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for tropical cyclone detection in
the western North Pacific
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Resolution of global climate models (GCMs) significantly influences their
capacity to simulate extreme weather such as tropical cyclones (TCs).
However, improving the GCM resolution is computationally expensive and time-
consuming, making it challenging for many research organizations worldwide.
Here, we develop a downscaling model, MSG-SE-GAN, based on the Generative
Adversarial Networks (GAN) together with Multiscale Gradient (MSG) technique
and a Squeeze-and-Excitation (SE) Net, to achieve 10-folded downscaling. GANs
consist of a generator and a discriminator network that are trained adversarially,
and are often used for generating new data that resembles a given dataset.
MSG enables generation and discrimination of multi-scale images within a
single model. Inclusion of an attention layer of SE captures better underlying
spatial structure while preserving accuracy. The MSG-SE-GAN is stable and fast
converging. It outperforms traditional bilinear interpolation and other deep-
learning methods such as Super-Resolution Convolutional Neural Networks
(SRCNN) and MSG-GAN in downscaling low-resolution meteorological data in
assessment metrics and power spectral density. The MSG-SE-GAN has been
used to downscale the TC-related variables in the western North Pacific in
the low-resolution GCMs of HadGEM3-GC31 and EC-Earth3P, respectively. The
downscaled data show highly similar TC activities to the direct outputs of the
high-resolution HadGEM3-GC31 and EC-Earth3P, respectively. These results
not only suggest the validity of the MSG-SE-GAN but also indicate its possible
portability among low-resolution GCMs.

KEYWORDS

deep learning-based downscaling method, generative adversarial networks, super-
resolution, global climate model, tropical cyclone

1 Introduction

Global climate models (GCMs) nowadays are an essential tool for research of our
climate system. Hundreds of GCMwith varying physical frameworks and complexities have
been developed worldwide (Manabe and Stouffer, 1993; Taylor et al., 2012; Eyring et al.,
2016). The literature shows that increasing the model resolution adds values to our
understanding of high-impact weather and climate (Doi et al., 2012; Demory et al., 2014;
Murakami et al., 2015; Roberts et al., 2020; Wengel et al., 2021; Liu et al., 2023). For
instance, high-resolution (HR) GCMs that can resolve oceanic mesoscale processes
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improve the simulation of El Niño/Southern Oscillation
(Wengel et al., 2021). Also, HR GCMs generally outperform low-
resolution (LR) ones in simulating the structure, spatial distribution
and interannual variations of tropical cyclones (TCs) (Wu et al.,
2012; Rathmann et al., 2014; Murakami et al., 2015; Roberts et al.,
2020; Zhang et al., 2021; Song et al., 2022; Liu et al., 2023). However,
improving GCM resolution is computationally expensive and time-
consuming, making it challenging for many research organizations.
Out of over one hundred GCMs participating the Coupled Model
Intercomparison Project Phase 6 (CMIP6; Eyring et al., 2016),
currently only 18 have a horizontal resolution equal to or less than
50 km,while the typical resolution of CMIP6models is 100–200 km.

To obtain greater detail and better representation of local
extreme events, downscaling methods have been developed
(Klein, 1948; Glahn and Lowry, 1972; Clark, 2006; Giorgi et al.,
2009). There are two common approaches to downscale the
GCM outputs. The first one is dynamical downscaling by
using the HR regional climate models latterly driven by the
GCM. The regional climate model (RCM) operates in a limited
region and thus reduces the numerical computation when
compared to the same resolution GCM. Knutson et al. (2015)
dynamically downscaled the projections of CMIP5 models under
the RCP4.5 scenario and found a more pronounced increase
in TC intensity when compared to the LR GCMs. However,
the RCM often has different model physics with the driving
GCM. This physical mismatch may lead to misrepresentation
of what the GCM intends to convey if itself is downscaled
(Tselioudis et al., 2012; Erlandsen et al., 2020). The other approach
is the empirical statistical downscaling that use the traditional
statistical techniques to establish relationship between the
historical local observations and the GCM outputs (Anandhi et al.,
2009; Hashmi et al., 2009; Chen et al., 2010; Benestad et al.,
2015; Vu et al., 2016). Villarini and Vecchi. (2012) applied a
statistical downscaling and projected that North Atlantic TC
frequency will increase in the 21st century, owing mostly
to changes in radiative forcing arising from non-greenhouse
gas causes. Emanuel (2013) also employed the statistical
downscaling approaches and estimated a 40% global increase in
the frequency of category 3 or even higher TC in the twenty-
first century in the western North Pacific (WNP). However, by
nature, the statistical relationship varies with the time period
selected to calibrate and may not apply under the climate change
(Estrada et al., 2013).

