth noting that all three types of induced seismicity
have one thing in common: they all exhibit spatial aggregation.
Specifically, The first and third types of induced seismicity are
mainly located around the corresponding stope, and the second
type of induced seismicity are mostly located near the related
fault. This phenomenon reminds people that, before using the
MT-based clustering methods to cluster the earthquake events, all
the earthquake events should be spatially clustered into various
groups to distinguish the earthquake groups induced by different
stress environments. After doing this, the earthquake events in the
same group are probably caused by a similar stress environment.
Then, an MT-based clustering method can be applied within each
group to cluster the moment tensors and figure out the local stress
environment. That will do a great favor to the mining activity
and will also be helpful for the identification and prediction of
mining accidents.

A proposed scheme is presented here to address the
aforementioned problem. Firstly, a spatial clustering method is
employed to group earthquake events based on their spatial
distances. Subsequently, an MT-based clustering method can be
applied within each spatial group identified in the previous step.
The outcomes of the MT clustering analysis can be utilized for
analyzing and specifying the type of induced earthquakes, as well as
identifying potential accidents.

2 Methodology

Clustering methods aim to automatically classify data into
groups based on their similarity, necessitating the definition of a
metric to quantify this similarity. Numerous clustering methods
have been proposed by scholars and widely applied. However, it
is crucial to carefully select an appropriate method as different
approaches may yield disparate outcomes.

The distance-based method, which includes the K-means and
hierarchical clustering methods, is one of commonly employed for
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FIGURE 1
DBSCAN clustering process diagram. The left image shows before clustering, and the right image shows after clustering.

clustering. The K-means clustering method offers the advantages
of simplicity in calculation and ease of comprehension. In their
study, Guo et al. (2021) proposed a machine learning approach
based on the C5.0 decision tree (DT) model and the K-means
cluster algorithm to generate a regional landslide susceptibility map.
However, this method requires prior knowledge of the number
of clusters, performs poorly when dealing with nonconvex sets,
and is highly influenced by outliers. It is only effective when
clustering data that roughly conforms to circular or spherical shapes.
These characteristics render it unsuitable for spatial clustering since
determining an appropriate number of clusters may be challenging
in practice; moreover, fault or stope geometries can be irregular
leading to irregular distribution patterns in seismicity around them.
Additionally, random abnormal events are inevitable in induced-
seismicity data and can significantly impact the performance of
K-means clustering. Therefore, applying the K-means method to
mining-induced seismicity may lead to misinterpretations.

To mitigate these issues, we employ a density-based clustering
approach known as DBSCAN (Figure 1 illustrates the clustering
process of DBSCAN). DBSCAN is a representative non-supervised
machine learning method that identifies high-density regions and
groups them accordingly, without being constrained by shape.
Additionally, DBSCAN classifies points in sparse areas or far
from high-density regions as noise, thereby excluding them from
any clusters. This characteristic ensures that abnormal events
have minimal impact on the outcome of DBSCAN, making it
advantageous for handling numerous events including random
occurrences. Prior to executing DBSCAN, two parameters must
be specified: Eps (the Eps-neighborhood of a point) and MinPts.
Based on these parameters, DBSCAN categorizes points into
three groups: core points, boundary points, and noise points
(as depicted in Figure 2). Core points are those with a greater
number of neighbors than the given MinPts threshold. Boundary
points refer to non-core points located within the neighborhood
of core points. Any remaining unclassified point is considered
a noise point.

FIGURE 2
The three categories points divided by DBSCAN. A is the core point, B
and C are the boundary points, and the E is the noise point.

DBSCAN defines the clusters as the maximal set of the density-
connected points. Compared with the K-means method, the most
significant difference is that DBSCAN does not need to input the
number of groups K, and its most important advantage is that it can
find groups of any shape, rather than K-means, which is generally
only used for convex shape data. At the same time, it can discover
noise while clustering and is insensitive to noise in data sets. In
general, if the data set is dense and the data set is not convex
shape, DBSCANwill performmuch better than K-means clustering.
But there are also some shortcomings of DBSCAN, and in some
circumstances, DBSCAN is not suggested to be used:

(1) If the density of sample sets is not uniform and the cluster
spacing difference is large, the cluster quality is poor, and
DBSCAN clustering is generally unsuitable.

