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Extreme weather events and global climate change have exacerbated the
problem of evaporation rates. Thus, accurately predicting soil moisture
evaporation rates affecting soil cracking becomes crucial. However, less
is known about how novel feature engineering techniques and machine-
learning predictions may account for estimating the soil moisture evaporation
rate. This research focuses on predicting the evaporation rate of soil
using machine learning (ML) models. The dataset comprised twenty-one
ground-based parameters, including temperature, humidity, and soil-related
features, used as features to predict evaporation potential. To tackle the
high number of features and potential uncorrelated features, a novel guided
backpropagation-based feature selection technique was developed to rank the
most relevant features. The top-10 features, highly correlated with evaporation
rate, were selected for ML model input, alongside the top-5 and all features.
Several ML models, including multiple regression (MR), K-nearest neighbor
(KNN), multilayer perceptron (MLP), sequential minimal optimization regression
(SMOreg), random forest (RF), and a novel K-NearestOracles (KNORA) ensemble,
were constructed for the purpose of forecasting the evaporation rate. The
average error of these models was assessed using the root mean squared
error (RMSE). Experimental results showed that the KNORA ensemble model
performed the best, achieving a 7.54 mg/h RMSE in testing with the top-10
features. MLP was followed closely by a 25.1 mg/h RMSE in the same testing.
An empirical model using all features showed a higher RMSE of 1319.1 mg/h,
indicating the superiority of the ML models for accurate evaporation rate
predictions. We highlight the implications of our results for climate-induced soil
cracking in the real world.
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1 Introduction

In recent years, the frequency of extreme weather events has
increased, exacerbated by global climate change, further aggravating
the problem of evaporation rates (Robinson and Vahedifard, 2016).
The evaporation rate is a complex phenomenon resulting from
the interplay between soil and environmental factors (Morris et al.,
1992). Soils are prone to drying due to atmospheric conditions like
sunlight, airflow, temperature, radiation, andhumidity. Additionally,
human activities such as underground conduit installation, buried
electrical cables, land burning, and improper disposal of toxic
waste near the surface can contribute to soil desiccation. When
soil loses moisture, it undergoes shrinkage, particularly evident
in fine-grained soils (Kodikara et al., 1999). Constrained shrinkage
leads to the development of internal stress within the soil, and
if these stresses exceed the soil’s tensile strength, it results in
soil cracking (Tao et al., 2005). These cracks, whether isolated
or coalesced, negatively impact the hydraulic and mechanical
properties of near-surface soils, making them vital factors in
assessing various geotechnical hazards (Morris et al., 1992). The
cracking of fine-grained soils has significant implications for
construction activities, including hydraulic barriers, dams, clay
liners, excavations, highway embankments, earth slopes, landfill top
covers, and bottom seals (Yesiller et al., 2000).

The complex phenomenon of cracking in fine-grained soils may
primarily be influenced by physical, chemical, and mineralogical
characteristics. These include clay content, soil mineralogy, wetting
and drying rates, cation exchange capacity, starting water content,
density, temperature, and humidity (Uday et al., 2015). Extensive
experimental studies have been conducted in this area to explore
the cracking process by regulating the environmental variables as
well as monitoring and recording the major crack parameters (Uday
and Singh, 2012). Evaporation characteristics of the soil are used to
determine the cracking potential, i.e., another essential parameter
to map the response of the behavior of the soil under differing
moisture conditions (Uday and Singh, 2013). Such an analysis is
pivotal for analyzing the unsaturated behavior of soil, soil-root
micromechanical properties, and erosion of the soil at the surface
(Uday and Singh, 2013). In this context, Uday and Singh (2013)
demonstrated the effect of exposure circumstances (temperature and
humidity) and soil-specific characteristics (soil type and specimen
geometry) on evaporation rate, which in turn influences fine-
grained soil cracking (Uday and Singh, 2013). Furthermore, an
empirical relationship based on these parameters was proposed to
facilitate the computation of the evaporation rate from themeasured
parameters. Various Machine Learning (ML) models also have been
developed to predict and detect the formation of cracks in the
soils (Andrushia et al., 2022; Xu et al., 2022). The results of these
ML models can be compared to existing analytic methods that are
grounded in geotechnical engineering. Fine-grained soil cracking
can also be controlled by controlling evaporation rates using
appropriate materials (Naresh and Uday, 2018; Wanare et al., 2022).

