Check for updates

OPEN ACCESS

EDITED BY Ryan Mathur, Juniata College, United States

REVIEWED BY Liang Qiu, China University of Geosciences, China Hua-Wen Cao, Chengdu University of Technology, China

*CORRESPONDENCE Runsheng Han, ⊠ 554670042@qq.com

RECEIVED 30 November 2023 ACCEPTED 24 June 2024 PUBLISHED 30 July 2024

CITATION

Wu J, Han R, Zhang Y, Wu P, Gong H, Wang L, Cheng G, Li X, Yang Y and Mi Y (2024), Porosity–permeability characteristics and mineralization–alteration zones of the Maoping germanium-rich lead–zinc deposit in SW China. *Front. Earth Sci.* 12:1347243. doi: 10.3389/feart.2024.1347243

COPYRIGHT

© 2024 Wu, Han, Zhang, Wu, Gong, Wang, Cheng, Li, Yang and Mi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Porosity–permeability characteristics and mineralization–alteration zones of the Maoping germanium-rich lead–zinc deposit in SW China

Jianbiao Wu, Runsheng Han*, Yan Zhang, Peng Wu, Hongsheng Gong, Lei Wang, Gong Cheng, Xiaodong Li, Yixuan Yang and Yaya Mi

Kunming University of Science and Technology, Geological Survey Center for Nonferrous Metals Resources, Southwest Institute of Geological Survey, Kunming, China

The Maoping superlarge germanium-rich lead-zinc deposit is a typical nonmagmatic hydrothermal deposit that is structurally controlled in the Sichuan-Yunnan-Guizhou lead-zinc polymetallic metallogenic area. The orebodies are distributed in several formations. This paper is based on large-scale alteration mapping combined with porosity and permeability measurements. We delineated the mineralization-alteration zones of different ore-bearing formations, explored the geological significance of porosity and permeability, and proposed prospecting directions. The research results indicate that during the mineralization period, the ore-forming metal fluids migrated from the deep part of the SSW region to the shallow part of the NNE region along the ore-guiding structure (Maoping Fault). Through the ore distribution structure, depressurization boiling occurred in the open space of the NE-trending interlayered sinistral compressive-torsional faults in several ore-bearing formations, resulting in fluid precipitation and the formation of different brecciated hot-melt dolomite lead-zinc mineralization zones. From the orebody to the wallrock, the C₂w Formation and D₃zg Formation are divided into four different mineralization-alteration zones. Tectonic activity affects the properties, migration, and precipitation of fluids, thereby controlling the alteration characteristics generated during fluid migration and thus changing the porosity and permeability. The porosity and permeability of strata on the NW flank of the anticline are greater than those of strata on the SE flank. On the NW flank, the greater the degree of mineralization-alteration is, the greater the porosity and permeability are, and the porosity of the orebody is lower than that during dolomitization. Finally, we believe that the NW flank of the anticline is an important area for prospecting. The pyrite + striped altered dolomite zone (Zones II-III) in the C₂w limestone and the pyrite + strong dolomite zone (Zones II-III) in the D₃zg dolomite are important prospecting indicators.

KEYWORDS

porosity and permeability, mineralization-alteration zones, metallogenic patterns, prospecting directions, Maoping superlarge germanium-rich lead-zinc deposit, Sichuan-Yunnan-Guizhou lead-zinc polymetallic metallogenic area

1 Introduction

In the next 2 decades, human consumption of base metals, such as lead, zinc and copper, will exceed the total production of these metals in human history (Ali et al., 2017; Hoggard et al., 2020). To date, nearly 300 germanium-rich lead-zinc (silver) deposits (occurrences) have been discovered in the Sichuan-Yunnan-Guizhou lead-zinc polymetallic metallogenic area in China. These lead-zinc deposits have produced more than 20 million tons of lead and zinc, and the deposits are exceptionally high grade and rich in associated germanium and silver (Han et al., 2022; 2023). This area is the largest lead-zinc industrial base and the world's primary germanium production base (Han et al., 2022). With the long-term depletion of shallow mineral resources, there is a need for better targeted exploration to help improve research on deeply buried deposits and find deep mineral resources to maintain the supply of base metals for humankind.

Previous studies on mineralization–alteration zones have provided an important basis for the discovery of several deposits and orebodies in the Sichuan–Yunnan–Guizhou lead–zinc polymetallic metallogenic area (Wen et al., 2014; Chen et al., 2016; Zhao et al., 2016). The Maoping superlarge germanium-rich lead–zinc deposit is a typical deposit in the Sichuan–Yunnan–Guizhou lead–zinc polymetallic metallogenic area and is controlled by structure and favorable lithological associations (Han et al., 2019; Han et al., 2022; Wu et al., 2023), and orebodies occur in several ore-bearing formations (Han et al., 2022). Moreover, the mineralization–alteration characteristics and zoning patterns vary among different ore-bearing formations. This seriously restricts the prediction and positioning of deep hidden orebodies in different ore-bearing formations of this deposit and even this type of deposit.

In this study, a large-scale alteration mapping method is used to conduct detailed mapping and sampling on four ore blocks, nine planes, and several profiles of the Maoping lead-zinc deposit. The mineralization-alteration type, strength, mineral combination, structure, and other characteristics are analyzed, and the mineralization-alteration zones are identified. The porosity and permeability characteristics of 106 rocks (minerals) in different mineralization-alteration zones on the two flanks of the Maomaoshan anticline are analyzed. The geological significance of the porosity and permeability and proposed prospecting directions are explored. This study provides a theoretical basis for the deep exploration of other similar hydrothermal deposits.

2 Geological setting

The Maoping superlarge germanium-rich lead-zinc deposit is a typical superlarge CNHT lead-zinc deposit in the

FIGURE 1

A simplified geological map of the South China Block and adjacent regions showing the structural framework and the distribution of ore deposits in the Yangtze Block (modified from Yan et al., 2003; Qiu et al., 2016; Hu et al., 2017; Wu et al., 2020). 1–Proterozoic basement; 2–Fault/Main boundary fault; 3–Suture zone; 4–Triassic granitoids; 5–Gold deposit; 6–Realgar deposit; 7–Stibnite deposit; 8–Tin deposit; 9–Mercury deposit; 10–Lead–zinc deposit.

FIGURE 2

Distribution of the main thrust-fold belts and deposits in the Sichuan-Yunnan-Guizhou zinc-lead poly-metallic mineralization domain (SYGD) (Wang et al. 2004; Han et al. 2019). 1—The upper permian basalt Formation; 2—Main fault; 3—Provincial boundaries; 4—Provincial capital and city/county; 5—Large and medium-sized deposits; 6—Small deposits; ①–Lvzhijiang fault, ②–Xiaojiang fault, ③–Weining–Shuicheng fault, ③–Ziyun-Yadu fault.

Sichuan-Yunnan-Guizhou lead-zinc polymetallic metallogenic area on the southwestern margin of the Yangtze block (Figure 1) (Yan et al., 2003; Qiu et al., 2016; Hu et al., 2017; Wu et al., 2020). The deposit is located at the intersection of the NE-trending Huize-Niujie oblique thrust-strike-slip fault-fold belt, the SNtrending Qujing-Zhaotong concealed fault zone, and the NWtrending Ziyun-Yadu deep fault zone (Figure 2) (Wang et al., 2004; Han et al., 2019). The deposit is mainly controlled by the NE-trending Maoping compressive-torsional fault (the names of these sequential transformation structural planes indicate that their mechanical properties are mainly composed of compressional structures and, secondarily, torsional structures) and the Maomaoshan anticline in its hanging wall (Figure 3). The main structures in the deposit area are NE-trending, NW-trending and N-S-trending structures, with the NE-trending interlayered sinistral compressive-torsional fault dominating (Figure 3). The deposit area is mainly composed of Devonian, Carboniferous, and Permian carbonate-clastic rock series, which are mostly in parallel unconformable or conformable contact. The orebodies mainly

occur in the grayish-white-dark gray fine-medium crystalline dolomite of the upper Devonian Zaige Formation (D₃zg), the light flesh-red or gravish-white massive fine crystalline dolomitic limestone of the lower Carboniferous Baizuo Formation (C1b), and the light gray-dark gray medium-to thick-layered dolomitic limestone of the upper Carboniferous Weining Formation (C₂w) (Figures 3, 4). The magmatic rocks are mainly in the upper Permian Basalt Formation. The deposit is composed of the No. I, II, III and VI orebodies in the ore block to the east of the Luoze River and the Shuilu, Qiancengdong and Hongjianshan ore blocks to the west of the Luoze River (Figure 3). The orebodies are mainly lenticular, vein-like and stratiform-like. The main ore minerals are galena, sphalerite and pyrite, etc., and the gangue minerals are dolomite, calcite, minor quartz and barite, etc. The ore structures are compact, massive, disseminated, vein-like, veinlet-like, massive and stellate, and the ore textures are mainly granular and metasomatic. The main types of wallrock alteration include pyritization, ferritization, dolomitization, calcification and silicification.