The rapid advance of artificial intelligence may provide a new
opportunity. The downscaling of GCM is analogous to image
super-resolution (SR) in computer vision that reconstructs a LR
image into a HR one. Both involve mapping between LR and HR,
bias revision after expanding resolution, and restoration of texture
details. Currently, there have been significant breakthroughs in
image SR via deep learning that greatly improves the accuracy.
Hence, deep learning-based downscaling methods have been
applied in the climate fields (Pan et al., 2019; White et al., 2019;
Baño-Medina et al., 2020; Wang et al., 2021; Harris et al., 2022).
Vandal et al. (2017) migrated from SR to downscaling for the
first time by stacking multiple SR Convolutional Neural Networks
(SRCNN) to generate HR climate projections. It is worth noting
that the stacking process is a progressive growing process, i.e., the
output of one SRCNN is the input of the next SRCNN. However,

CNNs are primarily constrained by pixel-level loss functions such
as mean squared errors (MSE), resulting in generated images that
tend to be smoother. This is probably because the lower MSE in
the CNN models can be contributed by the lower variance rather
than bias. Stengel et al. (2020) used the SR Generative Adversarial
Networks (SRGAN) model to downscale climatological wind and
solar data to a local scale where renewable energy resources can
be evaluated. Compared to CNNs that are primarily used for
image recognition and classification tasks, GANs are designed for
generative tasks, meaning they can generate new data that resembles
a given dataset. GANs consist of a generator and a discriminator
network that are trained adversarially together in a zero-sum
game to generate more realistic and high-quality images. Such
an approach has been highly successful in SR (Ledig et al., 2016).
However, the traditional GANs have the disadvantages of being
unstable during training, difficult to adapt to different datasets, and
often only applicable to one scale (Chen et al., 2018; Wang et al.,
2019). Karras et al. (2018) proposed a new training methodology:
Progressive Growing of GANs (ProGAN). As the name suggests,
ProGAN starts with a LR image and learns it well. It then
increases the resolution and gradually generates HR images. The
advantage of ProGAN lies in its ability to progressively increase the
complexity of the network, thereby achieving higher-quality image
generation and meanwhile tackling the training instability with
GAN. However, ProGAN can be hard to train since multiple models
add hyperparameters and require high-performance computing
resources and long training times. Thus, Karnewar and Wang
(2020) proposed the Multi-Scale Gradients for GANs (MSG-GAN)
model to generate and discriminate multi-scale images within a
single model. MSG-GAN allows the propagation of gradient flow at
multiple scales to resolve mode collapse and training instability and
exhibits stable convergence across different image datasets. It can
encompass different scales, resolutions and types of loss functions,
and balance image quality at different scales, thereby achieving
gradually SR.

The preceding studies have shown that the GAN excels CNN at
generating high-quality images. Furthermore, the concept of gradual
up-sampling shows effectiveness and stability. Hence, MSG-GAN
stands out as an ideal model to downscale GCMs for its ability
to stably synthesis HR images and the advantage of adapting to
different datasets. Therefore, in this study, we first modify MEG-
GAN and then improve it toMSG-SE-GANmodel by incorporating
a Squeeze-and-Excitation Net (SENet, Hu et al., 2018) to the
generator of MSG-GAN. The performances of these two models
are then compared with the SRCNN and bilinear interpolation (BI)
models. In addition, the downscaled TC-related variables from the
LR GCM by different downscaling models are used to detect TCs
in the WNP. The resultant TC activities are compared with those
detected from the direct outputs of the corresponding HR GCM
by the same TC detecting algorithm. Hence, our research not only
provides a new approach based on deep learning to downscale the
LR GCMs, but also exhibits that the downscaled meteorological
variables can be synthesized for further application such as the
TC detection. The structure of this paper is organized as follows.
Section 2 introduces methodology, including the algorithms, data,
and experiment design. Section 3 presents case studies and results.
Conclusions and discussion are provided in Section 4.
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FIGURE 1
Architecture of the and MSG-GAN and MSG-SE-GAN model. The distinction between MSG-GAN is that it includes an additional SELayer. Gray arrows
indicate the propagation of gradient flow at mid-level resolutions. Above each volume block represents the horizontal pixels × vertical pixels ×
channels.