In the literature related to ML in the geotechnical field,
several ML models have been developed to investigate the
influence of geotechnical factors on soil cracks (Yilmaz and
Kaynar, 2011; Chou et al., 2016; Wani et al., 2021; Kardani et al.,
2022; More et al., 2022; Nguyen et al., 2022; Verma et al., 2023). For
instance, researchers have employed Random Forest (RF) models

to study this phenomenon, while others have utilized K-nearest
neighbor (KNN) models (Kardani et al., 2022; Verma et al., 2023).
Additionally, support vector machine (SVM) models have been
developed by various researchers for this purpose (Chou et al.,
2016; More et al., 2022). Furthermore, multilayer perceptron (MLP)
models have been explored by different researchers, and multiple
regression (MR) models have also been investigated in relevant
studies (Yilmaz and Kaynar, 2011; Wani et al., 2021; Nguyen et al.,
2022). These various ML approaches offer valuable insights into
understanding and predicting soil crack behaviors in geotechnical
engineering.

Although various MLmodels have been created in the literature
to forecast soil motions or other soil features, the prediction of soil
moisture evaporation rate has yet to be attempted.The primary goal
of this study is to design a unique feature selection technique and
compare severalMLmodels in terms of their capacity to forecast soil
moisture evaporation rates, which can lead to desiccation cracking.
First, we discuss the underlying literature on the utilization of
various soil qualities and their impact on evaporation rate. Next,
we rank the features relevant to soil moisture evaporation rate
prediction by developing a novel feature selection technique. Then,
we detailed the working of the ML models like RF, MLP, MR, SVM,
and KNN models and found out the least RMSE value to data.
Finally, we provide our findings from several models and analyze
the consequences of their application.

2 Background

In the literature related to ML in the geotechnical field,
several ML models have been developed to investigate the
influence of geotechnical factors on soil cracks (Yilmaz and
Kaynar, 2011; Chou et al., 2016; Kumar et al., 2019; Wani et al.,
2021; Kardani et al., 2022; More et al., 2022; Nguyen et al., 2022;
Verma et al., 2023). For instance, researchers have employed RF
models to study this phenomenon, while others have utilized
KNN models (Kumar et al., 2019; Kardani et al., 2022; Verma et al.,
2023). Additionally, SVM models have been developed by various
researchers for this purpose (Chou et al., 2016; More et al., 2022).
Furthermore, MLP models have been explored by different
researchers, and MR models have also been investigated in relevant
studies (Yilmaz and Kaynar, 2011; Wani et al., 2021; Nguyen et al.,
2022). A range of ML models provides valuable insights for
comprehending and forecasting soil crack behavior within the
field of geotechnical engineering. The study by Kardani employed
various ensemble machine learning methods, such as voting,
stacking, and bagging ensembles, to consolidate diverse model
results (Kardani et al., 2022). After rigorous testing, the bagging
ensemble emerged as the most effective tool for evaluating subgrade
soil strength.This research underscores the significance of ensemble
methods in accurately predicting MR, contributing to safer and
more sustainable pavement design practices. Several authors
investigate the prediction of debris flow at the Tangni landslide in
Uttarakhand state, a landslide-prone region (Kumar et al., 2019).
In this study, the author utilized a combination of ensemble
models (RF, Bagging, Stacking, and Voting) and non-ensemble
models (Sequential Minimal Optimization regression-SMOreg, and
Autoregression) to forecast weekly debris flow incidents spanning
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2013 to 2014.The results showed that ensemble models, particularly
Bagging, Stacking, and RF, outperformed the non-ensemblemodels.
In other research efforts, computational algorithms were explored
to predict California Bearing Ratio (CBR) values for saturated soil
conditions (Verma et al., 2023). Various methods, including Kernel
Ridge Regression, KNN, and Gaussian Process Regression (GPR),
were investigated. A substantial dataset comprising 1011 in-situ soil
samples from a highway construction site was collected for the study.
The study identified key input parameters such as Sand content,
Fine Content, Plastic Limit (PL), Plasticity Index, Maximum Dry
Density, and Optimum Moisture Content as the most influential
factors affecting theCBRof fine-grained plastic soils when saturated.
The experimental results validated the efficacy of KNN and GPR
models created using K-Fold and FCMdata partitioning techniques.
Additionally, it was observed that the geographical origin of
the soils or materials used for model development influenced
predictive accuracy.