3 Materials and methods

In this study, a large-scale alteration mapping method was used to conduct detailed mapping and systematically determine the mineralization-alteration zoning characteristics within different ore-bearing strata of the deposit. On the basis of the systematic study of mineralization-alteration characteristics (Table 1), the porosity and permeability of representative rocks were analyzed. The rock samples for the porosity and permeability study were collected from the NW and SE flanks of the Maomaoshan anticline, and they were collected from the surface of the mining area and the mining tunnels to obtain a total of 106 pieces. Among them, 58 fresh samples were collected from different lithological formations on the surface. A total of 48 samples from the tunnel were collected from the 32-33+first line of 670 m of the H8 orebody in the Hexi Hongjianshan ore block, the 34+first line of 610 m of the H8 orebody in the Hexi Hongjianshan ore block, the 18th line of the 755 m of the Q1 orebody in the Hexi Qiancengdong ore block, the second line of the 670 m of the S1 orebody in the Hexi Shuilu ore block, the 116th line of the 760 m of the I-7 orebody in the Hedong ore block, the 98+first line of the 683 m of the I-6 orebody in the Hedong ore block, the 92nd line of the 670 m in the Hedong ore block, the 96-112nd line of the 610 m of the I-6 orebody in the Hedong ore block, the stope of the 490 m of the I-8 orebody in the Hedong ore block, the stope of the 430 m of the I-8 orebody in the Hedong ore block, the 90-96th lines of the 370 m of the I-8 orebody in the Hedong ore block, and the 98-104th lines of the 310 m of the I-8 orebody in the Hedong ore block. The samples were tested for porosity and permeability by using a QKY-2 gas porosity tester and a STY-2 gas permeability tester at the China University of Petroleum (Beijing). The former had a measurement accuracy of 0.5%, while the latter had a relative error of less than 5%. Nitrogen was used as the working medium in the experiment, and the test was repeated five times. The average value was taken as the result for porosity or permeability (Table 2).

FIGURE 3

Geological map, actual material plane projection map (A) and Stratigraphic histogram of the Maoping lead-zinc deposit (B) (Wu et al. 2024). Figure 3A: 1–Upper Permian Basalt Formation; 2–Middle Permian Qixia+Maokou Formation; 3–Middle Permian Liangshan Formation; 4–Upper Carboniferous Weining Formation; 5–The third section of the first layer of the Weining Formation in the Upper Carboniferous; 6–The second section of the first layer of the Weining Formation in the Middle Carboniferous; 7–The first section of the first layer of the Weining Formation in the Upper Carboniferous; 8–Lower Carboniferous Baizuo Formation; 9–The third layer of the Lower Carboniferous Datang Formation; 10–The second layer of the Lower Carboniferous Datang Formation; 11–The first layer of the Lower Carboniferous Datang Formation; 12–The third layer of the third member of the Upper Devonian Zaige Formation; 13–The second layer of the third section of the Upper Devonian Zaige Formation; 14–The first layer of the third section of the Upper Devonian Zaige Formation; 15–Integrated contact; 16–Parallel unconformity contact; 17–Fault; 18–Anticline axis; 19–The location of the cross sections; 20–Exploration lines and numbering. Figure 3B: 1–Dolomite; 2–Limestone; 3–Mudstone; 5–Sandstone; 5–Basalt; 6–Residual matter; 7–Stratum code; 8–Integrated contact; 9–False integration contact; 10–Angular unconformity contact.

4 Results

4.1 Characteristics and zones of mineralization–alteration

The mineralization of the Maoping lead-zinc deposit is mainly that of galena and sphalerite. The wallrock alteration type is relatively simple, and the intensity changes and zoning are obvious. These mainly include pyritization, (iron) dolomitization and calcification. The main alteration characteristics are as follows (Figures 5–7).

Pyritization: Pyritization is mainly distributed in the dolomite, calcite, joints and faults near the ore in massive structures, disseminated structures, masses, veins, and veinlets, and pyrite is also common in the orebodies. The intensity of pyritization is related to its distance from the orebody. The pyritization near the orebodies is strong, and the pyritization far from the orebodies gradually weakens. In addition, the pyritization is also related to

elevation, and deep pyritization is obviously stronger than shallow pyritization.

Dolomitization: Due to the influence of hydrothermal activity, the original dolomite limestone or dolomite is recrystallized, resulting in a significant increase in porosity, which is beneficial for hydrothermal activity and mineralization, thus leading to the formation of altered dolomite. Dolomite is mainly found in striped structures, veins, masses, veinlets, and irregular structures; is mainly distributed on the sides of orebodies and the sides of interlayer faults; and has a semi-idiomorphic granular framework. The particle sizes are 0.2-1 mm, and the color is diverse—mainly white, gray–white, beige, and flesh red; in addition, corrosion holes and crystal cavities have developed. Dolomitization is more evident in the C_2 w dolomitic limestone, where it appears as a stripe; the D_3 zg dolomite mainly appears in a rice-grain-type form, with the presence of long-axis parallel interlayer faults.

Calcification: Calcification is present mainly in the forms of stockwork, veins, masses, and veinlets, and it is present mainly on the sides of interlayer faults and on the sides of orebodies in dolomitic limestone and dolomite.

Based on the composition, structure, framework, and strength of the altered rocks, combined with their spatial relationships with orebodies, the mineralization–alteration zones were delineated. From the orebodies to the wallrocks in the hanging wall, the mineralization–alteration zones of the C₂w Formation exhibit the following order: massive lead–zinc ore zone (I) \rightarrow lead–zinc ore vein + pyrite vein zone + striped altered dolomite (Zone II) \rightarrow striped altered dolomite zone (Zone III) \rightarrow gray thick-layered dolomitic limestone zone (Zone IV). The mineralization–alteration zones of the D₃zg Formation exhibit the following order: massive lead–zinc ore vein + pyrite vein zone (Zone II) \rightarrow spotted pyrite + dolomite vein zone (Zone III) \rightarrow gray-white fine-medium crystalline dolomite zone (Zone IV). The detailed features and descriptions are shown in Figures 5-7; Table 1.

4.2 Porosity and permeability results for the two flanks of the anticline

For all the measured rock samples, the overall porosity and permeability changed greatly; the porosities ranged from 0.91% to 10.08%, and the permeabilities ranged from 0.003005251 – 17.68385095 × 10^{-3} µm² (Table 2).

The porosity-permeability scatter plot shows a positive correlation between the two flanks, and the slope (R) is 0.28827 ± 0.06658 (Figure 8).

The porosity of 1%–10.08% in the NW flank was greater than that of 0.91%–6.39% in the SE flank. The median value of the NW flank (2.74%) was greater than that of the SE flank (2.59%) (Figure 8).

The permeability of $0.003005251 - 17.68385095 \times 10^{-3} \mu m^2$ in the NW flank was greater than that of $0.003311688 - 0.723114436 \times 10^{-3} \mu m^2$ in the SE flank. In addition, the median value of the NW flank ($0.01938 \times 10^{-3} \mu m^2$) was greater than that of the SE flank ($0.0061 \times 10^{-3} \mu m^2$) (Figure 8).

4.3 Porosity and permeability results for the NW flank of the anticline

The porosities and permeabilities of rocks with different degrees of mineralization-alteration in the two main ore-bearing

for the state of the second	riank of the anticune.
A here all and and an all and a	epodies in the NW
and a standard at a second	ones or airrerent of
	zation-atteration z
illen and an and a factor	s or the minerall
To the second	I ypical characteristics
	IABLE I

-alteration zones	Zone III Zone IV	striped altered dolomite zone gray thick layered dolomitic limestone zone	dolomite —		xenomorphic granular —	xenomorphic granular – – – – – – – – – striped – – –	xenomorphic granular – – – – – striped – – striped strong weak	xenomorphic granular – striped – – striped – – strong weak strong to strong the dolomite + gray-white thick-layered calcite veinlet zone dolomitic limestone zone	xenomorphic granular – striped – striped – strong weak striped altered dolomite + gray-white thick-layered calcite veinlet zone dolomitic limestone zone dolomite + calcite dolomite + calcite	xenomorphic granular - striped striped strong weak striped altered dolomite + gray-white thick-layered calcite veinlet zone dolomitic limestone zone dolomite + calcite dolomite + calcite xenomorphic granular subhedral-xenomorphic	xenomorphic granular - striped striped strong weak striped altered dolomite + gray-white thick-layered dolomite + calcite dolomite + calcite xenomorphic granular subhedral-xenomorphic striped + veinlet weikt + veinlet	xenomorphic granular - striped striped strong weak striped altered dolomite + gray-white thick-layered olomite + calcite dolomitic limestone zone dolomite + calcite dolomite + calcite xenomorphic granular subhedral-xenomorphic striped + veinlet weak strong weak	xenomorphic granular - striped striped strong weak striped altered dolomite + gray-white thick-layered dolomite + calcite dolomitic limestone zone random te + calcite dolomite + calcite xenomorphic granular subhedral-xenomorphic striped altered dolomite + calcite weak striped + veinlet subhedral-xenomorphic striped altered dolomite zone gray thick layered dolomitic	xenomorphic granular - striped striped strong weak strong weak strong weak strong weak striped altered dolomite + dolomite inestone zone dolomite + calcite dolomite + calcite venonorphic granular subhedral-xenomorphic striped + veinlet weinlet + veinlet striped altered dolomite zone gray thick layered dolomitic dolomite zone gray thick layered dolomitic	xenomorphic granular - striped striped strong weak strong weak striped altered dolomite + gray-white thick-layered calcite veinlet zone dolomitic limestone zone dolomite + calcite dolomite + calcite striped + veinlet subhedral-xenomorphic striped altered dolomite calcite subhedral-xenomorphic dolomite + calcite gray thick layered dolomitic striped altered dolomite zone gray thick layered dolomitic dolomite zone gray thick layered dolomitic t striped altered dolomite zone striped altered dolomite zone gray thick layered dolomitic t strong weak strong gray thick layered dolomitic t strong strone striped altered dolomite zone gray thick layered dolomitic l striped altered dolomite zone striped altered dolomite gray thick layered dolomitic l striped altered dolomite zone dolomite gray thick layered dolomitic	xenomorphic granular - striped striped striped strong strong weak striped altered dolomite + gray-white thick-layered dolomite + calcite dolomitic limestone zone striped + calcite dolomite + calcite striped + veinlet weak striped altered dolomite + calcite weak striped + veinlet subhedral-xenomorphic striped altered dolomite zone gray thick layered dolomitic attriped altered dolomite zone gray thick layered dolomitic striped altered dolomite subhedral-xenomorphic striped altered dolomite weak striped altered dolomite subhedral-xenomorphic	xenomorphic granular - striped striped strong weak strong weak striped altered dolomite + gray-white thick-layered alounite + calcite dolomitic limestone zone dolomite + calcite dolomite + calcite striped altered dolomite + calcite weak striped altered dolomite + calcite weak striped + veinlet weinlet + veinlet striped altered dolomite zone gray thick layered dolomitic l striped altered dolomite zone striped altered dolomite zone gray thick layered dolomitic l striped altered dolomite zone striped altered dolomite gray thick layered dolomitic l striped altered dolomite zone striped altered dolomite gray thick layered dolomitic l striped altered dolomite zone striped weak striped weak striped weak striped weak striped weak	xenomorphic granular - striped striped strong weak strong weak striped altered dolomite + gray-white thick-layered altered dolomite + calcite dolomite innestone zone weak gray-white thick-layered striped altered dolomite + calcite dolomite + calcite wenomorphic granular subhedral-xenomorphic striped + veinlet weinlet + veinlet xenomorphic granular subhedral-xenomorphic atriped altered dolomite zone meak striped altered dolomite zone gray thick layered dolomitic attriped altered dolomite zone gray thick layered dolomitic attriped altered dolomite zone gray thick layered dolomitic attriped weak striped altered dolomite zone gray thick layered dolomitic attriped weak striped altered dolomite zone dolomite + veinlet striped weak striped weak striped weak striped weak strong weak strong weak
Mineralization-	Zone II	lead–zinc ore vein + pyrite vein zone	galena + sphalerite + pyrite	xenomorphic granular	vein + mottled	stronger	lead-zinc veinlet +pyrite vein zone	galena + sphalerite + pyrite	subhedral-xenomorphic granular	veinlet + vein + mottled	stronger	spotted pyrite + striped altered dolomite zone	pyrite + dolomite	subhedral-xenomorphic granular	spotted + striped	stronger	lead-zinc veinlet + pyrite veinlet + striped altered dolomite zone	galena + sphalerite + pyrite + dolomite
aristic	Zone I	massive lead-zinc ore zone	galena + sphalerite + pyrite	euhedral, subhedral-xenomorphic granular	massive	stronger	massive lead-zinc ore zone	galena + sphalerite	euhedral, subhedral-xenomorphic granular	massive	stronger	vein lead-zinc zone	galena + sphalerite	euhedral-subhedral granular	vein	stronger	massive lead-zinc ore zone	galena + sphalerite
Characteristic	Characteristic		Mineralization-alteration Minerals Ore framework Ore structure Alteration					Minerals	Ore framework	Ore structure	Alteration	Mineralization-alteration	Minerals	Ore framework	Ore structure	Alteration	Mineralization-alteration	Minerals
Elevation (m)				670				610				755					670	
Orebody				H13					H8					Q1			S1	
Position		Hexi Hongjianshan ore block									Hexi Qiancengdong ore block			Hexi Shuilu ore block				