2 Data and methods

2.1 Dataset construction

The PRocess-based climate sIMulation: AdVances in high
resolution modelling and European climate Risk Assessment
(PRIMAVERA) project, which is also part of the CMIP6
High Resolution Model Intercomparison Project (HighResMIP;
Haarsma et al., 2016), is an initiative by European Union Horizon
2020s (Roberts et al., 2020). The project employs GCMs driven
by strict protocols at both standard and higher resolutions
to explore the added values of global modeling and HR in
our understanding of high-impact weather and climate events.
Participants adhere to a common protocol designed to control the
model configurations and enable exploration of mere impacts of
model resolution on climate simulations. This project provides the
precious opportunity for us to downscale the LR GCM outputs
and quantitatively compare with its corresponding HR version.
Here, we select the HadGEM3-GC31 models (Williams et al.,
2018) for the HR (50 km) version named as HadGEM3-GC31-
HM and LR (250 km) version named as HadGEM3-GC31-LM
show large differences in reproducing TCs in the WNP. Another
pair of EC-Earth3p models (Haarsma et al., 2020) with the HR
(50 km) version named as EC-Earth3p-HR and the LR (100 km)
named as standard EC-Earth3p is also selected to assess whether
the MSG-GAN and MSG-SE-GAN trained, tested and evaluated by
the HadGEM31-GC31 models are able to successfully downscale
another independent LR GCM and have the potential portability
among the LR GCMs.

The study area is the WNP (0–60°N, 90°E-157.5°W). The 6-
hourly data during the TC seasons (June-November) spanning from
1980 to 2014 are used.The variables include sea level pressure (SLP),

850 hPa wind (Ua, Va), vertical mean temperature between 500
and 250 hPa (Ta), and near surface wind (Uas, Vas). During the
training and testing periods of downscaling models, the HR data
from the HadGEM3-GC31-HR are divided into two subsets: the
training set and the validation set, which correspond to 80% (first
28 years) and 20% (last 7 years) of the data length, respectively. To
adapt to the input size of different datasets and to meet architectural
requirements, the HR data is first interpolated to the LR size for
training, where the HR is 321×257 pixels and the LR is 31×25
pixels. The ground truth for the discriminator is generated from
321×257 (HR data) by applying bilinear interpolation to different
middle-size images: 240×192, 180×144, 120×96, 60×48, and 31×25.
For data preprocessing, the choice of normalization method must
be based on scenarios and tasks. Unlike previous downscaling and
computer vision SR, meteorological variables must preserve the
temporal continuity in time, and the common normalization on the
grid points is not desirable. Therefore, in this study, the training and
validation sets were normalized in the range [-1,1] by computing
their maximum and minimum values.

2.2 Model construction

In this study, we modify the MSG-GAN model and further
improve it to the MSG-SE-GAN model, an enhanced version of
the MSG-GAN model designed for downscaling in a climate-
related context.

2.2.1 MSG-GAN
The architecture of MSG-GAN in this paper consists of

a discriminator and a generator with multi-scale connections
(Figure 1). The generator (G) maps the LR to higher resolutions
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FIGURE 2
(A) SELayer schematic. Squeeze the 31×25 feature map to 1×1. Excitation predicts the importance of 512 channels with different colors representing
the significance of each channel. Scale is a weighted process. (B) Ta variable with middle-size images of 31×25 and 60×48. The inclusion of the
SELayer allows MSG-SE-GAN to better understand the underlying spatial structure and enhances the predictions.

progressively and outputs each resolution image. We simply
used a 1×1 convolutional layer, which converts the intermediate
convolutional activation volume into images. Multi-scale
connections allow the discriminator (D) to check not only the
highest resolution (321×257) of the generator but also the different
mid-level resolutions, i.e., 240×192, 180×144, 120×96, 60×48, and
31×25. Intuitively, the discriminator is a function of multiple scale
ground truths and outputs of the generator, allowing gradients to
flow at each resolution simultaneously.

Please note that the original MSG-GAN uses a 1×1 noise input
for the synthesis of 3-channel, HR human faces, whereas this study
employs 1-channel, LR input data (31×25) that needs downscaling.
As mentioned in the introduction, the MSG-GAN combines GAN
models to generate state-of-the-art results while addressing mode
collapse and training instability. Furthermore, it can be stable on

different datasets of different sizes and resolutions (Karnewar and
Wang, 2020).

2.2.2 MSG-SE-GAN
MSG-SE-GAN is constructed by incorporating a Squeeze-and-

Excitation Net (SENet, Hu et al., 2018) into the generator of MSG-
GAN. When the MSG-GAN is employed for downscaling, the
challenge in the initial block of the generator arises from its struggle
to learn the LR-size from 1-channel to the 512-channel learned
feature maps, whereas the original experiments with 1-pixel noisy
inputs do not require as much emphasis on feature channels.
SENet is an efficient channel attention mechanism in computer
vision (Guo et al., 2022). In this paper, we refer to this component
as the SELayer, which mainly consists of three steps: squeeze,
excitation, and scale (Figure 2A). In practice, the encoder encodes
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each feature channel as a separate code and assigns different weights
to them during decoding, achieving adaptive recalibration of the
features in the channel dimension. The SELayer concentrates on the
relationships between channels, enabling themodel to implicitly and
adaptively predict the potential key features. This resolves the issue
of the initial block of the generator’s struggle to learn the underlying
feature within the meteorological data.