(2) Parameter tuning is more complex than k-means clustering
methods, which mainly need to be adjusted for distance
threshold Eps and MinPts. Different parameter combinations
have a significant impact on the final clustering effect.
Generally, the determination of these two parameters mainly
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depends on experience. If the result of empirical value
clustering is unsatisfactory, the values of ϵ and MinPts can
be adjusted appropriately, and the most appropriate parameter
value can be selected after multiple iterations. If MinPts
remains unchanged and Eps is too large, most points will
cluster in the same cluster; if Eps is too small, many groups
will occur. If ϵ remains unchanged, the value of MinPts is too
large, leading to plenty of noise points; if MinPts is too small,
that will lead to the discovery of many core points.

(3) It is unsuitable for high-dimensional data, so reducing the
dimension first is a good choice.

2.1 Spatial clustering method

The spatial clustering should be prioritized to partition the
entire dataset into distinct spatial clusters, as closely occurring
events in space are likely influenced by similar stress environments.
Prior to implementing the spatial clustering method, it is crucial
to determine an appropriate spatial scope for clustering. Compared
to the potential stress environment inducing seismicity, the overall
mining region is excessively large. Analyzing the specific stress
environment would not be suitable and considering the vast density
of earthquake events across the entire mining region could lead to
sensitivity issues with selected parameters. Therefore, applying the
spatial clusteringmethod on smaller areas rather than encompassing
the entire mine site is more appropriate.

The stress field’s distribution law is closely associated with
microseismic events, as indicated by numerous research findings.
In regions characterized by high MaxHPS and Lateral Pressure
Coefficient (LPC), there is a higher frequency of high-energy
microseismic events (Ji et al., 2020; Tian et al., 2022; Cheng et al.,
2023). Additionally, rock disasters such as rockbursts are typically
triggered by high-energy tremors (Yu et al., 2020; Zhao et al., 2024).
These studies suggest that large-magnitude events containing high-
energy pose more severe risks to mining activities compared to
lower magnitude. Therefore, this study focuses on big magnitude
earthquake events and applies clustering methods in the vicinity of
these locations to investigate the surrounding stress environment
and gain insights into the larger magnitude earthquake event’s
impact on the stress environment. This analysis aims to provide
valuable recommendations for mining activities.

Furthermore, seismicity induced by fault slip (the second type of
earthquake) typically exhibits larger magnitudes (Ye and Ghassemi,
2020; Wu, 2021; Cao et al., 2023; Sainoki et al., 2023; Wu et al.,
2023). Therefore, selecting seismic events with relatively higher
magnitudes and analyzing the stress environment in their vicinity
can aid in identifying undetected faults, thus providing valuable
insights for mining activities.

As previously mentioned, the determination of appropriate
parameters is a complex task, as different combinations can yield
varying clustering results. Generally, parameter selection relies
heavily on experience, lacking a definitive criterion to assess the
quality of outcomes. However, if Eps is set too small and MinPts
too large, it may result in excessive noise and insignificant clusters.
Conversely, setting Eps excessively large with MinPts too small
may lead to minimal noise and an overly extensive cluster. Both
scenarios are unsatisfactory; henceforth, amore scientifically-driven

approach for parameter selection should be adopted to avoid such
outcomes. Extensive research has been conducted by experts and
scholars on methods for selecting optimal values of parameters Eps
andMinPts (Ester et al., 1996; Gholizadeh et al., 2021; Li et al., 2021;
Zhang and Zhou, 2023), amongwhich themost widely utilized is the
k-distance algorithm.

When applying the k-distance algorithm to determine the
parameter Eps, the value of k is determined by Eq. (1):

k = 2×D− 1 (1)

Where the D is the dimension of the dataset. Then the distance
from each point to its kth nearest neighbor can be calculated, and the
resulting distances are sorted in descending order for visualization
purposes, as illustrated in Figure 3. By examining the distance at
the inflection point on the graph, Eps can be determined. Typically,
MinPts is set to a value greater than or equal to the dimension
of the dataset, and Eq. 2 is commonly employed to determine its
specific value.