Furthermore, to address the shortcomings of previous models
in forecasting FRS shear strength, various researchers gathered a
comprehensive database of triaxial and direct shear experiments on
fiber-reinforced soil (FRS) (Chou et al., 2016). Using data mining
techniques, including SVM, the study identifies influential factors
and predicts the peak friction angle of FRS. The SVM model
emerges as the optimal model, achieving a strong association
with the measured values (correlation coefficient of 0.89). The
model’s performance shows significant improvement compared to
other reported models, contributing valuable insights for predicting
FRS behavior in soil engineering. In a recent study, researchers
investigated the application of 3 ML models, namely, Extreme
Learning Machine (ELM), SVM, and Adaptive Neuro-Fuzzy
Inference System (ANFIS), to construct Pedotransfer Functions
(PTFs) for the estimation of saturated hydraulic conductivity (Kfs)
based on fundamental soil parameters (More et al., 2022). Among
these models, SVM demonstrated notable performance, yielding
relatively high Nash-Sutcliffe Efficiency (NSE) values. The SVM
model outperformed other models with remarkable NSE values. In
particular, at the Murarji Peth and Punanaka locations, the SVM
model demonstrated strong predictive performance, achieving NSE
values of 0.90 and 0.83, respectively. Meanwhile, the ANFIS model
yielded promising results at the Mulegoan site, with a correlation
coefficient (R) of 0.80 and an NSE of 0.64.

This research also investigated the application of neural
networks, notably MLP and Adaptive Neuro-Fuzzy Inference
System (ANFIS), for forecasting soil swell percent (S%) (Yilmaz
and Kaynar, 2011). The standard MR statistical model is also
compared. The results demonstrate that the developed Radial Basis
Function (RBF) outperformed MLP, ANFIS, and MR in predicting
S%. The paper emphasizes the effectiveness of soft computing
techniques, such asMLP, in reducing uncertainty in soil engineering
projects and providing novel approaches to handle potential
discrepancies in correlations. In a similar vein, this research focused
on the prediction of swelling potential in fine-grained soils, a
factor that can significantly influence the stability of geotechnical
infrastructure (Nguyen et al., 2022). ML models, including MLP,
Gaussian Process (GP), and Bagging-MLP neural networks, were
trained using site-specific data from residual soils along Vietnam’s
Mong Cai-Van Don highway. These models utilized basic soil index
indicators such as particle size distribution and Atterberg limits to

assess swelling potential. Among the various models evaluated, the
Bagging-MLP model demonstrated the highest level of predictive
accuracy, underscoring the potential of data-driven approaches in
supporting geotechnical design.