The addition of the SELayer only slightly increases the model’s
parameters but significantly improves the prediction accuracy.
Taking the Ta variable as an example, Figure 2B depicts two middle-
size images of Ta generated byMSG-GANandMSG-SE-GANon the
validation set for comparison. It is obvious that, due to the difficulty
of learning directly from 1-channel to 512-channel, the MSG-GAN
cannot learn the underlying features of the imagewell.TheMSG-SE-
GAN, on the other hand, has substantially enhanced its performance
in the mid-level resolutions and enhanced its understanding of
underlying spatial structure of Ta. Therefore, the MSG-GAN is used
as a baseline and participates in the validation and evaluation as a
downscaling model along with the MSG-SE-GAN.

2.3 Training and validation settings

2.3.1 Training configuration
In our setting, the loss function for training MSG-GAN and

MSG-SE-GAN is WGAN-GP (Wasserstein GAN with gradient
penalty, Gulrajani et al., 2017). Training is a concept of adversarial
learning, as it lies in the rivalry between two neural networks.
In practice, we constrain the model through the WGAN-GP loss
function, just like in a minimax game. For generator, G tries to
minimize the Wasserstein distance between a real and a generated
distribution. Conversely, for discriminators, D tries to maximize
it to distinguish between ground truth and generated data. The
WGAN-GP loss functions, as employed in this paper, take the form:

LD = E ̃x∼Pg[D( ̃x)] −Ex∼Pr[D(x)] + λEx̂∼Px̂[(‖∇x̂D(x̂)‖2 − 1)
2] (1)

LG = −E ̃x∼Pg[D( ̃x)] (2)

Where LD and LG are the loss functions for the discriminator
and the generator, respectively, with a gradient penalty weight γ =10
(Gulrajani et al., 2017). Pr is the real data distribution and Pg is the
generated distribution implicitly define by ̃x = G(z), where z is LR
input taken in by the generator. The x̂ is randomly sampled from the
real and generated data:

x̂ = εx+ (1− ε) ̃x,ε ∼ u(0,1) (3)

Since the discriminator is a function of multiple input images
generated by the generator, we modify the gradient penalty to be
the average of the penalties over each input. Each convolution is
followed by leaky rectified linear unit (LReLU) activation functions
with α = 0.2 (Maas et al., 2013). The Adam optimizer (Kingma and
Ba, 2014) is used for both the generator and the discriminator, with
learning rates of 0.003 and 0.001. Training stabilization technologies
such as Pixel Normalization (PixNorm) and Mini-batch Standard
Deviations (MinBatchStdDev, Karras et al., 2019) are implemented
within the model. PixNorm is embedded in the generator after each
convolution to normalize the feature vectors. The MinibatchStdDev

enhances the discriminator’s discriminative ability, allowing it to
distinguish between real and generated samples more effectively.
The model is trained with a batch size of 16 for 1,260 batches. The
generator model weights are saved as checkpoints every 200 batches
to facilitate model selection for validation purposes. Training a
single model for a variable takes approximately 3 days on a single
NVIDIA A100 GPU.

2.3.2 Assessment metric
This section describes the metrics used in this paper to validate

the performance of the network.

• Peak to Signal Noise Ratio (PSNR)

PSNR = 10 ∙ log10(
MAX2

MSE
)[dB] (4)

Where MAX is the maximum value in the image and MSE is
the mean square error of the downscaling image. A higher PSNR
value indicates lower distortion. It is a widely used objective image
assessment metric based on the error between corresponding pixels.

• Structural Similarity Index Metric (SSIM)

SSIM(X,Y) =
(2μxμy +C1) ∙ (2σxy +C2)

(μ2
x + μ

2
y +C1) ∙ (σ2

x + σ2
y +C2)

(5)

where X and Y represent the generated and the real sample,
respectively. μ is the mean, σ is the covariance between X and Y,
C1, C2, C3 = 0.5×C2, are constant values. SSIM is a metric for
measuring the structural similarity between two images, yielding a
value between 0 and 1 (Wang et al., 2004). Higher values indicate
greater similarity between the two images. It calculates the difference
between the images not only by considering corresponding pixels
but also by taking into account the area of pixels around that
position.