MinPts = k + 1 (2)

It is worth noting that the above methods are feasible ways
to select MinPts and Eps, but the values obtained may not
be optimal. Therefore, after selecting the parameter values, it is
necessary to further observe the clustering results, and then make
multiple attempts and adjustments before determining the final
parameter values.

2.2 MT-based clustering method

After performing the spatial clustering using the DBSCAN, the
earthquake events around the big-magnitude earthquake are divided
into different groups. Still, some do not belong to any groups because
they are marked as noise. For each group an MT-based clustering
method can be used within each group.

Any cluster method needs a defined metric. Many metrics
between the moment tensors are determined by the pure DC
assumption, for example, the Kagan angle. Kagan defined themetric
between the two pure DC focal mechanisms by the angle needed for
rotating the first DC focal mechanism to the second one (Kagan,
1991). It is intuitive, easy to understand, and very suitable when
analyzing natural seismicity because the moment tensor of the
natural seismicity is usually dominated by the DC component.

However, the metric defined only by the DC component is
unsuitable when describing the mining-induced seismicity because
themining-induced seismicity’ focal mechanisms aremore complex
than natural ones. Many seismicity are induced directly by mining
activities. The mining engineering makes the stress environment
very complicated, so the focal mechanisms of the mining-induced
seismicity can not be explained only by the shear failure. The metric
between the focal mechanisms defined by the DC component needs
to be replaced.

Here, the cosine-based approach proposed by Tape and Tape
(2012) can be adopt. The cosine-based method considers all the
moment components, delivering amore comprehensive and credible
measurement for analyzingmining-induced seismicity. Based on the
Eq. 3 shown in Tape and Tape (2012), Cesca et al. (2014) considered
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FIGURE 3
The schematic for selecting Eps by applying k-distance algorithm. The dis (n,k) is the distance from each point in the dataset to its k-th nearest
neighbor and the dis (n,k) of the threshold point is Eps.

that moment tensor is characterized by six independent moment
tensor elements and suggested that the following metric should be
regarded as upon Eq. 4 in Cesca et al. (2014):

cos∠(M,N) = M ∙N
||M||||N ||

=
∑mijnij

(∑m2
ij)

1/2(∑n2ij)
1/2

(3)

D = 1
2
×(1−

∑mini

√∑m2
i√∑n2i

) (4)

Where mi and ni are the six independent elements of the two
moment tensors.This definition is adopted as the metric, which also
ensures the metric of two moment tensors is located in [0,1].

Notably, the cosine-based metric between two moment tensors
will not change when the six independent elements of one moment
tensor multiply a common positive constant. This character makes
it easier to find the center of the moment tensor cluster. The center
of the cluster is usually defined as the point whose sum of the metric
to all the points in the cluster is the smallest. When searching for
the group’s center, it can be assumed that the central moment tensor
is normalized, meaning the sum of squares of the six independent
components is 1.

After calculating the metric sum, it can be found that the
minimum sum by taking the constraint of the normalized moment
tensor into account and also find the normalized center moment
center. The DBSCAN is also chosen as the clustering method. Being
different from the spatial cluster, the cosine-based metric of the two
moment tensor is adopted, and the combination of the parameters
follows the same rules mentioned above.

As depicted in Figure 4, the first step of designed clustering
method involves conducting spatial clustering for mining-induced
seismicity using the two-step clustering method. The spatial
coordinates of seismic events are utilized, and appropriate values for
MinPts andEps parameters are selected. Subsequently, theDBSCAN
method is employed to cluster seismic events into distinct spatial
groups. In the second step, a cosine-basedmetric of the twomoment
tensors is applied, followed by utilizing DBSCAN as the clustering
method to further categorize events within each spatial group into
different MT groups.

Table 1 lists the characteristics of K-means, DBSCAN and two-
step clustering methods. Compared with the previous clustering
methods (K-means and DBSCAN), the newly designed two-step
clustering method overcomes the limitations of K-means in the case
of non-circular or non-spherical data distribution. It can effectively
deal with the randomness and irregularity of induced seismic data,
and avoid the significant influence of outlier events on clustering
results. On the other hand, this two-step clusteringmethod conducts
spatial and MT clustering of induced seismic events in sequence.
Because different types of data features are took under consideration
during the clustering process, this method enhances the accuracy
of clustering results and reduces the clustering difficulty of high-
dimensional or complex datasets.