Several researchers also helped to create the MR
model for assessing crack intensity in biochar-amended
soils (BAS) (Wani et al., 2021). They evaluated the influence of
several parameters on crack propagation using MR analysis,
including compaction state, PL, liquid limit (LL), biochar
concentration (%), and soil-specific gravity. The study’s findings
demonstrated that wood biochar (WB) was more resistant to crack
propagation than pig manure biochar (PMB). The MRM also
revealed that increasing biochar content reduced crack intensity,
although specific gravity and PL impacted crack intensity, with
WB having more apparent impacts than PMB. When basic soil
parameters are known, the suggested MRM provides a valuable
tool for predicting crack intensity in BAS samples, providing
useful insights for geotechnical engineering and soil improvement
activities.

Prior studies aimed to predict various geotechnical properties
of soils, which are crucial for engineering applications like
infrastructure projects and environmental management, using
ML algorithms. These properties included saturated hydraulic
conductivity, friction angle of FRS, CBR of fine-grained plastic
soils, and subgrade soil properties. However, the influence of
both geotechnical and environmental factors on soil moisture
evaporation rate prediction has not been explored. This study
focuses on predicting soil moisture evaporation rate, which is
vital for slope stability and landslide mitigation while considering
environmental factors such as temperature and humidity.

In conclusion, based on the rich literature survey conducted
in the geotechnical field, we have selected the RF, KNN, SVM,
MLP, and MR models for the prediction of evaporation rate in
soils. These models have shown their prowess in predicting various
geotechnical factors and phenomena, indicating their potential to
address the soil moisture evaporation rate prediction, a topic yet
to be fully explored. By applying these powerful ML tools to soil
moisture evaporation prediction, we hope to contribute new insights
to the field of geotechnical engineering, enabling more informed
decision-making and sustainable soil management practices.

Several researchers in the literature have explored various
feature selection techniques to identify important features in
datasets. For instance, Priyanka et al. (2022) utilized correlation-
based, filter approach, wrapper approach, instance-based, and
classifier-based methods to rank geotechnical parameters. However,
these traditional techniques have limitations. Correlation-based
methods, as described by Hall (1999), rank features based on their
correlationwith the target variable. It utilizes the Pearson correlation
coefficient to quantify the linear relationship between features and
the target. However, Correlation-based methods only capture linear
relationships and may overlook nonlinear dependencies between
features and the target variable. Additionally, they may not consider
interactions between features, leading to the potential exclusion of
relevant features from the final subset. Similarly, Next, Kohavi and
John (1997) developed the wrapper approach, which exhaustively
searches all possible feature subsets and evaluates their performance
using an induction algorithm. It iteratively adds or removes features
to maximize the algorithm’s accuracy. However, Wrapper methods
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are computationally intensive, especially for datasets with a large
number of features. They may also suffer from overfitting if the
search space is not properly constrained. Additionally, wrapper
methods may not guarantee the selection of the optimal feature
subset due to the exhaustive search.

Furthermore, Kira and Rendell (1992) developed the instance-
based feature selection, which is a statistical algorithm that assigns
weights to features based on their relevance to the target variable.
It iteratively updates feature weights by comparing instances from
the same and opposite classes. However, this method focuses on
instance-level feature relevance and may overlook global feature
importance. It also requires careful tuning of parameters, such as
the threshold value, and may be sensitive to noise in the data.
Moreover, Hall (1999) developed a classifier-based feature selection,
which assesses feature strength bymeasuring the classifier’s accuracy
with and without each feature. This method employs a predefined
classifier to predict the target class based on input features.
However, classifier-based methods face challenges in capturing
feature synergy Meinhardt et al. (2004). They rely on comparing the
classifier’s performance with and without individual features, but
they may overlook relationships where combinations of multiple
features significantly impact the target variable.

To address these limitations, we propose a novel Guided
Backpropagation Feature Selection Technique. This approach
leverages the nonlinear capabilities of neural networks to capture
complex relationships in the data, ensuring that selected features
align closely with the target variable and enhance overall predictive
performance. Unlike traditional methods, our technique is capable
of capturing complex and nonlinear relationships that linear models
or simplistic feature selection approaches may miss. Moreover, the
proposed technique does not eliminate any features. It considers all
features to find the relationship between features and combinations
of features to the target variable to identify the feature synergy.