06

ē
÷
Ë
UD UD
ē
宁
٥f
¥
lar
/fl
≩
e
宁
.⊑
es
ğ
å
Ē.
2
U 0
er
Ξ
f
0
ē
<u>s</u>
R C
ō
rat
te
-al
ģ
Ę:
zatic
alizatic
eralizatic
nineralizatic
e mineralizatic
the mineralizatic
of the mineralizatic
s of the mineralizatic
tics of the mineralizatic
ristics of the mineralizatic
teristics of the mineralizatic
acteristics of the mineralizatic
naracteristics of the mineralizatic
characteristics of the mineralizatic
cal characteristics of the mineralizatic
pical characteristics of the mineralizatic
Typical characteristics of the mineralizatic
ed)Typical characteristics of the mineralizatic
ued)Typical characteristics of the mineralizatic
t <i>inued</i>)Typical characteristics of the mineralizatic
ontinued)Typical characteristics of the mineralizatic
Continued)Typical characteristics of the mineralizatic
 (Continued)Typical characteristics of the mineralizatic
E 1 (Continued)Typical characteristics of the mineralizatic
BLE 1 (Continued)Typical characteristics of the mineralizatic
TABLE 1 (Continued)Typical characteristics of the mineralizatic

Position	Orebody	Elevation (m)	Characteristic		Mineralization-a	alteration zones	
				Zone l	Zone II	Zone III	Zone IV
			Ore framework	euhedral, subhedral-xenomorphic granular	subhedral-xenomorphic granular	xenomorphic granular	subhedral-xenomorphic
			Ore structure	massive	veinlet + disseminated + striped	spotted + striped	veinlet + veinlet
			Alteration	stronger	stronger	strong	weak
			Mineralization-alteration	massive lead-zinc ore zone	vein lead-zinc + pyrite vein zone	spotted pyrite + dolomite vein zone	gray fine-medium crystalline fragmented dolomite zone
			Minerals	galena + sphalerite	galena + sphalerite + pyrite	pyrite + dolomite + calcite	dolomite + calcite
Hedong ore block	I-7	760	Ore framework	euhedral-subhedral granular	subhedral-xenomorphic granular	xenomorphic granular	xenomorphic granular
			Ore structure	massive	vein	spotted + vein+ vein	veinlet + veinlet
			Alteration	stronger	stronger	strong	weaker
			Mineralization-alteration	massive lead-zinc ore + massive pyrite zone	lead-zinc vein + pyrite vein zone	spotted pyrite + dolomite vein zone	light-gray-gray-white fine-medium crystalline fragmented dolomite zone
			Minerals	galena + sphalerite + pyrite	galena + sphalerite + pyrite	pyrite + dolomite + calcite	calcite + dolomite
	0-1	000	Ore framework	euhedral–subhedral granular	subhedral-xenomorphic granular	xenomorphic granular	xenomorphic granular
			Ore structure	massive	vein	spotted + vein + vein	veinlet + mottled
			Alteration	stronger	strong	strong	weaker
			Mineralization-alteration	massive lead-zinc ore + massive pyrite zone	lead-zinc vein + massive pyrite zone	spotted pyrite + stockwork dolomite zone	gray-white fine-medium crystalline fragmented dolomite zone
	c H		Minerals	galena + sphalerite + pyrite	galena + sphalerite + pyrite	pyrite + dolomite + calcite	dolomite + calcite
	0-1	064	Ore framework	euhedral–subhedral granular	subhedral-xenomorphic granular	xenomorphic granular	xenomorphic granular
			Ore structure	massive	vein + massive	spotted + stockwork + stockwork	veinlet + veinlet
			Alteration	stronger	stronger	strong	weaker

nations, and different alteration zones.
ing form
ore-bear
different o
positions,
different
results for
permeability
Porosity and
TABLE 2

Permeability (x10 ⁻³ um²)	0.640610773	0.139413601	3.357080661	9.738586815	2.082603347	0.518339656		d on the following page)
Porosity (%)	3.57	1.88	3.73	4.89	1.78	2.47	0.444057091	(Continue
Flow (mL/min)	24.8	3.35	85.6	267.8	46.8	22.7	3.87	
Input pressure (Kpa)	301.7	312	300.6	311.7	301.6	301.1	15.1	
Volume (mL)	0.527	0.463	0.838	1.061	0.423	0.317	312	
Length (cm)	2.974	5.011	4.507	4.393	4.963	2.604	0.674	
Diameter (cm)	2.513	2.502	2.518	2.508	2.474	2.505	3.541	
Characteristic of mineralization – alteration	mottled dolomite, a few fractures, fracture widths of 0.1–0.2 mm	a few vein dolomites, vein widths of 0.1–0.2 mm	many fractures, with widths of 0.1–0.2 mm	many vein coarse crystalline altered dolomite, vein widths of 1–10 mm	medium vein lead-zinc, vein widths of 0.2-0.3 mm, a few fractures, fracture widths of 0.1-0.2 mm	a few lead–zinc veins, vein widths of 0.1–0.2 mm, a few fractures, fracture widths of 0.1–0.2 mm	2.502	
Lithology	gray fine-medium crystalline dolomitic limestone	gray fine crystalline limestone	gray-white striped altered dolomite	gray fine-medium crystalline dolomitic limestone	gray-white striped altered dolomite	gray-white striped altered dolomite	many vein coarse crystalline altered dolonite, vein widths of 1–10 mm	
Formation	C ₂ w	C ₂ w	C ₂ w	C ₂ w	C ₂ w	C ₂ w	gray fine-medium crystalline dolomitic limestone	
Number	khwr–112	khwr-114	khwr-121	khwr-122	khwr-123-1	khwr-123-2	C_2 w	
Profile	The 32–33+1st line of 670 m of the H8 orebody in	the Hexi Hongjianshan ore block		The 34+1st line of 610 m of the H8	orebody in the Hexi Hongjianshan ore block		khwr-125	
Anticline				NW flank				

	Permeability (x10 ⁻³ um ²)	0.006104795	0.078532151	0.051257277	0.003324776	0.113770033	0.010218684	0.005344397	ed on the following page)
	Porosity (%)	2.5	4.52	2.9	2.55	1.76	2.59	4.8	(Continu
	Flow (mL/ min)	0.195	2.9	1.34	0.16	2.61	0.3	0.33	
	Input pressure (Kpa)	306	305.1	305	304.4	306.8	312.1	300.7	
eration zones.	Volume (mL)	0.453	0.741	0.635	0.304	0.426	0.521	0.417	
nd different alte	Length (cm)	3.672	3.24	4.449	2.417	5.012	4.097	1.802	
J formations, ar	Diameter (cm)	2.508	2.539	2.504	2.508	2.478	2.5	2.477	
s, different ore-bearing	Characteristic of mineralization– alteration	mottled dolomite, a few pyrite veins, vein widths of 2–4 mm	spotted dolomite, spotted diameter of ~2 mm, a few fractures, fracture widths of 0.1–0.2 mm	spotted pyrite, a few fractures, fracture widths of 0.1–0.2 mm	mottled, medium vein lead-zinc, mottled diameter of ~10 mm, vein widths of 0.5−2 mm	medium vein dolomite, vein widths of 0.5–2 mm	a few vein dolomites, vein widths of 0.1–0.2 mm	I	
ifferent positio	Lithology	gray fine-medium crystalline dolomitic limestone	gray medium-coarse crystalline dolomitic limestone	gray-white striped altered dolomite	gray-white striped altered dolomite	gray fine-medium crystalline dolomitic limestone	gray fine-medium crystalline dolomitic limestone	gray-white striped altered dolomite	
llity results for d	Formation	C ₂ w	C ₂ w	C ₂ w	C ₂ w	C ₂ w	C ₂ w	C ₂ w	
and permeabi	Number	khwr-97	khwr-98	khwr-99	khwr-100	khwr-101	khwr-102	khwr-103	
nued) Porosity	Profile		The 18th line of the 755 m of the Q1 orebody in	the Hexi Qiancengdong ore block					
TABLE 2 (Conti	Anticline								

ne.
Ň
b
ati
fer
alt
ent
ere
Ξ
0
an
٦s,
ō
Jat
rn.
Ę
Ë.
ear
ě
ore
ž
Ţ.
ffe
ö
ns,
5
si
ă
ent
er
i H
2
sfé
h
esi
ž
Ē
eak
Ĕ
Ser
ð
an
₹
^{os}
DO
6
ne
tin
00
Ű
2
Ш
AB
E.