3 Materials and methods

3.1 Study area

This study was conducted in Yongshaba Mine, which belongs
to Guizhou Kailin Group Mining Company, located in the
development zone of the Wujiang River basin in the central part of
Guizhou Province. Yongshaba Mine is the main mine of Guizhou
Kailin Mining Limited Liability Company, with a production
capacity of 2million tons annually.The surface elevation of themine
is +1,400–+1700 m, the sloping path is exploited, and the sublevel
filling method is used. The Yongshaba ore block has a more than
50 million tons geological reserve. The ore block has a complex
topography, and the main composition of the rock is dolomite. Due
to long-term weathering and rain erosion, the rock integrity is poor,
the development of joints and fractures, and there are many faults.
Serious potential ground pressure exists in the Yongshaba mine for
phosphorus exploitation. With the completion of shallow mining,
the ground pressure becomes more and more serious. Under the
influence of the disorderly change of the stress state of the rock
caused by the simultaneousmining disturbance ofmultiple sections,
stress concentration occurs in the rock within the mining scope,
which threatens the safety of underground mining and the normal
production of themine.Therefore, an IMSmicroseismicmonitoring
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FIGURE 4
The flowchart of the two-step clustering method.

FIGURE 5
The layout of IMS microseismic monitoring system.

system was installed in the mine in 2013 to monitor underground
accidents (the layout of the IMS shown as Figure 5).

3.2 Data

The data used in this article comes from the Yongshaba Mine.
Figure 6 shows the 3D distribution map of microseismic large
events in the Yongshaba Mine. The second-largest magnitude
earthquake event is selected and the earthquake events around it
is under consideration. That is because no mining activities are

near the largest earthquake event. In contrast, the second largest
earthquake event is located in the region where mining activities
occur frequently. The event is located at the point of (381520.711,
2997198.617, 1051.666). The three values in parentheses are the X,
Y, and Z coordinates, and the magnitude is 1.65. Then, a region in
which the x-coordinate is less than 200 m away from this point and
the y-coordinate is less than 100 m away from this point is delimited,
and the seismicity that occur in this region are considered. The
number of the total earthquake events considered is 432 as shown in
Figure 7, the magnitude of most earthquake events is about 0, and
the events with a magnitude beyond 1 or less than −2 are very few.
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FIGURE 6
3D distribution map of microseismic large events in the Yongshaba Mine.

FIGURE 7
Mining-induced seismicity distribution map of Yongshaba Mine
microseismic events.

4 Results

First, the spatial clustering method is applied to the seismicity
events. They are divided into seven groups, and 249 events are
considered noise. The parameters here chosen by authors are Eps
= 30, MinPts = 8 based on the result of k-distance calculate
shown as Figure 8. The result is illustrated in Figure 9, which is
the planform of the mining region. The x-coordinate and the y-
coordinate represent the x-coordinate and the y-coordinate of the
mining area, respectively. Different groups are marked in different
colors. The noise events are not plotted in Figure 9. The number of
the events in the spatial group and their magnitude distribution, and
the colors used to mark the groups are shown in Table 2.

Figure 9 also shows the spatial distribution of the groups. Group
1 is marked as blue and distributed among almost all the main

FIGURE 8
The curve chart of the k-distance calculate. According to the
dimensions of the data set, the value of k is set to 3 and the k-distance
curve chart can be plotted. It can be observed from the curve in the
chart that there is a clear inflection point at the point (250, 30.02).
Therefore, the parameter Eps can be determined to be 30 based on
the location of this inflection point in the chart. Additionally, the value
of MinPts can be determined to be 8 based on the clustering situation
to ensure that noise points are excluded from clusters.