3 Data features

The experimental data considered in the current study for
analysis has been taken from Uday and Singh (2013). They
demonstrated the effect of exposure circumstances (temperature
and humidity) as well as soil-specific characteristics (soil type and
specimen geometry) on evaporation rate, whichmay have an impact
on fine-grained soil cracking.

Twenty ground-based parameters included in this experiment to
assess their effects on soil moisture evaporation are as follows:

• Soil Type (Mineralogy-Sand, Silt, Clay): Soil type influences the
pore structure, permeability, andwater retention characteristics
of the soil. Sandy soils have larger particles and better drainage,
leading to higher evaporation rates. Clay-rich soils have smaller
particles and higher water-holding capacity, resulting in slower
evaporation. Silt soils fall in between.
• Atterberg Limits: These include three moisture concentrations
that define the consistency of a soil-water mixture: the LL,
the PL, and the Shrinkage Limit (SL): The moisture content
at which a soil transforms from a plastic to a liquid condition
is indicated by the LL. Soils with high LL tend to retain more
water, which can lead to longer drying periods. This increased

moisture content can hinder the overall rate of evaporation.
Soils with high PL and significant SL undergo substantial
volume changes during drying.These changes can create cracks
and openings in the soil, altering the pathways and rates of
water movement, including evaporation. Highly plastic and
shrinkable soils may trap moisture in the pores, limiting the
exposed surface area available for evaporation and potentially
slowing the overall rate.
• Specific Gravity (G) and Maximum Dry Unit Weight (γdmax):
G regulates the soil particle density. Higher G leads to denser
particles, hindering water movement and reducing surface
area for evaporation. Soils with higher G typically have lower
evaporation rates due to reduced water accessibility. γdmax is
the peak weight of compacted soil per volume. Evaporation
increases void spaces, potentially lowering compaction and
γdmax. This impacts water retention and evaporation. Soils
with lower γdmax may experience higher evaporation due to
increased porosity.
• Soil FrictionAngle (Phi): A higher Phi value indicates increased
friction and shear strength between particles, making it more
difficult for water molecules to move through the soil matrix.
Therefore, soils with a higher Phi value may experience
slower water vapor movement and reduced exposure of water
molecules to the surface, ultimately leading to a potentially
lower evaporation rate. Conversely, a lower Phi value signifies
reduced friction and shear strength, allowing water molecules
to move more freely within the soil.This can result in enhanced
water vapor transport to the surface, potentially leading to a
higher evaporation rate.
• Optimum Moisture Content (Womc): Womc represents the
moisture content at which a soil attains its maximum
compaction and, consequently, its highest dry density. Soils
with moisture below Womc have higher porosity, leading to
faster evaporation. Above Womc, compaction reduces pore
space, lowering evaporation.
• Air Entry Value (AEV), Moisture Content (Wr): As soil
evaporates, its moisture content decreases. A higher AEV
indicates that water requires more negative pressure to move
through the soil pores. This means that soils with a higher
AEV can retain water more effectively against evaporation.
Consequently, these soils may experience slower water loss
through vapor movement, potentially leading to a lower
evaporation rate. Furthermore,Wr is directly tied to the amount
of water present in the soil. Evaporation causes this content
to decrease over time. Soils with higher initial Wr have more
water available for evaporation, which can lead to higher initial
evaporation rates. However, evaporation may also decrease as
Wr decreases due to reduced water availability.
• Mineral Composition Analysis: Minerals exhibit distinct
hygroscopic characteristics and diverse water retention
capacities. The research considered five distinct soil types:
white clay (referred to as WC), bentonite (referred to
as BT), and naturally occurring soils (S1, S2, and S3).
As documented by Uday and Singh (2013), each soil
type encompassed a blend of diverse minerals within its
composition. In the first most abundant mineral (FMAM), the
following minerals were found: Kaolinite, Calcite, Hallosite,
Montmorillonite, and Quartz. Similarly, the second most
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abundant mineral (SMAM) category comprised the following
minerals: Illite, Montmorillonite, and Quartz. Finally, the third
most abundant mineral (TMAM) category comprised the
following minerals: Berilonite and Feldspar. It is important
to note that the specific mineral composition may significantly
influence the rate of evaporation and the overall dynamics of
water movement within the soil matrix.
• Temperature and Humidity: Higher temperatures generally
result in faster evaporation due to increased energy for
vaporization, while higher humidity levels impede evaporation
by reducing the moisture gradient between the soil and the air.
These two factors together dynamically govern the rate at which
water is lost from the soil surface through evaporation.
• Thickness of the Specimen: The thickness of the soil specimen
directly impacts the evaporation rate. Thicker specimens tend
to hinder moisture movement from the interior to the surface,
resulting in a longer distance for water molecules to reach the
evaporative surface. This increased distance can lead to slower
evaporation rates, as it takes more time for water to traverse the
thicker soil layers and be released into the atmosphere.