	Permeability (x10 ⁻³ um ²)	3.858859369	0.051803484	0.019356451	0.285030043	0.010007273	0.010788713	0.005124101	0.010701505	ed on the following page)
	Porosity (%)	2.62	3.13	5.19	2.93	3.81	2.41	3.8	2.99	(Continue
	Flow (mL/min)	106	2.5	0.45	8.6	0.345	0.26	0.29	0.43	
	Input pressure (Kpa)	311	304.1	301.6	302.4	310.8	312.1	311.6	311.8	
eration zones.	Volume (mL)	0.562	0.368	1.137	0.523	0.652	0.591	0.399	0.441	
nd different alte	Length (cm)	4.361	2.393	4.674	3.709	3.474	4.999	2.13	2.996	
g formations, ai	Diameter (cm)	2.502	2.501	2.442	2.473	2.503	2.502	2.506	2.503	
is, different ore-bearing	Characteristic of mineralization– alteration	medium fractures, fracture widths of 0.2–0.5 mm	a few vein dolomites, vein widths of 0.2–0.5 mm, a few fractures, fracture widths of 0.1–0.2 mm	spotted dolomite, pyrite, spotted diameter of ~5 mm, a few fractures, fracture widths of 0.1–0.2 mm	medium vein dolomite, vein widths of 2-5 mm, many fractures, fracture widths of 0.1-0.2 mm	a few lead–zinc veins, calcite, vein widths of 10–15 mm	I	disseminated pyrite	mottled lead−zinc, mottled diameter of ~50 mm, a few fractures, fracture widths of 0.1–0.2 mm	
ifferent position	Lithology	gray-white fine crystalline limestone	gray-white fine-medium crystalline dolomitic limestone	gray-white medium-coarse crystalline dolomitic limestone	gray-white fine-medium crystalline dolomitic limestone	gray-white medium-coarse crystalline dolomite	massive pyrite ore	gray-white medium-coarse crystalline dolomite	gray-white medium-coarse crystalline dolomite	
lity results for d	Formation	C ₂ w	C ₂ w	C ₂ w	C ₂ w	D_3zg^{3-2}	$\mathrm{D}_3\mathrm{zg}^{3-2}$	D_3zg^{3-2}	D3zg ³⁻²	
and permeab	Number	khwr-141	khwr–143	khwr–145	khwr-147	khwr-42	khwr-43	khwr-45	khwr-46	
inued) Porosity	Profile		The 2nd line of the 670 m of the 81 orebody in the Hexi Shuilu ore	block			The 116th line of the	760 m of the I-7 orebody in the Hedong ore block		
TABLE 2 (Cont	Anticline									

eration zones.	
ind different alt	
g formations, a	
ent ore-bearing	
ositions, differ	
or different pc	
bility results f	
y and permea	
ed) Porosit	
Continu	
TABLE 2	

	Permeability (x10 ⁻³ um ²)	0.003714121	1.178650735	8.839368463	4.287857634	0.003641358	0.005542033	7.850477067	0.031592771	0.005421317	d on the following page)
	Porosity (%)	1.83	10.08	2.87	4.88	1.67	2.86	4.09	1.97	4.31	(Continue
	Flow (mL/min)	0.09	68.5	261.7	154.2	0.088	0.19	9.17	0.92	0.13	
	Input pressure (Kpa)	312	311.1	311.3	310.7	312.1	311.5	31.4	308.2	310.7	
eration zones.	Volume (mL)	0.451	1.019	0.57	0.794	0.41	0.494	1.005	0.407	1.054	
nd different alt	Length (cm)	4.985	2.059	4.046	3.318	4.993	3.506	4.987	4.123	4.98	
g formations, a	Diameter (cm)	2.506	2.5	2.5	2.499	2.504	2.503	2.504	2.523	2.5	
ıs, different ore-bearing	Characteristic of mineralization– alteration	I	a few fractures, fracture widths of 0.1–0.2 mm	a few fractures, fracture widths of 1–2 mm	mottled dolomite, stockwork pyrite, vein widths of 2–5 mm, a few fractures, fracture widths of 1–2 mm	mottled dolomite	mottled calcite	adhesive stockwork calcite, vein widths of 1–5 mm	a few fractures, fracture widths of 0.5-1 mm	spotted dolomite, spotted diameter of ~5 mm, rice-grain texture	
lifferent positio	Lithology	gray-white fine-medium crystalline dolomite	massive pyrite ore	massive lead-zinc ore	gray-white coarse crystalline dolomite	gray-white fine-medium crystalline dolomite	gray-white fine-medium crystalline dolomite	gray-white brecciated dolomite	dark gray fine crystalline dolomite	gray fine-medium crystalline dolomite	
lity results for c	Formation	D_3zg^{3-2}	$\mathrm{D}_3\mathrm{zg}^{3-2}$	$\mathrm{D}_3\mathrm{zg}^{3-2}$	D_3zg^{3-2}	D_3zg^{3-2}	D_3zg^{3-2}	D_3zg^{3-2}	D_3zg^{3-2}	D3zg ³⁻²	
/ and permeabi	Number	khwr–51	khwr-52	khwr-53	khwr-54-1	khwr-54-2	khwr-56	khwr-57	khwr-61	khwr-64	
inued) Porosity	Profile	The 98+1st line of the 683 m of the I-6 orebody	III une Hedong ore block						The 92nd line of the	6/0 m in the Hedong ore block	
TABLE 2 (Cont	Anticline										

11

	Permeability (x10 ⁻³ um ²)	0.00549335	0.004153962	0.008093807	0.013683236	0.032899664	0.004746107	6.119656209	0.259138707	17.68385095	ed on the following page)
	Porosity (%)	2.81	2.12	1.39	1.86	2.05	2.51	5.75	2.54	3.5	(Continue
	Flow (mL/min)	0.19	0.15	0.195	0.33	0.8	0.13	274.3	6	504.9	
	Input pressure (Kpa)	311.8	309.8	311.5	312.4	312.6	312.2	311.6	309.2	305.7	
ration zones.	Volume (mL)	0.48	0.344	0.342	0.455	0.503	0.543	0.76	0.443	0.699	
id different alte	Length (cm)	3.475	3.297	4.993	4.991	4.979	4.397	2.683	3.486	4.069	
l formations, ar	Diameter (cm)	2.501	2.502	2.504	2.499	2.505	2.501	2.503	2.527	2.498	
ns, different ore-bearing	Characteristic of mineralization– alteration	a few vein dolomites, vein widths of 0.3–0.5 mm, fractures in vertical core	a few vein dolomites, vein widths of 1–2 mm, fractures in vertical core	I	a few vein calcites, vein widths of 0.1–2 mm	medium vein calcite, vein widths of 1–10 mm		Stockwork calcite, vein widths of 0.2-5 mm	a few fractures, fracture widths of 0.1–0.2 mm	Stockwork dolomite, vein widths of 1–5 mm	-
lifferent positio	Lithology	gray fine-medium crystalline dolomite	gray-white fine-medium crystalline dolomite	gray-white fine-medium crystalline dolomite	gray fine crystalline dolomite	gray fine crystalline dolomite	gray fine crystalline dolomite	gray-white fine-medium crystalline dolomite	gray fine crystalline dolomite	gray fine crystalline dolomite	
lity results for d	Formation	D_3zg^{3-2}	D_3zg^{3-2}	D_3zg^{3-2}	D_3zg^{3-2}	D_3zg^{3-2}	D_3zg^{3-2}	D_3zg^{3-2}	D_3zg^{3-2}	D_3zg^{3-2}	
/ and permeabi	Number	khwr-65	khwr-68	khwr-70	khwr-71	khwr-72	khwr-73	khwr-76	khwr–83	khwr-85	_
inued) Porosity	Profile	The 96-112nd line of the 610 m of the 1-6 orebody in the Hedong ore block							The stope of the 490 m of the I-8	orebody in the Hedong ore block	
TABLE 2 (Cont	Anticline										

12

zon
alteration
id different a
'mations, ar
-bearing for
ifferent ore
oositions, d
r different j
/ results fo
permeability
ity and
ad) Porc
(Continue
LE 2