tunnels, including tunnel 940, tunnel 950, tunnel 970, tunnel 980,
and tunnel 1,000. Group 2 is marked as green color. It is distributed
mainly among the below and the middle of tunnel 940 and tunnel
950. Group 3 is marked as red color. It is distributed near the tunnel
1,020. Group 4 is marked as a yellow color. It is distributed mainly
among the top of tunnel 940 and tunnel 950. Group 5 is marked as
orange, and no mining activities are near this group. Group 6 and
Group 7 are marked as purple and cyan color, distributed in the
middle of tunnel 940 and tunnel 950.
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FIGURE 9
The result of the spatial clustering method and the distribution of the earthquake events in the mining region. Different spatial groups are marked by
different colors. Seven tunnels from the left to the right are tunnel 940, tunnel 950, tunnel 970, tunnel 980, tunnel 1,000, tunnel 1,010, and tunnel
1,020, respectively.

TABLE 1 The Parameters, features, and application scenarios of three clustering methods.

K-means DBSCAN Two-step clustering
method

Input Value D: sample set, K: the number of cluster,
N: the maximum number of iterations

D: sample set, Metrics: Eps & MinPts D1: spatial coordinates of seismic
events, D2: cosine-based metric of the
two moment tensor, Metrics: Eps &

MinPts

Clustering criteria Distance Density Density

Advantages Simple principle and fast convergence
speed; Fewer parameters to adjust;
Lower complexity and suitable for

large-scale data sets

Able to identify the number and shape
of clusters automatically; Able to

handle clusters of arbitrary shape; Able
to identify outliers

Strong ability to deal with random and
irregular data; Considering a variety of
feature parameters; Able to deal with
high-dimensional or complex datasets

Disadvantages Highly difficult for finding an
appropriate value of K; Sensitive to
noise and outliers; Bad effective for
clusters with non-convex shapes and

large size differences

High complexity and slow running
speed; Sensitive to density changes;

Ineffective for clustering
high-dimensional data; Bad effective
for clusters with density differences

Complex parameter adjustment;
Longer time for clustering convergence
time; Complex calculation process

After the spatial clustering, the MT-based clustering method is
applied within each spatial cluster. The metric is the cosine-based
metric, and the clustering method is DBSCAN. The result is shown
using the Hudson graph as shown in Figure 10. Hudson et al. (1989)
described the moment tensor using two parameters. They are T
and k. T represents the deviation part of the moment tensor, and
k measures the volume change (Hudson J A et al., 1989). Although
the Hudson graph does not take the direction of the rupture into
account, T and k display the rupture type of the source very directly

and could reveal themain rupture type clearly.That character makes
it very suitable to analyze the main rupture type and the focal
mechanism. The earthquake events’ moment tensors is displayed
in the same spatial group on the Hudson Graph and uses different
colors to mark the different clusters. The noise events are marked
as black, and the center moment tensors of each cluster are also
displayed in the Hudson Graph by the beach ball. Besides, the
number of events in Group6 and Group7 is too small to perform
the MT-based clustering method (less than 8), so the MT-based
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TABLE 2 The grouping of events and the number, magnitude and color
information of each group.

Number Magnitude Color

Group1 102 −2.02–1.01 Blue

Group2 26 −1.27–1.17 Green

Group3 11 0.00–0.85 Red

Group4 23 −0.29–0.20 Yellow

Group5 9 −0.44–0.39 Orange

Group6 5 −0.32–0.28 Purple

Group7 7 −0.40–0.29 Cyan

clustering method is performed within Group1, Group2, Group3,
Group4, and Group5.

When performing DBSCAN, two parameters are needed: Eps
and MinPts therefore, k-distance algorithm is also applied to obtain
Groups 1 to 5 Eps and Minpts, as shown in the Table 3. The two
parameters are chosen to perform the MT-based clustering method
in different groups are as follows:

A box plot is used to evaluate the quality of the result of the
MT-based clustering method. A box plot is a statistical chart used
to show the dispersion of a set of data. The drawing method of the
box plot is as follows: first find the lower quartile (Q1), median, and
upper quartile (Q3) of a set of data, calculate the inter-quartile range
(IQR = Q3-Q1), and then calculate the upper edge (Q3 + 1.5IQR)
and the lower edge (Q1-1.5IQR) data larger than the upper edge or
smaller than the lower edge are regarded as outliers. Then, connect
the two quartiles to draw the box. In addition to the outliers, find
the two values closest to the top and bottom edges and draw a line
across the two values. The outliers are represented in this paper by
the hollow circle.