Table 1 displays the mean, standard deviation (stdev),
minimum, and maximum values of the geotechnical parameters,
providing a summary of their statistical characteristics. In this
experiment, we employ a feature selection technique to choose the
top features exclusively. We then proceed to compare the outcomes
obtained using these selected features with the empirical results
obtained through Eq. 2.

4 Methodology

This section will explore novel feature selection techniques used
for ranking features in the context of geotechnical engineering.
These techniques aim to identify the most influential geotechnical
factors on soil cracks and other relevant properties. Next, we will
delve into the discussion of different ML models, namely, RF,
KNN, SMO, MLP, and MR. We will examine their applications
in predicting soil behavior and crack intensity, highlighting their
unique parameters and advantages. By understanding these models
and their parameter settings, we can gain valuable insights into their
suitability and effectiveness for tackling geotechnical engineering
challenges.

4.1 Guided backpropagation feature
selection technique

A novel feature selection technique has been developed
based on an MLP model, which is a type of feed-forward
neural network (Rosenblatt et al., 1962). In this technique, the goal
is to predict the evaporation rate using theMLPmodel by providing
all input features in the forward pass.

To determine the influence of the input features (xi) on the
output neuron (ol), the algorithm calculates the gradient ∂ol

∂xi
.

This gradient represents the sensitivity of the output neuron to
changes in the input features, indicating the influence of each input
feature on the evaporation rate.

TABLE 1 Summary statistics of the geotechnical parameters.

Mean Stdev Min Max

Temp 40.00 8.18 30 50

RhPer 65.00 17.10 40 90

Thickness 9.00 3.81 4 14

Sand 17.40 11.11 0 30

Silt 26.40 12.09 8 46

Clay 56.20 13.35 46 82

LL 109.20 98.29 51 305

PL 47.20 46.60 18 140

SL 13.60 9.15 6 30

G 2.60 0.06 2.5 2.65

Womc 22.38 5.42 17.8 30

γdmax 1.58 0.20 1.27 1.79

Phi 5094.40 6913.21 1209 18891

AEV 159.20 83.92 37 282

Wr 9.56 10.39 1.2 29.9

Er 703.23 274.91 152 1501

In this algorithm, guided backpropagation techniques are
employedwithin a feed-forward neural network, where the Rectified
Linear Unit (ReLU) activation function is utilized to produce
these gradients (Springenberg et al., 2014). These gradients are
propagated from the output layer to the input layer through the
intermediary hidden layers, facilitated by the application of the
chain rule.

During the training process, the MLP model’s parameters are
adjusted to fit the evaporation rate. The algorithm explores different
variations of the model’s parameters, as discussed in Table 3, to
optimize the model’s performance.