	Permeability (x10 ⁻³ um ²)	0.019399858	0.162653985	1.211916955	2.056971567	0.027679793	0.011219772	0.016217201	0.033843248	0.01687138	d on the following page)
	Porosity (%)	2.18	5.63	7.81	2.34	3.38	4.43	5.31	3.73	5.9	(Continue
srent alteration zones.	Flow (mL/min)	0.8	6.64	54.9	93.3	1.24	0.52	0.62	0.96	1.03	
	Input pressure (Kpa)	307.2	311.3	310.6	308.5	320.7	318.6	312	312.4	307.7	
	Volume (mL)	0.306	0.813	1.013	0.277	0.447	0.588	0.819	0.774	0.578	
nd different alte	Length (cm)	2.853	2.939	2.639	2.502	2.751	2.691	3.142	4.24	1.96	
g formations, a	Diameter (cm)	2.504	2.502	2.502	2.451	2.476	2.504	2.499	2.498	2.522	
ns, different ore-bearin	Characteristic of mineralization– alteration	a few fractures, fracture widths of 0.1–0.5 mm	I	hole development, hole width of $\sim 2~\mathrm{mm}$	medium fractures, fracture widths of 0.1–0.2 mm	a few fractures, fracture widths of 0.1–0.2 mm	a few fractures, fracture widths of 0.1–0.2 mm	a few vein dolomites, vein widths of 1–2 mm	mottled pyrite, a few vein dolomites, vein widths of 1–3 mm	spotted dolomite, spotted diameter of ~2 mm, a few dolomite veins, vein widths of 1–2 mm	
lifferent positio	Lithology	gray-white fine crystalline dolomite	massive pyrite ore	massive lead-zinc ore	gray-white fine crystalline dolomite	gray-white fine-medium crystalline dolomite	gray-white coarse crystalline dolomite	gray-white medium-coarse crystalline dolomite	gray-white medium-coarse crystalline dolomite	gray-white coarse crystalline dolomite	
lity results for d	Formation	D_3zg^{3-2}	$\mathrm{D}_3\mathrm{zg}^{3-2}$	$\mathrm{D}_3\mathrm{zg}^{3-2}$	D_3zg^{3-2}	D_3zg^{3-2}	D_3zg^{3-2}	D_3zg^{3-2}	D_3zg^{3-2}	D3zg ³⁻²	
and permeab	Number	khwr-31	khwr-32	khwr-33	khwr-22	khwr-23	khwr-25	khwr-2	khwr-4	khwr-12	
inued) Porosity	Profile	The stope of the 430 m of	the 1-8 orebody in the Hedong	OFE DIOCK	The 90–96th	line of the 370 m of the I-8 orebody in the Hedong ore	block	The	98–104th line of the 310 m of the I-8 orebody in the	Hedong ore block	
TABLE 2 (Cont	Anticline										

alteration z	
nd different	
formations, ai	
e-bearing f	
different ore	
positions, c	
or different	
v results fo	
permeabilit	
v and	
Porosit	
(Continued)	
TABLE 2	

	Permeability (x10 ⁻³ um ²)	0.022040099	0.006633245	0.63831948	0.007965992	0.005905384	0.02002533	0.006445168	0.14599861	d on the following page)
	Porosity (%)	2.26	1.51	3.64	1.48	1.37	2.07	1.87	6.04	(Continue
	Flow (mL/min)	0.53	0.16	15.2	0.19	0.14	0.48	0.155	3.45	
	Input pressure (Kpa)	311.6	312	310.2	310.4	310	311.4	312.2	310.5	
teration zones.	Volume (mL)	0.558	0.369	0.891	0.363	0.336	0.507	0.459	1.475	
and different al	Length (cm)	5.005	4.976	4.994	4.999	5.003	Ś	Ω	4.988	
ing formations,	Diameter (cm)	2.504	2.498	2.498	2.5	2.496	2.5	2.499	2.497	
tions, different ore-bear	Characteristic of mineralization– alteration	mottled, medium vein calcite, mottled diameter of ~ 10 mm, vein widths of 0.2-2 mm	I	vein coarse crystalline dolomite, vein widths of 5–6 mm, medium vein calcite, vein widths of 1–3 mm	I	I	a few fractures, fracture widths of 0.2-1 mm	I	many fractures, fracture widths of 0.5-1 mm, fractures field with yellow-brown iron-rich mud material	
or different posit	Lithology	gray fine crystalline limestone	gray fine crystalline limestone	dark gray fine crystalline limestone	dark gray fine crystalline limestone	gray-white fine crystalline dolomitic limestone	gray-white fine crystalline dolomitic limestone	gray-white coarse crystalline dolomite	gray-yellow medium-coarse crystalline dolomite	
ability results fo	Formation	P_2q+m	P_2q+m	P_2q+m	P_2q+m	$C_2 w^{1-3}$	C ₂ w ²	C ₂ w ²	C ₂ w ¹⁻²	
sity and perme	Number	HX-115	HX-116	HD-114	HD-115	HX-112	HX-113	HX-114	HD-108	
inued) Poro	Profile		Surface							
TABLE 2 (Cont	Anticline									

zones.	
eration	
erent alt	
and diffe	
ations, a	
ig forma	
-bearin	
rent ore	
ıs, diffe	
oositior	
fferent	
s for di	
cy result	
meabilit	
and per	
orosity	
nued) P	
(Conti	
TABLE 2	

Permeability (x10 ⁻³ um ²)	0.15350026	0.003578238	0.006663304	0.004421953	0.006742633	0.003435215	9.080088277	ed on the following page)
Porosity (%)	1.34	1.19	2.49	1.29	1.31	1	6.07	(Continue
Flow (mL/min)	3.65	0.085	0.158	0.105	0.16	0.08	317	
Input pressure (Kpa)	310	310	310	310	310.3	305.6	303.8	
Volume (mL)	0.33	0.292	609.0	0.315	0.321	0.246	0.987	
Length (cm)	Ω	5.005	5.006	4.999	5.002	4.994	3.308	
Diameter (cm)	2.499	2.499	2.497	2.497	2.495	2.5	2.503	
Characteristic of mineralization– alteration	spotted dolomite, spotted diameter of ~2 mm, a few dolomite veins, vein widths of 0.5-1 mm	1	mottled dolomite	1	1	I	stockwork fractures, fracture widths of 0.5-1 mm, fractures filled with yellow-brown iron-rich mud material	
Lithology	gray-white fine crystalline dolomitic limestone	gray-white fine crystalline dolomitic limestone	gray-white fine crystalline dolomitic limestone	gray-white fine crystalline dolomitic limestone	gray-white fine crystalline dolomitic limestone	dark gray sparite limestone	gray-white quartz sandstone	
Formation	$C_2 w^{l-1}$	$C_2 w^{1-3}$	$C_2 w^{1-3}$	C ₂ w ²	C ₂ w ²	C ₁ d ¹	C ₁ d ¹	
Number	HD-109	HD-110	HD-111	HD-112	HD-113	6-ХН	HX-10	
Profile								
Anticline								

N
2
÷
at
5
Ĕ
ā
h
ē
5
Ĕ
Ŧ
-
2
ar
in
ŭ
Ö
Ē
Da
L.
ō
Ť
p D
÷.
ar
Q
ę
ė
5
2
Ē
é
ē
Ŧ
<u>d</u>
in
č
O
Ξ
S
8
7
Ē
é
ē
Ŧ
5
F
ç
S
Ę
SU
ě
1
\$
Ξ
ā
63
ž
1
e
2
p
ar
~
<u>ن</u>
SC
ž
0
6
õ
20
E.
1t
ō
Ú
_
2
щ
1
7
Ř

	Permeability (x10 ⁻³ um ²)	0.288755333	0.005543663	0.041014095	0.005726312	0.007139375	0.010826281	2.420226284	0.399719941	0.117599884	d on the following page)
	Porosity (%)	3.63	1.67	4.16	1.97	1.87	1.64	2.67	4.13	4.75	(Continue
	Flow (mL/min)	8.25	0.13	0.97	0.13	0.17	0.25	56.1	14.6	2.74	
	Input pressure (Kpa)	304.7	307.7	308.8	300.6	308.8	304.9	304.4	304.3	305.5	
teration zones.	Volume (mL)	0.723	0.411	1.021	0.483	0.462	0.4	0.654	0.64	1.164	
and different al	Length (cm)	4.058	5.006	IJ	4.986	4.994	4.998	4.986	3.16	4.993	
ring formations, ar	Diameter (cm)	2.502	2.498	2.5	2.499	2.507	2.495	2.5	2.499	2.501	
tions, different ore-bear	Characteristic of mineralization – alteration	a few fractures, fracture widths of 0.2–0.5 mm	I	stockwork calcite, vein widths of 0.1–5 mm	1	I	hole development, hole width of ~1 mm, a few fractures, fracture widths of 1-2 mm, fractures filled with yellow-brown iron-rich mud material	medium fractures, fracture widths of 1–2 mm	hole development, hole diameter of $\sim 1 \text{ mm}$, a few calcite veins, vein widths of 0.5–1 mm	adhesive stockwork calcite, vein widths of 2–5 mm	
or different posi	Lithology	dark gray fine crystalline limestone	gray fine crystalline limestone	gray fine crystalline limestone	gray-white fine crystalline limestone	gray-white dolomitic limestone	gray-white fine crystalline dolomite	gray-white fine crystalline dolomite	gray-white medium-coarse crystalline dolomite	gray brecciated dolomite	
sability results fo	Formation	$C_1 d^2$	C ₁ d ¹	C ₁ d ²	C ₁ d ³	C ₁ b	$D_3 z g^{3-1}$	D_3zg^{3-1}	D_3zg^{3-1}	$D_3 z g^{3-1}$	
ity and perme	Number	HX-11	HX-108	HX-109	HX-110	HX-111	HX-101	HX-102	HX-103	HX-104	
inued) Poros	Profile										
TABLE 2 (Cont	Anticline										

lteration zones.	
, and different a	
ing formations	
erent ore-bear	
t positions, diff	
ts for different	
neability resul	
osity and peri	
Continued) Po	
TABLE 2 ((