The similarity of the MTs from the same MT cluster has been
analyzed by the box plot. Specifically, each MT is decomposed into
ISO, DC, and CLVD components and calculate the proportion of
the three components and the rock rupture type of each earthquake
events can be differentiated. Table 4 lists results of inversion of
seismic moment tensor and analysis of rock mass rupture types
in the large earthquake events. Then, the proportion of the three
components can be displayed in the box plot, and the height of
the box reflects the quality of the result of the MT-based clustering
method. Suppose the height of the box is minimal. In that case,
that means the data, in this paper, the proportion of the three
components, is very concentrated. Hence, the three components
of MTs in the same MT cluster are very similar, and the result
of the MT-based clustering method is successful. On the contrary,
if the height of the box is large, then the proportion of the three
components is not very concentrated. The result of the MT-based
clustering method is not desirable.

To better display the aggregation of the clustering result, 0.5 IQR
but not 1.5 IQR is chosen as the distance between the upper edge
and the box and between the lower edge and the box. The box plot
of each MT cluster is illustrated in Figure 11. The x-axis represents
the component, and the y-axis represents the proportion.

5 Discussion

The application of the spatial clustering method to analyze the
entire set of earthquake events enables their division into distinct
spatial groups, with events within each group being induced by
similar stress conditions. By examining the moment tensors of
events within the same spatial group, it becomes possible to reveal
local stress conditions and thereby distinguish between different
rupture types. This approach proves valuable in assessing mining
area stability, forecasting accidents, and detecting concealed faults.

Firstly, themoment tensors are analyzed inGroup 1.TheHudson
Graph of Group 1 reveals the presence of six distinct MT clusters,
denoted asCluster 1 (red), Cluster 2 (blue), Cluster 3 (green), Cluster
4 (yellow), Cluster 5 (orange), and Cluster 6 (purple). Sixty-six
events are considered as noise. Based on the height of each box,
it is evident that the results for Clusters 1, 2, 4, 5, and 6 exhibit
desirable quality while the performance of Cluster 3 is comparatively
inferior. In terms of rupture type characterization, these six clusters
demonstrate significant variations. The centers of these clusters are
dispersed throughout the Hudson Graph indicating an absence of
dominant rupture types or primary focal mechanisms within this
spatial group. None of these MT clusters exhibit characteristics
indicative of shear ruptures. Furthermore, the locations of their
cluster centers deviate from that at the center point representing pure
shear rupture in the Hudson Graph; additionally, event density in
this central region is lower compared to other areas. Considering
induced seismicity types, it is likely that there is no fault activity
within Group 1’s spatial area.

The Hudson Graph of Group 2 reveals that 2 MT clusters
within Group 2 and 13 events are classified as noise. Cluster 1
is denoted by the color red, while Cluster 2 is represented by
the color blue. The box plot provides insights into the clustering
outcome; it is evident that the box plot for Cluster 1 exhibits higher
concentration, whereas the box plot for Cluster 2 displays relatively
greater dispersion. Consequently, in terms of the clustering result,
Cluster 1 outperforms Cluster 2.

The centers of the 2 MT clusters on the Hudson Graph are
located in close proximity to the graph’s center, with DC proportions
of 0.64 and 0.73 respectively, surpassing the threshold of 0.6.
This indicates that both central MTs are predominantly influenced
by the DC component, suggesting shear rupture as the primary
rupture type within Group 2’s spatial area. Group 2 is primarily
distributed below and in the middle sections of tunnel 940 and
tunnel 950. The clustering results from MT analysis suggest that
shear ruptures occur near these two tunnels. In close proximity
to stopes, roof collapse is mainly attributed to tensile rupture,
while shear rupture dominates side wall failures. Therefore, it
can be inferred that shear failure may occur in the side walls
of these two tunnels, necessitating reinforcement measures for
roadway side walls.