• Fréchet Inception Distance (FID)

FID = ‖μr − μg‖
2 +Tr(∑ r+∑g− 2(∑ r∑g)

1
2 ) (6)

Where μr and μg represents the feature means of real and
generated images, respectively, while ∑r and ∑g denotes the
covariance matrices of real and generated images. FID is a metric
used to measure the distance between the distributions of real and
generated images (Heusel et al., 2017). It quantifies the similarity
between generated and real images by extracting feature vectors
using a pre-trained Inception network (Simonyan and Zisserman,
2014) and then calculating the Fréchet distance between the two
sets of feature vectors. FID is a commonly used metric in the field
of GANs; a lower value indicates that the generated distribution is
more similar to the real distribution.

2.3.3 Downscaling model selection
Figure 3 compares the stability of MSG-GAN and MSG-SE-

GAN during training for the Ta variable on the validation set
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FIGURE 3
The variation of MSE, PSNR, and SSIM for the Ta variable highest resolution on the validation set as training iterations progress.

(results for the other variables are comparable). Both models
exhibit rapid decreases or increases in all metrics during the early
stages, and converge at approximately the 35th epoch, indicating
that the mapping learning process is very rapid and efficient.
The remaining training time is used to strengthen the model’s
ability to perceive complex details, geometric structures, and high-
frequency details. Though simultaneous training of the model
at multiple scale layers slows the speed of each epoch, fewer
epochs are required to achieve convergence. It is noteworthy
that MSG-SE-GAN outperforms MSG-GAN across all metrics.
Finally, we select an optimal model by referencing the synthesized
PSNR×SSIM×FID-1 score, determining whether the model’s metrics
have converged, and manually inspecting checkpoint models on the
validation set.

2.4 Tropical cyclone tracking algorithm

A Geophysical Fluid Dynamics Laboratory (GFDL) tropical
cyclone tracking algorithm named TSTORMS was used to detect
TCs in this paper (http://www.gfdl.noaa.gov/tstorms). The specific
settings are as follows. (1) The local minimum in SLP is searched
and located by fitting a biquadratic function to the SLP data. If a
closed contour with a radius of 3,000 km contains both a minimum
SLP and a maximum vorticity (greater than 1.6×10−4 s-1), the center
of the low is retained as a candidate cyclone. The maximum 10-m
wind speedwithin the closed contours is considered to be the storm’s
maximum wind speed at that time. (2) The warm core is computed
as the mean atmospheric temperature between 500 and 250 hPa.
The maximum mean atmospheric temperature must be at least 1 °C
higher than the surrounding grid points, with its coordinates located

within 1° of the low-pressure center. (3) At each 6-hourly time step,
the storm center is linked to a trajectory by taking a low-pressure
center at time T0 and considering the same cyclone at time T1 if the
distance is less than 1,600 km. (4) A TC and resultant trajectories
must satisfy the conditions mentioned above for at least 3 days, with
at least 24 consecutive hours of warm core and maximum wind
speeds exceeding 17 m s-1.

3 Results

3.1 Model validation

After training the MSG-GAN and MSG-SE-GAN models for
all variables, in this subsection, we include bilinear interpolation
and SRCNN model for the inter-model comparison. Bilinear
interpolation is widely adopted in climate research owing to its
simplicity and computational efficiency. The SRCNN represents a
deep learning model employed for the SR reconstruction of images.
Dong et al. (2015) claimed that the model has the capability to
effectively improve the resolution of an image while maintaining the
clarity of the image details.The SRCNN is also often used to compare
the results of the models (Shi et al., 2016; Kim et al., 2021).

Table 1 compares quantitatively the scores of assessmentmetrics
for the Ta variable obtained by different downscaling models,
including PSNR, SSIM, FID and PSNR×SSIM×FID-1. Results for
other meteorological variables are highly comparable. In general,
a PSNR value in the range of 30–40 dB typically indicates good
image quality (with noticeable but acceptable distortion), while
values exceeding 40 dB suggest excellent image quality (close to
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TABLE 1 Metric scores obtained by different models on validation set for Ta variable.

PSNR SSIM FID PSNR×SSIM×FID-1

BI 34.29578258 0.7518667 1.2221376 21.098980

SRCNN 35.04385640 0.7531256 1.0281049 25.670946

MSG-GAN 36.38404276 0.7812177 0.0531707 534.577468

MSG-SE-GAN 41.34974887 0.8064337 0.0555756 600.008474

Note. The best score for each metric is highlighted in bold.

the original image). The MSG-SE-GAN is the only model that
surpasses 40 dB, well ahead of other models. The MSG-GAN also
outperforms bilinear interpolation and the SRCNN model. The
PSNR score is limited for it only considers the difference between the
corresponding pixels. As a solution to this limitation, the SSIM score
is utilized to quantify the structural similarity between two images.
The highest SSIM score is still obtained by the MSG-SE-GAN,
followed by theMSG-GAN.The FID score is widely used to evaluate
generative models because of its consistency with human inspection
and sensitivity to small changes in the real distribution. It is used to
quantify the distribution disparity between the real and generated
images. The FID score of MSG-SE-GAN is only slightly lower than
that of the MSG-GAN model. Both the MSG-GAN and MSG-
SE-GAN models significantly outperform other models, producing
distributions that closely resemble the real data. It is noteworthy that
all downscaling models based on deep learning outperform bilinear
interpolation across all metrics. Furthermore, the MSG-SE-GAN
model has the highest synthesized score of PSNR×SSIM×FID-1.