Permeability (x10 ⁻³ um ²)	0.036632468	0.996981802	0.010232829	0.003005251	0.010778051
Porosity (%)	2.5	3.12	3.92	1.09	2.89
Flow (mL/min)	0.85	23	0.29	0.07	0.25
Input pressure (Kpa)	305.4	304.6	302.5	305.1	304.3
Volume (mL)	0.609	0.764	0.784	0.269	0.708
Length (cm)	4.987	5.003	4.057	4.992	4.988
Diameter (cm)	2.495	2.497	2.506	2.503	2.502
Characteristic of mineralization – alteration	hole development, hole diameter of ~2 mm, medium fractures, fracture widths of 0.5-1 mm	mottled calcite, hole development, hole diameter of ~ 2 mm, many fractures, fracture widths of 1–2 mm, fractures filed with yellow-brown iron-rich mud material	hole development, hole diameter of ~ 2 mm, a fiew fractures, fracture widths of 0.5–1 mm	I	hole development, hole diameter of ~10 mm, holes filled with yellow-brown iron-rich mud material, medium fractures, fracture widths of 5–6 mm, fractures filled with yellow-brown iron-rich mud material
Lithology	gray-white fine crystalline dolomite	light-gray coarse crystalline dolomite	gray-white medium-coarse crystalline dolomite	gray fine crystalline dolomite	gray fine crystalline dolomite
Formation	D_3zg^{3-1}	D ₃ 2g ³⁻²	D_3zg^{3-2}	D_3zg^{3-2}	D ₃ zg ³⁻²
Number	HX-105	HX-106	HX-1	HX-2	НХ-3
Profile					
Anticline					

(Continued on the following page)

	Permeability (x10 ⁻³ um ²)	0.007699577	0.003442136	0.003870505	0.009411509	0.004288679	0.003414406	ed on the following page)
	Porosity (%)	G	2.39	2.18	3.65	1.65	2.34	(Continu
	Flow (mL/min)	0.18	0.08	60.0	0.22	0.1	0.08	
	Input pressure (Kpa)	305.3	305.1	305.5	305.4	305.8	305.5	-
teration zones.	Volume (mL)	1.467	0.586	0.538	0.902	0.404	0.575	
and different al	Length (cm)	4.975	4.995	5.007	4.998	4.993	4.985	
ing formations,	Diameter (cm)	2.502	2.501	2.502	2.507	2.5	2.506	
tions, different ore-bear	Characteristic of mineralization – alteration	many vein coarse crystalline dolomites, vein widths of 5-6 mm, hole development, hole diameter of ~ 10 mm, holes filled with yellow-brown iron-rich mud material	I	I	a few vein coarse crystalline dolomites, vein widths of 5–6 mm, hole development, hole diameter of ~5 mm, holes filled with yellow-brown iron-rich mud material	I	I	
or different posit	Lithology	gray-white fine crystalline dolomite	gray-white fine crystalline dolomite	gray-white fine crystalline dolomite	gray-white fine crystalline dolomite	gray-white fine crystalline dolomite	gray-white fine crystalline dolomite	
eability results fo	Formation	$D_3 z_8^{3-2}$	D_3zg^{3-2}	D_3zg^{3-2}	$D_3 z g^{3-2}$	D_3zg^{3-2}	D_3zg^{3-3}	
sity and perme	Number	HX-4-5	HX-4-4	HX-4-1	HX-4-2	HX-4-3	HX-6	
inued) Porc	Profile							
TABLE 2 (Cont	Anticline							

ation zo
nt altera
l differer
s, and
formation
ore-bearing
, different
: positions,
r different
9
results
permeability
y and
Porosit
(Continued)
TABLE 2

	Permeability (x10 ⁻³ um ²)	0.04286698	0.03866378	0.004281453	0.004159733	0.003540111	0.003311688	0.003753371	0.00372007	0.005804174	ed on the following page)
ons, different ore-bearing formations, and different alteration zones.	Porosity (%)	3.56	3.74	0.92	1.06	0.91	1.12	1.2	3.59	1.98	(Continue
	Flow (mL/min)	1	6.0	0.1	0.1	0.085	0.08	0.0	60.0	0.14	
	Input pressure (Kpa)	305.2	304.9	307.2	312.4	312.2	312.8	311.9	312	312	
	Volume (mL)	0.877	0.916	0.225	0.261	0.222	0.274	0.295	0.883	0.489	
	Length (cm)	4.995	4.986	5.001	5.003	Ś	4.997	5.003	4.989	5.004	
	Diameter (cm)	2.505	2.502	2.495	2.498	2.497	2.5	2.498	2.505	2.505	
	Characteristic of mineralization – alteration	a few fractures, fracture widths of 1–2 mm	hole development, hole diameters of 1–2 mm, a few fractures, fracture widths of 0.1–0.2 mm	I	I	I	I	I	adhesive mottled yellow-brown iron-rich mud material	a few fractures, fracture widths of 0.1-1 mm, fractures in vertical core, yellow-brown iron-rich mud filling	
or different posit	Lithology	gray-white medium-coarse crystalline dolomite	gray-white medium-coarse crystalline dolomite	gray fine crystalline limestone	red-brown brecciated limestone	gray fine crystalline limestone					
ability results fo	Formation	D_3zg^{3-3}	D_3zg^{3-3}	P_2q+m	P_2q+m	$C_2 w^2$	C ₂ w ²	C ₂ w ²	C ₂ w ²	$C_2 w^{1-3}$	
sity and perme	Number	HX-7	HX-8	HD-1	HD-2	HD-3	HD-4	HD-5	HD-6	HD-8	
tinued) Poro	Profile				Surface						
TABLE 2 (Con	Anticline			-	SE flank						

Ň	
Ľ	
.0	
at	
er	
Ę	
10	
Ē	
e	
ē	
1	
0	
p	
aı	
Ś	
L L	
lat	
З	
2	
÷	
- DC	
÷.	
g	
ğ	
du la	
SLC.	
2	
Ē	
re L	
fe	
Ē	
р	
ls,	
2	
ŭ	
SI.	
8	
ţ	
Ē.	
re	
fe	
÷	
0	
ō	
4	
Ë	
'n	
ő	
1	
Ē	
j	
ac	
e	
ř	
ē	
Q	
p	
ar	
>	
sit	
ő	
P	
0	
6	
le(
75	
ti	
L L	
ů	
Ξ	
2	
ш	
H	
Z	
_	

	^o ermeability (x10 ⁻³ um ²)	0.006115073	0.006104071	0.004205538	0.114803691	0.035437093	0.010048861	0.005273637	0.036087559	n the following page)
	Porosity F (%)	2.37	3.49	1.28	6.39	3.45	4.86	4.66	3.78	(Continued o
t alteration zones.	Flow (mL/min)	0.295	0.187	0.1	2.75	0.85	0.24	0.126	0.86	
	Input pressure (Kpa)	312	310	309.3	311	310.6	310	310.5	310	
	Volume (mL)	0.29	0.665	0.314	1.567	0.847	1.193	1.14	0.924	
and different alt	Length (cm)	2.494	3.884	4.99	4.993	4.984	4.994	4.985	4.985	
ions, different ore-bearing formations, a	Diameter (cm)	2.501	2.5	2.501	2.5	2.502	2.503	2.498	2.498	
	Characteristic of mineralization – alteration	I	a few vein coarse crystalline dolomites, vein widths of 1–2 mm	I	a few fractures, fracture widths of 1–2 mm	vein calcite, vein widths of 2–6 mm	adhesive red-brown iron-rich mud material	adhesive mottled yellow-brown iron-rich mud material, medium vein coarse crystalline dolomite, vein widths of 5-6 mm	hole development, hole diameter of ~ 1 mm, stockwork dolomite, vein widths of 1–5 mm	
r different posit	Lithology	gray fine crystalline limestone	gray fine crystalline limestone	gray fine crystalline limestone	gray-white, red-brown coarse crystalline dolomite	red-brown coarse crystalline dolomite	gray-white, red-brown brecciated limestone	gray brecciated limestone	gray brecciated dolomite	
ability results fo	Formation	$C_2 w^{1-3}$	$C_2 w^{l-2}$	$C_2 w^{1-2}$	C ₂ w ¹⁻¹	Cıb	Cıb	C _I d ³	D_3zg^{3-3}	
sity and perme	Number	HD-9	HD-11	HD-13	HD-15	HD-16	HD-17	HD-19	HD-101	
tinued) Poro	Profile									-
TABLE 2 (Con	Anticline									

Permeabili (x10 ⁻³ um ²	0.009572206	0.014272898	0.007307319	0.723114436
Porosity (%)	2.59	3.63	2.1	4.82
Flow (mL/min)	0.23	0.34	0.173	17.2
Input pressure (Kpa)	311.6	310	309	308.9
Volume (mL)	0.636	0.886	0.514	1.184
Length (cm)	4.997	4.987	4.996	4.99
Diameter (cm)	2.501	2.498	2.499	2.504
Characteristic of mineralization – alteration	I	hole development, hole diameter of ~ 2 mm, stockwork dolomite, vein widths of 3-5 mm	I	hole development, hole diameter of ~2 mm, medium vein dolomite, vein widths of 1–5 mm
 Lithology	gray fine crystalline dolomite	gray brecciated dolomite	gray fine crystalline dolomite	gray brecciated dolomite
 Formation	$\mathrm{D}_3\mathrm{zg}^{3-3}$	$D_{3}zg^{3-3}$	$\mathrm{D}_3\mathrm{zg}^{3-2}$	$D_3 z g^{3-1}$
Number	HD-102	HD-103	HD-104	HD-105
 Profile				
Anticline				

TABLE 2 (Continued) Porosity and permeability results for different positions. different ore-bearing formations. and different alteration zones

frontiersin.org

1–Orebody; 2–Pyrite; 3–Calcite; 4–Sphalerite; 5–Galena; 6–Dolomite; 7–Formation; 8–Fault; 9–Alteration boundary; 10–Corrosion hole; 11–Wall-rock breccia; 12–Alteration zoning. (A)–the 32–33+1st line of 670 m of the H8 orebody in the Hexi Hongjianshan ore block; (B)–the 34+1st line of 610 m of the H8 orebody in the Hexi Hongjianshan ore block; (C)–the 18th line of the 755 m of the Q1 orebody in the Hexi Qiancengdong ore block; (D)–the 2nd line of the 670 m of the S1 orebody in the Hexi Shuilu ore block; (E)–the 116th line of the 760 m of the I-7 orebody in the Hedong ore block; (F)–the 98+1st line of the 683 m of the I-6 orebody in the Hedong ore block; (G)–the stope of the 430 m of the I-8 orebody in the Hedong ore block.

formations (C_2 w and D_3 zg) on the NW flank of the anticline were analyzed (Figure 9).