Analysis of Group 3’s Hudson Graph reveals a single MT
cluster, with 6 events classified as noise. The central MT within this
cluster exhibits characteristics indicative of compression rupture.
Furthermore, examination of the box plot for this MT cluster
demonstrates high concentration levels in ISO, DC, and CLVD
components. This suggests excellent result quality, indicating strong
similarity among the events within the cluster and confirming
compression rupture as the predominant rupture type in Group 3.
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TABLE 3 Parameter selection of Eps and MinPts for different groups.

Group1 Group2 Group3 Group4 Group5

Eps 0.06 0.15 0.2 0.1 0.2

Minpts 4 4 4 5 3

FIGURE 10
The result of the MT-based clustering method within each group is that different MT clusters are marked as different colors. The center MT of each
cluster is shown by the beach ball and is marked as the same color as the corresponding cluster. The noise events are marked as the black ‘x’.

Consequently, accidents characterized by compression rupture (e.g.,
pillar collapsing)may occurmore frequently.These findings provide
valuable insights for implementing preventive measures against
potential accidents.

From the Hudson Graph of Group 4, it is evident that 2 MT
clusters exist: Cluster 1 is highlighted in red, while Cluster 2 is
marked in blue. Additionally, 11 events are identified as noise. The
box plots representing these clusters exhibit distinct variations in
the quality of clustering outcomes. Notably, the clustering result
for Cluster 1 demonstrates a high level of satisfaction; all ISO, DC,
and CLVD components display significant concentration with ISO
being the largest and CLVD being the smallest. In contrast, the
clustering outcome for Cluster 2 is comparatively less satisfactory
than that of Cluster 1. The three components within Cluster 2 show
lower levels of concentration compared to those within Cluster 1;
they exhibit wider ranges of variation. However, there remains a
clear indication of a high DC component and a low ISO CLVD
component in this cluster, suggesting shear rupture as the primary
rupture type. Furthermore, notable dissimilarities can be observed
between the two central MTs (Moment Tensors). The center MT in

cluster 1 predominantly exhibits an ISO component which accounts
for approximately 54 percent.

In contrast, the DC component dominates the central MT of
cluster 2, constituting 56 percent of its proportion.The result analysis
reveals the existence of two primary rupture types in Group 4: one
type causing significant volume change and another characterized
by shear rupture. Group 4 is predominantly distributed at the upper
sections of tunnel 940 and tunnel 950. Considering the proximity of
these ruptures to the stope, it can be inferred that earthquake events
induced by roof collapse exhibit tensile cracks with a prominent
ISO component. Simultaneously, failure in the side wall is primarily
attributed to shear rupture, resulting in a substantial DC component.
Based on this observation, it can be speculated that both roof
and side wall reinforcements are necessary due to potential losses
occurring in these areas.

From the Hudson Graph of Group 5, it is evident that only 1 MT
cluster exists, while four events are considered as noise. The box
plot of this MT cluster demonstrates a favorable clustering outcome.
The DC component exhibits the highest proportion, followed
by the CLVD component which shows significant concentration,
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TABLE 4 Results of inversion of seismic moment tensor and analysis of rock mass rupture types in the large earthquake events.

No. Date Position/XYZ ML MT inversion and decomposition results Types

1

2014/01/03 381862

−0.2 shear
10:08:28

2998172

1,164

2

2014/01/04 564

−0.2
10:46:36

2997926

840

3

2014/01/04 381579

−0.1
11:22:16

2997779

1,086

4

2014/01/04 381550

−0.1 shear
13:44:14

2997595

1,108

5

2014/01/05 381406

−0.4 shear
09:40:09

2998028

1,245

... ...

47

2014/02/12 381543

0.5 shear
13:39:37

2998449

765

48

2014/02/12 381396

0.3 shear
14:47:36

2997000

942

49

2014/02/27 381715

0.0 shear
23:51:26

2998246

756

... ...

90

2014/05/12 381530

−0.3 shear
12:11:00

2997855

859

91

2014/05/17 381531

−0.3 shear
14:02:34

2997585

1,144

(Continued on the following page)
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TABLE 4 (Continued) Results of inversion of seismic moment tensor and analysis of rock mass rupture types in the large earthquake events.