3.2 Power spectral density

A key indicator for describing the energy distribution of data
at different spatial frequencies is power spectral density (PSD).
Higher spatial frequencies reflect more rapid and localized changes,
and higher power spectral density indicates greater energy at the
corresponding spatial frequencies. Since the wind shows much
higher spatial variations than Ta, the PSD analyses is conducted for
the variable of 850 hPa wind (√Ua2 +Va2) and shown in Figure 4.
The results for the near surface wind are highly similar (figure
not shown).

The MSG-GAN and the MSG-SE-GAN models are closer to the
power spectral density of true data at higher frequencies, suggesting
that both models have the ability to capture high-frequency
information in the wind fields. However, bilinear interpolation and
SRCNN fall off significantly at much finer scales. This is probably
because the multi-scale technique learns the distribution of the data
at each scale, but bilinear interpolation is unable to do so. While the
SRCNN may perform better than bilinear interpolation, it still does
not exhibit the capability to learn the distribution at various scales
effectively. Interestingly, the MSG-GAN does not perform as well
as the MSG-SE-GAN at lower frequencies; the PSD of MSG-GAN
is significantly lower than that of MSG-SE-GAN and ground true
data at spatial frequencies of 20–60 for the MSG-GAN lacks details
at larger scales. In sum, the MSG-SE-GAN demonstrates superior

FIGURE 4
Power spectral density for 850 hPa wind on the validation set.

capability in capturing underlying spatial structures and contains
more information than MSG-GAN at larger scales, which can be
attributed to the inclusion of the SENet model.

3.3 Examples of the downscaled fields for
all variables

Since the MSG-GAN and MSG-SE-GAN are much better
than bilinear interpolation and SRCNN in term of downscaling
meteorological data, hereafter, the comparison is conducted mainly
between the MSG-GAN and MSG-SE-GAN models for simplicity.
We visualize the downscaled results of theMSG-GAN andMSG-SE-
GAN models for TC-related variables, including sea level pressure,
vertical mean temperature between 500 and 250 hPa, wind at
850 hPa, and near-surface wind, which allows for a more intuitive
assessment of the models’ performance.

Here, we randomly select 2 TCs; one represents theweak TC and
the other the strong TC (Figures 5, 6). The black box in Figures 5, 6
highlights the low-pressure center of the TCs. For the case of weak
TC, it is evident that the TC intensity in the LR does not reach the
level observed in the HR, and the location of the lowest pressure
exhibits an east-northeastern offset (Figure 5A). However, in the
downscaled results from MSG-GAN and MSG-SE-GAN, there is
a significant enhancement of the TC’s intensity (Figures 5B–D).
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FIGURE 5
(A–D) SLP (units: hPa), (E–H) Ta (units: (C), (I–L) 850 hPa wind (vectors; units: m s-1) and vorticity (shaded; units: 10–4 s-1) and (M–P) near-surface wind
(vectors; units: m s-1) generated by bilinear interpolation, MSG-GAN and MSG-SE-GAN models compared with their HR ground truth. The black box
highlights the presence of a weak TC.

Particularly in the MSG-SE-GAN model, the position, structure,
and, notably, intensity of the TC’s low-pressure center almost
perfectly match the real HR (Figures 5B,D). The vertical mean
temperature between 500 and 250 hPa at the same moment as
the sea level pressure highlights the warm core structure of the
TC. In the LR, there is no evident temperature maximum at the
location of the TC center (Figure 5E), whereas both the real HR
image and the downscaled HR images generated by the MSG-
GAN and MSG-SE-GAN models exhibit the warm core structure
of the TC with similar intensities. As for 850 hPa wind field and
near-surface wind, we need to calculate the distance from the
low-pressure center to the 850 hPa vorticity maximum in the TC
detection process, and thus the 850 hPa wind field together with
the vorticity field are shown in Figure 5I–L. There is a noticeable
deviation of the vorticity maximum in the LR cyclonic structure
from the HR ground truth (Figures 5G,I). The MSG-GAN model
shows some improvement in capturing the cyclonic structure, with
the vorticity maximum slightly westward of the HR ground truth
(Figures 5G, K). However, the downscaled results from the MSG-
SE-GAN model almost perfectly reproduce the cyclonic structure
of the HR ground truth (Figures 5G, L). For the near-surface wind,
the HR ground truth and the downscaled HR generated by the
models are closer in terms of wind speed and structure. Particularly
noteworthy is that both the location and amplitude of MSG-SE-