The porosity results show that in the C_2 w Formation, the percentage of unaltered rock (1.19%–2.62%; median value: 1.87%) is the lowest, followed by the orebody (1.78%–2.90%; median value: 2.51%), and the highest percentage of dolomitized rock (2.93%–5.19%; median value: 3.87%). The porosity results show that in the D₃zg Formation, the percentage of unaltered rock (1.09%–2.39%; median value: 1.83%) is the lowest, followed by dolomitized rock (3.12%–5.90%; median value: 4.31%), and the highest percentage of orebody rock (2.87%–10.08%; median value: 5.26%).

The permeability results show that for both the C_2w and D_3zg Formations, the permeability also decreases with decreasing erosion. In the C_2w Formation, the median

FIGURE 6 Geological profile of Maoping lead-zinc deposit mineralization-alteration zones field macroscopic characteristics. (A, B) is the same as Figure 4; I-IV represents various mineralization-alteration zones.

values of strong alteration, moderate alteration, weak alteration, and no alteration are 3.608, 0.219, 0.036 and 0.006, respectively; in the D_3zg Formation, the median

values of strong alteration, moderate alteration, weak alteration, and no alteration are 4.288, 0.259, 0.017 and 0.005, respectively.

FIGURE 7 Typical mineralization–alteration samples of the Maoping lead–zinc deposit and their microscopic and Macroscopic characteristics. (A)–Massive lead–zinc ore in dolomite of D_3zg formation, (B)–Massive lead–zinc ore in dolomite of C_2w formation; (C)–Massive pyrite, (D)–vein calcite, (T)–Characteristic rope, (E)–Uppletered dolomite (G)–Uppletered dolomitic limestone. (E)-Striped altered dolomite zone, (F)-Unaltered dolomite, (G)-Unaltered dolomitic limestone.

5 Discussion

5.1 The geological significance of porosity and permeability

The fault in this study is a complex four-dimensional tectonic unit composed of a fault surface and tectonite, and its tectonic deformation and fluid flow characteristics evolve over time Wibberley and Shipton. (2010). Tectonics are not only the dominant factor controlling the coupling relationship between geological bodies but also the main driving force for fluid migration; various tectonic features, such as faults, fractures, and breccia zones, provide channels for fluid migration in the subsurface (Zhai, 1996). These features can also enhance permeability, hydraulic conductivity, and hydrothermal flow, thereby increasing the mineralization potential of favorable sedimentary locations (Henderson and McCaig, 1996; Cox et al., 2001; Bauer et al., 2022). The degree of rock fragmentation, permeability, local porosity and fluid flux are different in different parts where tectonic deformation occurs (such as bends and branches of fracture zones), which leads to different mineralization types and mineralization intensities (Soden et al., 2014; Zhang, 2017).

Fluids can control the deformation process of rocks and even alter the deformation mechanism of rocks through physical changes or chemical reactions, such as hydrolysis weakening and reducing the friction coefficient between mineral particles Wintsch et al. (1995). The dissolution and precipitation of minerals during water-rock reactions can cause changes in fluid composition and affect rock properties (Wawrzyniec, 1999). The properties of the fluid are the main factors controlling microprocesses, such as the generation of cementitious materials, pore characteristics, and mineral precipitation in the host rock (Wu et al., 2015). Carbonate minerals not only metasomatically fill pores but also dolomitize and recrystallize in limestone and dolomite (Corbella et al., 2004), forming medium-coarse-grained altered dolomite, allomorphic granular mineral particles at the microscale, and calcite veins, dolomite veins, and pyrite veins, thus increasing the porosity and permeability.

Tectonic action affects the properties, migration, and precipitation of fluids, thereby controlling the alteration characteristics generated during fluid migration and changing the porosity and permeability. Different types and degrees of alteration have different porosities and permeabilities (Figures 8, 9).

Research has shown that, overall, the NW flank of the Maomaoshan anticline has greater porosities and permeabilities than the SE flank (Figure 8). The strata in the NW flank of the Maomaoshan anticline are steeply inclined and inverted (with dip angles of 55°-85°), while those in the SE flank are gently inclined (with dip angles of 20°-35°). The orebody in this deposit is controlled by interlayer faults. Under the action of tectonic forces, when the local principal compressive stress directions on both flanks are consistent, the strata in the NW flank have a large dip angle, and the compressive surface of the NW flank exhibits mainly compressive stress, as well as shear resistance. The strata in the SE flank have a small dip angle, and the compressive surface of the SE flank exhibits mainly shear resistance, followed by tensile resistance. When relative sliding occurs in interlayer faults, they are affected not only by the principal compressive stress but also by the gravity of the rock or the block itself. Both the NW flank and SE flank interlayer faults are known to have experienced relative motion. For the same rock formation, the compressive strength is generally greater than the shear strength, making it more prone to shear deformation. Therefore, the SE flank

can achieve only the minimum force required for shear resistance before relative sliding occurs, resulting in compressional-torsional faulting and stress release. The NW flank achieves not only the minimum force required for shear resistance but also the minimum force required for rock compression resistance. Not only does relative sliding occur, but it also causes damage to the rock, forming an open space. This is more conducive to fluid "penetration".

Therefore, the NW flank of the anticline is more conducive to mineralization.

5.2 Metallogenic patterns and prospecting directions

During the mineralization period, the ore-forming fluid migrated upward along the main ore-guiding structure (NEtrending Maoping sinistral compressive-torsional fault) and generally migrated from deep in the SSW region to shallow in the NNE region. Through the ore distribution structure (SN-trending Luozehe sinistral torsional fault, NE-trending Maomaoshan compound overturned anticline, NNW-trending sinistral torsional-extensional fault, and NE-trending subsequent compressional-torsional fault), the fluid reached the NEtrending interlayered sinistral compressive-torsional faults (Figure 10) (Wu et al., 2023), and hydrothermal "penetration" metasomatism occurred.

Due to the effect of the overlying clastic rock barrier, when deep-source fluids rich in Pb^{2+} , Zn^{2+} , and Ge^{2+} and other cations and basin fluids rich in reduced sulfur entered the expansion space, boiling decompression occurred in the overlying host carbonate bed under the barrier layer, and the pH increased, resulting in mineral precipitation. The medium-coarse-grained altered dolomite that formed in the early stage of fluid interaction was conducive to further water-rock interactions between the fluid and the surrounding rock, leading to the precipitation of lead and zinc minerals (acid generation) and the mutual promotion of wallrock alteration (acid consumption) (Zhang et al., 2016; Ali et al., 2017; Korges et al., 2018; Zhang et al., 2019), thus forming a zone of brecciated hot-solution dolomite lead-zinc mineralization (Figure 10).

The striped altered dolomite zone (Zones II–III) in the C_2w limestone and the pyritization + strong dolomitization zone (Zones II–III) in the D_3zg dolomite are important prospecting indicators.

FIGURE 10

Ore-control model and mineralization–alteration zones pattern of Maoping lead–zinc deposit (According to Wu et al., 2023; Han et al. 2024). 1–Integrated contact; 2–Parallel unconformity contact; 3–Compressive fault; 4–Tensile fault; 5–Torsional fault; 6–Inferred fault; 7–Anticline; 8–Coal-bearing; 9–Formation code; 10–Known orebodies; 11–Predicting orebody; 12–Denuded orebody; 13–Dolomitization and its cemented limestone breccia; 14–Ore-forming metals fluids; 15–Reducing fluids; 16–Argillaceous and sandy clastic rock; 17–zone I; 18–zone II; 19–zone III; 20–zone IV.

6 Conclusion

From the orebodies to the wallrocks in the hanging wall, the mineralization-alteration zones of the C_2w Formation range from the massive lead-zinc ore zone (I) \rightarrow lead-zinc ore veinlet + pyrite vein zone (Zone II) \rightarrow spotted pyrite + striped altered dolomite zone (Zone III) \rightarrow calcite veinlet + gray thick-layered dolomitic limestone zone (Zone IV). The mineralization-alteration zones of the D₃zg Formation range from the massive lead-zinc ore + massive pyrite zone (Zone I) \rightarrow lead-zinc ore vein + pyrite vein zone (Zone II) \rightarrow spotted pyrite + calcite stockwork/vein zone (Zone III) \rightarrow calcite veinlet + masses of dolomite + gray-white cataclastic medium-coarse dolomite zone (Zone IV).

The porosity and permeability of the NW flank of the anticline are greater than those of the SE flank. On the NW flank, the greater the degree of mineralization–alteration is, the greater the porosity and permeability are, and the porosity of the orebody is lower than that during dolomitization. Tectonic activity affects the properties, migration, and precipitation of fluids, thereby controlling the alteration characteristics generated during fluid migration and changing the porosity and permeability.

During the mineralization period, the ore-forming metal fluids migrated from the deep part of the SSW region to the shallow part of the NNE region along the ore-guiding structure (Maoping Fault). Through the ore distribution structure, depressurization boiling occurred in the open space of the NE-trending interlayer sinistral compressive-torsional faults in several ore-bearing formations, resulting in fluid precipitation and the formation of different lead-zinc mineralization zones in brecciated hot-melt dolomite.