No. Date Position/XYZ ML MT inversion and decomposition results Types

92

2014/05/19 381519

0.7 shear
14:51:04

2997569

1,270

93

2014/05/20 381243

−0.5
11:55:39

2995993

1,067

whereas the ISO component displays the lowest proportion. This
indicates that the moment tensors of these earthquake events
possess remarkably similar CLVD components. The central MT is
positioned near the center of the Hudson Graph and its standard
decomposition reveals that the DC component accounts for more
than 60 percent (62 percent), surpassing a threshold commonly used
to determine shear rupture. Consequently, it can be inferred that
shear rupture is likely to be the primary rupture type in this spatial
area encompassing Group 5’s seismic activity. However, no mining
activities have been reported within this region and no faults have
been detected thus far. Considering induced seismicity types, it can
be speculated that there may exist concealed faults in Group 5’s
spatial area which experienced slip.

With the exception of Group 1, the five spatial groups exhibit
distinct main rupture types. The MT-based clustering method
applied to Group 1merely indicates the absence of shear-dominated
ruptures, providing less informative results compared to the other
four groups. The reason behind that is worth considering, and here
a guess can be proposed. There is a very distinct feature of Group
1 that Group 1 occupies a much larger spatial area, which may be
too large. It can be supposed that the earthquake events happening
closely in space are probably caused by a similar stress environment.
The room of Group 1 is too large compared to the room containing
a similar stress environment, so the stress environment changes in
the space, and thus many different rupture types occur. That may be
the underlying cause of the many other MT clusters. At the same
time, it provides a counter-example to explain the importance and
the necessity of the spatial clustering method performed before the
MT-based clustering method.

The phenomenon also highlights the limitations of DBSCAN.
One of its drawbacks is its poor performance in datasets with uneven
density. Considering the nature of DBSCAN, it becomes evident
that Group 1 exhibits a high event density across the entire spatial
area, while other spaces do not. Consequently, when employing
DBSCAN for spatial clustering, the uneven distribution of density
may lead to unexpected groups, such as those occupying excessively
large spatial areas. This poses a significant challenge for clustering
methods; however, finding an effective solution remains elusive.
Therefore, enhancing existing clustering techniques to ensure their
suitability for analyzing induced earthquake events is a pertinent
issue worth exploring.

In general, statistical analysis of the primary fracture types
within each spatial group reveals that the proportion of pure shear
events (%DC > 90) is relatively small. The majority of microseismic
events exhibit a combination of volume change and pure shear, with
the deviatoric moment tensor component for shear microseismic
events in this mine not significantly exceeding the isotropic
component. Microseismic events characterized by %ISO values
ranging from 50–40 or %DC values ranging from 50 to 60 account
for approximately 40% of all large-scale microseismic events.

6 Conclusion

Clustering methods are often used in seismology to categorize
seismic events. Each clustering method requires a measure of
similarity between data or samples. The metric defined by the
moment tensor is a crucial way to distinguish between principal
focusing mechanisms. However, using this metric alone to cluster
seismic events may result in the classification of seismicity caused
by different mining activities into the same group.This is clearly not
the desired result. To avoid this phenomenon, a two-step clustering
method has been proposed.

First, the spatial clustering is proposed to divide the earthquake
events into different spatial groups, and the clustering method,
whose metric is based on the moment tensor (MT-based clustering
method), is performed within each spatial group. It is because that
the seismicity happening closely in space are probably induced
by a similar stress environment. After performing the spatial
clustering, the earthquake events in the same spatial group are
probably induced by a similar stress environment. Then, an MT-
based clustering method is performed within each spatial group to
calculate the dominant moment tensor and confirm the local stress
environment.

Hudson Graph was used to present the results of the two-step
clustering method and the quality of the results was evaluated by
box-plot. If the height of the box isminimal, that indicates the quality
of the MT clustering result is good. Most of the box-plot showed
a desirable quality of the MT clustering result, which indicates the
successful results. That means the moment tensors in the same MT
cluster are very similar, and the successful results also verify the
assumption as supposed.
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FIGURE 11
The box plot of ISO, DC, and CLVD components of each MT cluster, the outliers are marked as hollow circles.

Applying this two-step clustering approach to mining activities
allows for the speculation of locations and categories of possible
accidents, providing beneficial recommendations for mining
activities.
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