GAN’s maximum TC wind speed are closer to the ground truth
than those of MSG-GAN; the maximum wind speed of MSG-
SE-GAN reaches the HR ground truth speed of over 20 m s−1

(Figures 5N, P).
Similarly, for the case of a strong TC, the MSG-SE-GAN also

captures better the TC structure similated in the HR ground truth
than other downscaling models (Figure 6), and we do not elaborate
the detailed superiority for sake of conciseness. From an overall
perspective, the models have produced downscaled results that are
more detailed and visually realistic.The downscaled results ofMSG-
GAN and MSG-SE-GAN exhibit better consistency with the HR
ground truth. In particular, the MSG-SE-GAN model demonstrates
an advantage over the MSG-GAN model in preserving details
and accuracy.

3.4 Application of HR TC tracking

The above results indicate that MSG-GAN and MSG-SE-
GAN are effective in downscaling the TC-related variables, and
their performance surpasses that of linear interpolation and
the SRCNN model. Therefore, we apply the two models to
downscale the outputs of HadGEM3-GC31-LM and compare
the TC activities in the downscaling models to those directly
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FIGURE 6
The same as in Figure 5, but with the presence of a strong TC.

simulated by the HadGEM3-GC31-HM to assess synthesized
effects of the downscaling. We apply the TC tracking
algorithm named TSTORMS to detect TCs as mentioned in
section 2.4.

Figures 7A–D illustrates the climatological TC track density
in the WNP based on outputs of HadGEM3-GC31-LM, MSG-
GAN, MSG-SE-GAN and HadGEM3-GC31-HM by the same TC
detection algorithm TSTORMS. It is apparent that even after
applying bilinear interpolation to downscale HadGEM3-GC31-
LM to HR data, the TC track density in the LR GCM is
significantly lower than those in its HR version (Figures 7A, B).
In contrast, the downscaled results from both the MSG-GAN and
MSG-SE-GAN models substantially increase the number of TC
(Figures 7B, D). Particularly, the climatological TC track density
in the MSG-SE-GAN model closely resembles that of HadGEM3-
GC31-HM, theMSG-SE-GAN shows the highest pattern correlation
coefficient (PCC) of 0.88 and the lowest the root mean square error
(RMSE) of 4.87.

To investigate the TC intensity, the joint probability density
function (PDF) of the TC minimum sea level pressure (MSLP)
and the latitude where the TCs achieve the MSLP is also presented
in Figures 7E–H. The joint PDF based on the HadGEM3-GC31-
HM suggests that the most of TCs peak around 20°N (Figure 7F).
However, the HadGEM3-GC31-LM differs dramatically from its
HR version by simulating generally weaker TCs, fewer cases of
strong TCs, higher mean peaking latitude, and more cases of

TCs peaking near the equator (Figures 7E,F). After applying the
MSG-GAN, the PDF becomes closer to the HadGEM3-GC31-
HM by increasing the cases of strong TCs between 20˚-30˚N
(Figures 7F,G). The MSG-SE-GAN model proposed in this study
produce the most similar PDF to that of HadGEM3-GC31-HM by
further reducing the cases of TCs peaking between 0 and 10˚N
(Figures 7F,H).

Finally, we testy portability of our downscaling models to
other independent LR GCMs. We have applied the MSG-GAN
and MSG-SE-GAN models trained and tested by the HadGEM3-
GC31 models to downscale the outputs of standard EC-Earth3P
(100 km). Also, we compare the TC activities in the downscaling
models to those directly simulated by the EC-Earth3P-HR (50 km)
by using the same TC detection algorithm TSTORMS. As shown
in Figures 8A,B, the climatological TC track density in the WNP
in the standard EC-Earth3P is substantially lower than that in
the EC-Earth3P-HR even after the bilinear interpolation. Both of
the MSG-GAN and MSG-SE-GAN can substantially improve the
TC track simulation, with the MSG-SE-GAN having the most
similar track density as the EC-Earth3P-HR, with the highest
PCCs of 0.74 and lowest RMSE of 4.8 (Figures 8B,D). Similarly,
the joint PDF of the TC MSLP and its occurring latitudes are
compared (Figures 8E–H). It is not surprising to find that the
MSG-GAN simulates the PDF more similar to the EC-Earth3P-HR
than the standard EC-Earth3P by increasing the TC intensity and
reducing the number of TC peaking at high latitudes (Figures 8F,G).
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FIGURE 7
Climatological TC track density (1°×1°) and the Joint PDF of the TC MSLP and its latitudes generated by (C, G) MSG-GAN and (D, H) MSG-SE-GAN
models, compared with that of (A, E) HadGEM3-GC31-LM (bilinear interpolated) and (B, F) HadGEM3-GC31-HM model data in the western North
Pacific during July-October from 1980 to 2014. The upper right values represent the PCCs and RMSEs between each model and HadGEM3-GC31-HM
(A, C, D). In the Joint PDF, TC density is shaded (units: number of TC per grid), with each dot representing a TC.