The NW the Maomaoshan anticline is flank of prospecting area. an important The pyrite + striped altered dolomite (Zones II–III) in the $C_2 w$ zone limestone and the pyrite + strong dolomite zone (Zones II-III) in the D₃zg dolomite are important prospecting indicators.

Data availability statement

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author.

Author contributions

JW: Conceptualization, Formal Analysis, Investigation, Methodology, Software, Validation, Visualization, Writing-original draft, Writing-review and editing. RH: Conceptualization, Data curation, Funding acquisition, Investigation, Methodology, Project administration, Resources, Supervision, Validation, Writing-review and editing. YZ: Formal Analysis, Investigation, Project administration, Resources, Writing-review and editing. PW: Formal Analysis, Investigation, Methodology, Resources, Writing-review and editing. HG: Formal Analysis, Investigation, Methodology, Writing-review and editing. LW: Formal Analysis, Investigation, Writing-review and editing. GC: Investigation, Writing-review and editing. XL: Investigation, Writing-review and editing. YY: Investigation, Writing-review and editing. YM: Investigation, Writing-review and editing.

Funding

The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. This work was financed jointly by National Natural Science Foundation

References

Ali, S. H., Giurco, D., Arndt, N., Nickless, E., Brown, G., Demetriades, A., et al. (2017). Mineral supply for sustainable development requires resource governance. *Nature* 543 (7645), 367–372. doi:10.1038/nature21359

Bauer, T. E., Lynch, E. P., Sarlus, Z., Drejing-Carroll, D., Martinsson, O., Metzger, N., et al. (2022). Structural controls on iron oxide copper–gold mineralization and related alteration in a paleoproterozoic supracrustal belt: insights from the nautanen deformation zone and surroundings, northern Sweden. *Econ. Geol.* 117, 327–359. doi:10.5382/econgeo.4862

Chen, S. H., Han, R. S., Shentu, L. Y., Wu, P., Qiu, W. L., and Wen, D. X. (2016). Alteration zoning and geochemical element migration in alteration rock of Zhaotong lead-zinc deposit in northeastern Yunnan mineralization concentration Area. *J. Jilin Univ. (Earth Sci. Ed.)* 46 (3), 711–721. doi:10.13278/j.cnki. jjuese.201603109

Corbella, M., Ayora, C., and Cardellach, E. (2004). Hydrothermal mixing, carbonate dissolution and sulfide precipitation in Mississippi Valley-type deposits. *Miner. Deposita* 39, 344–357. doi:10.1007/s00126-004-0412-5

Cox, S. F., Knackstedt, M. A., and Braun, J. (2001). Principles of structural control on permeability and fluid flow in hydrothermal systems.

Han, R. S., Wu, J. B., Zhang, Y., Chen, Q., and Sun, B. T. (2024). Oblique distribution patterns and the underlying mechanical model of orebody groups controlled by structures at different scales. *Sci. Rep.* 14 (1), 4591. doi:10.1038/s41598-024-55473-z

Han, R. S., Wu, P., Wang, F., Zhou, G. M., Li, W. Y., and Qiu, W. L. (2019). Four Steps Typeore-prospecting method for deeply concealed hydrothermal ore deposits—a case study of the Maoping Zn-Pb-(Ag-Ge) deposit in Southwestern China. *Geotecton. Metallog.* 43, 246–257. doi:10.16539/j.ddgzyckx.2019.02.005

Han, R. S., Wu, P., Zhang, Y., Huang, Z. L., Wang, F., Jin, Z. G., et al. (2022). New research progresses of metallogenic theory for rich Zn-Pb-(Ag-Ge) deposits in the Sichuang-Yunnan-Guizhou Triangle (SYGT) area, southwestern Tethys. *Acta Geol. Sin.* 96, 554–573.

Han, R. S., Zhang, Y., Ye, T. Z., Chen, Q., Ren, T., Guo, Z. L., et al. (2023). An overview of the metallogeny and geological prospecting model of Mississippi valley type (MVT) lead and zinc deposits. *Geotect. Metallogenia* 47, 915–932.

Henderson, I. H. C., and McCaig, A. M. (1996). Fluid pressure and salinity variations in shear zone-related veins, central Pyrenees, France: implications for the fault-valve model. *Tectonophysics* 262, 321–348. doi:10.1016/0040-1951(96)00018-2

Hu, R. Z., Fu, S. L., Huang, Y., Zhou, M. F., Fu, S. H., Zhao, C. H., et al. (2017). The giant South China Mesozoic low-temperature metallogenic domain: reviews and a new geodynamic model. *J. Asian Earth Sci.* 137, 9–34. doi:10.1016/j.jseaes. 2016.10.016 of China (42172086, U1133602), Yunnan Major Scientific and Technological Projects (grant no. 202202AG050014), Key Projects of School–Enterprise Cooperation (2020CHYCDZB08), Yunnan Mineral Resources Prediction and Evaluation Engineering Research Center (2011), and Yunnan Provincial Geological Process and Mineral Resources Innovation Team (2012).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Korges, M., Weis, P., Lüders, V., and Laurent, O. (2018). Depressurization and boiling of a single magmatic fluid as a mechanism for tin-tungsten deposit formation. *Geology* 46 (1), 75–78. doi:10.1130/g39601.1

Qiu, L., Yan, D. P., Tang, S. L., Wang, Q., Yang, W. X., Tang, X., et al. (2016). Mesozoic geology of southwestern China: indosinian foreland overthrusting and subsequent deformation. *J. Asian Earth Sci.* 122, 91–105. doi:10.1016/j.jseaes.2016.03.006

Soden, A. M., Shipton, Z. K., Lunn, R. J., Pytharouli, S. I., Kirkpatrick, J. D., Do Nascimento, A. F., et al. (2014). Brittle structures focused on subtle crustal heterogeneities: implications for flow in fractured rocks. *J. Geol. Soc.* 171, 509–524. doi:10.1144/jgs2013-051

Wang, B. L., Li, L. H., and Zeng, P. S. (2004). Basic geophysic characteristics of Sichuan-Yunnan-Guizhou rhombic block and its relationship with endo-mineralization. *J. East China Inst. Technol.* 27 (4), 301–308.

Wawrzyniec, T. F. (1999). Dextral transcurrent deformation of the eastern margin of the Colorado Plateau (United States of America) and the mechanics of footwall uplift along the Simplon normal fault (Switzerland/Italy). The University of New Mexico.

Wen, D. X., Han, R. S., Wu, P., and He, J. J. (2014). Altered dolomite features and petro-geochemical prospecting indicators in the Huize lead-zinc deposit. *Geol. China* 41, 235–245.

Wibberley, C. A. J., and Shipton, Z. K. (2010). Fault zones: a complex issue. J. Struct. Geol. 32, 1554–1556. doi:10.1016/j.jsg.2010.10.006

Wintsch, R. P., Christoffersen, R., and Kronenberg, A. K. (1995). Fluid-rock reaction weakening of fault zones. *J. Geophys. Res. Solid Earth*, 100(B7): 13021–13032. doi:10.1029/94jb02622

Wu, H. Z., Han, R. S., Qiu, W. L., Hu, Y. Z., and Wu, P. (2015). The pore evolution of ore-bearing sandstone and its restriction to mineralization in liuju copper deposit in chuxiong basin, yunnan. *Acta Sedimentol. Sin.* 33, 512–523.

Wu, J. B., Han, R. S., Zhang, Y., Sun, B. T., Li, W. Y., Li, D. Q., et al. (2024). The fault-fold structure ore control mechanism of hydrothermal deposits——a case study of the Maoping super-large rich-Ge lead–zinc deposit in Northeastern Yunnan, China. *Ore Geol. Rev.* 168, 106039. doi:10.1016/j.oregeorev.2024.106039

Wu, J. B., Han, R. S., Zhou, G. M., Shi, Z. L., Zhang, Y., Sun, B. T., et al. (2023). Structural ore-controlling and deep prospecting direction of the Maoping Pb–Zn deposit in Northeastern Yunnan, China. *Geotect. Metallogenia* 47, 984–1001.

Wu, J. B., Pi, Q. H., Zhu, B., Hu, Y. Y., Li, G., and Wei, C. W. (2020). Late Cretaceous-Cenozoic exhumation of Northwestern Guangxi (China) and tectonic implications: evidence from apatite fission track dating. *Geochemistry* 80, 125662. doi:10.1016/j.chemer.2020.125662

Yan, D. P., Zhou, M. F., Song, H. L., Wang, X. W., and Malpas, J. (2003). Origin and tectonic significance of a mesozoic multi-layer over-thrust system within the Yangtze block (South China). *Tectonophysics* 361, 239–254. doi:10.1016/s0040-1951(02)00646-7

Zhai, Y. S. (1996). Several issues on the study of tectonic-fluid-metallogenic processes. *Earth Sci. Front.* 3, 230–236.

Zhang, R. Z. (2017). Structural control mechanism and deep mineralization prediction of the Zhaoping gold deposit belt. Beijing: China University of Geosciences.

Zhang, Y., Han, R. S., Ding, X., Wang, Y. R., and Wei, P. T. (2019). Experimental study on fluid migration mechanism related to Pb–Zn super-enrichment: implications for mineralisation mechanisms of the Pb–Zn deposits in the Sichuan–Yunnan–Guizhou, SW China. Ore Geol. Rev. 114, 103110. doi:10.1016/j.oregeorev.2019.103110

Zhang, Y., Han, R. S., and Wei, P. T. (2016). Research overview on the migration and precipitation mechanisms of lead and zinc in oreforming fluid system for carbonate-hosted lead—zinc deposits. *Geol. Rev.* 62 (1), 187-201.

Zhao, D., Han, R. S., and Ren, T. (2016). The mineralization and alteration zoning of the Le-hong lead zinc deposit, the large deposit concentration area in the Northeast of Yunnan province, China. *Bull. Mineralogy, Petrology Geochem.* 35 (6), 1258–1269.