AUTHOR=Chen Anqi , Yuan Chaoxia TITLE=Deep learning-based spatial downscaling and its application for tropical cyclone detection in the western North Pacific JOURNAL=Frontiers in Earth Science VOLUME=12 YEAR=2024 URL=https://www.frontiersin.org/journals/earth-science/articles/10.3389/feart.2024.1345714 DOI=10.3389/feart.2024.1345714 ISSN=2296-6463 ABSTRACT=

Resolution of global climate models (GCMs) significantly influences their capacity to simulate extreme weather such as tropical cyclones (TCs). However, improving the GCM resolution is computationally expensive and time-consuming, making it challenging for many research organizations worldwide. Here, we develop a downscaling model, MSG-SE-GAN, based on the Generative Adversarial Networks (GAN) together with Multiscale Gradient (MSG) technique and a Squeeze-and-Excitation (SE) Net, to achieve 10-folded downscaling. GANs consist of a generator and a discriminator network that are trained adversarially, and are often used for generating new data that resembles a given dataset. MSG enables generation and discrimination of multi-scale images within a single model. Inclusion of an attention layer of SE captures better underlying spatial structure while preserving accuracy. The MSG-SE-GAN is stable and fast converging. It outperforms traditional bilinear interpolation and other deep-learning methods such as Super-Resolution Convolutional Neural Networks (SRCNN) and MSG-GAN in downscaling low-resolution meteorological data in assessment metrics and power spectral density. The MSG-SE-GAN has been used to downscale the TC-related variables in the western North Pacific in the low-resolution GCMs of HadGEM3-GC31 and EC-Earth3P, respectively. The downscaled data show highly similar TC activities to the direct outputs of the high-resolution HadGEM3-GC31 and EC-Earth3P, respectively. These results not only suggest the validity of the MSG-SE-GAN but also indicate its possible portability among low-resolution GCMs.