Also, the PDF of MSG-SE-GAN shows the closest pattern to
that of the EC-Earth3P-HR by further reducing the cases of TC
peaking between 0 and 10˚N (Figures 8F,H). The above analysis

indicates that the MSG-SE-GAN shows the highest skills in
downscaling the LR GCMs and has the portability among the
LR GCMs.
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FIGURE 8
Climatological TC track density (1°×1°) and the Joint PDF of the TC MSLP and its latitudes generated by (C, G) MSG-GAN and (D, H) MSG-SE-GAN
models, compared with that of (A, E) standard EC-Earth3P (bilinear interpolated) and (B, F) EC-Earth3P-HR model data in the western North Pacific
during July-October from 1980 to 2014. The upper right values represent the PCCs and RMSEs between each model and EC-Earth3P-HR (A, D). In the
Joint PDF, TC density is shaded (units: number of TC per grid), with each dot representing a TC.

4 Conclusion and discussion

In this study, we have adapted the MSG-GAN model for
downscalingmeteorological variables and further improved it to the

MSG-SE-GAN model by incorporating the SELayer. Both models
are capable of downscaling the input LR data by a factor of 10. We
selected the HR version of HadGEM3-GC31 model to train and test
our downscaling models. The results demonstrate that compared
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to the MSG-GAN, the MSG-SE-GAN can capture the underlying
spatial structure more accurately. It also shows faster convergence
as reflected by the maximum resolution MSE, PSNR, and SSIM
metrics on the validation dataset, which signifies its efficacy in the
learning process. Quantitative assessments using metrics including
PSNR, SSIM, FID and the synthesized PSNR×SSIM×FID-1 confirm
the superiority of MSG-SE-GAN over bilinear interpolation, the
SRCNN and the MSG-GAN. Power spectral analysis clearly reveals
the inclusion of the SELayer in the MSG-SE-GAN model leads to
better capture of underlying spatial structures than the MSG-GAN.
Moreover, through visualization, we observed that the MSG-SE-
GAN demonstrate an advantage in preserving details and accuracy
of TC-related variables.

Based on the success of MSG-SE-GAN on downscaling the
LR data that are coarsely interpolated from the HadGEM3-GC31-
HM, we utilize the MSG-SE-GAN to downscale the real outputs of
HadGEM3-GC31-LM and compare the TC activities in the MSG-
SE-GAN to those in the HadGEM3-GC31-HM and the MSG-GAN
model. The MSG-SE-GAN simulates most similar patterns of TC
track density and joint PDF of TC peaking intensity and latitude
with the HadGEM3-GC31-HM. In addition, we apply the MSG-
SE-GAN to downscale the outputs of another independent LR
GCM, the standard EC-Earth3P. It also simulates very similar TC
activities with the corresponding HR GCM, the EC-Earth3P-HR.
This suggests possible utility of MSG-SE-GAN to downscale a broad
range of LR GCMs.

In this study, we aim to develop a deep learning-based statistical
model to downscale the LR GCMs to mimic the performance
of their corresponding HR GCMs rather than the observations.
In this regard, the MSG-SE-GAN serves as a pseudo HR GCM
that can increase the resolution of LR GCM outputs as if the
resolutions of the LR GCMs themselves are increased. This is
particularly important for the study of local extreme events under
global warming because most CMIP6 models only provide the LR
climate change projections. Here, the inputs of the model in this
study are single variables, and our emphasis is on learning the
mapping relationship between LR and HR to pursue univariate
downscaling accuracy as much as possible. Since these variables,
such as the zonal wind, meridional wind and air temperature, are
physically constrained by Navier-Stokes equations in the GCMs,
it would be better to further develop our model in our future
study to enable the inputs of multiple variables and simultaneously
downscale them, by which the physical constraint among the
variables can be retained to some extent. In addition, we only
use HadGEM3-GC31-HM outputs to train the downscaling model
here. Considering the PRIMAVERA project has six pairs of
HR and LR GCMs, we will include the outputs of different
GCMs to train the model to improve the model portability.
Based on the improved MSG-SE-GAN, we will downscale the

LR climate change simulation and explore possible consensus
among the CMIP6 models on the TC changes under different
warming scenarios.
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