Once the model is trained, the algorithm accumulates the
gradients along the path from the output neuron to each input
feature. This accumulation allows for the determination of the
relative influence or importance of each input feature in predicting
the evaporation rate. In Figure 1, the gradient flow between neurons
in the MLP model for feature selection is illustrated. Starting from
the output neuron (ol), the gradient

∂ol
∂(h21)

represents the sensitivity of
the output with respect to the first neuron of the second hidden layer
(h21). Moving backward, the gradient ∂(h21)

∂(h11)
indicates the influence of

the first neuron of the second hidden layer on the first neuron of the
first hidden layer (h11). Subsequently, the gradient

∂(h11)
∂x1

signifies the
impact of the first neuron of the first hidden layer on the first input
(x1). To determine the accumulated gradient along the path from the
input (x1) to the output neuron (ol), we consider the product of these
individual gradients mentioned in Eq. 1:
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FIGURE 1
Sechematic diagram of the novel feature selection technique based on an MLP model.

∂ol
∂xi
=

m

∑
j=1
(
∂h1j
∂xi
[

[

n

∑
k=1
(
∂h2k
∂h1j

∂ol
∂h2k
)]

]
) (1)

where m represents the number of neurons in the first hidden
layer, and n denotes the number of neurons in the second hidden
layer.

By analyzing the accumulated gradients, the algorithm ranks
the input features based on their impact on the evaporation
rate. Features with higher gradient magnitudes indicate a stronger
influence on the evaporation rate prediction. Therefore, they are
considered more important or influential in the feature selection
process.This ranking provides valuable insights for feature selection,
enabling the identification of the most influential features for
predicting the evaporation rate.

4.2 ML models

4.2.1 Empirical model
The empirical model considered in the current study for analysis

has been taken from Uday and Singh (2013) (Uday and Singh,
2013). Eq. 2 establishes the empirical relationship between the
evaporation rate (Er) in mg/h, temperature (θ), relative humidity
(Rh), and the initial thickness of the specimen (t) (Uday and
Singh, 2013).

Er = p ⋅ t
q
i ⋅ θ

r ⋅Rhs (2)

where p, q, r, and s are the constants related to specific soil, as
provided by Uday and Singh (2013).

4.2.2 RF
The RF model is a classification and regression ensemble

learning method developed by Breiman (2001). RF can be used
for regression and classification tasks. In the training process, RF
generates multiple random Decision Trees (DTs). The RF model
provides its output by considering the majority value, effectively
representing the average prediction derived from each individual
tree. Notably, RF addresses the problem of overfitting that decision
trees may encounter by means of aggregation (Breiman, 2001). An
important parameter to fine-tune in RF is the number of features
(nF) to be evaluated at each split point. In our study, we conducted
experiments by varying the nF value within the range of 0–5 to
optimize the RF model (see Table 2).

4.2.3 KNN
The KNN model assesses the distance between the query data

point and the k closest data points, all without the necessity for prior
training (Peterson, 2009). This distance calculation can be based
on either the Manhattan distance or the Euclidean distance as the
distance function. Consequently, this approach yields the average
of the k-nearest data points. Therefore, KNN relies on two key
parameters: the choice of distance function and the value of k. In our
study, we explored both the Manhattan distance and the Euclidean
distance as distance metrics, and the k value was varied across the
range of 1–10. You can refer to Table 2 for a detailed overview of the
parameter ranges considered for KNN.

4.2.4 SMOreg
SMOreg is a specialized version of SVM designed for handling

large datasets efficiently (Platt, 1998). It uses an iterative approach
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TABLE 2 Range of parameters in the ML models.

Models Parameters Range

RF
Iterations (I) 50, 100, 150, 200, 250, 300, 350

No of features (nF) 0 to 5

MR
Ridge 5 to 50

Feature Selection method M5, Greedy

KNN
K 1 to 5

Distance function Euclidean, Manhattan

SMOreg

C 0 or 1

E 1 to 6

Kernel PK, RBF, PUK

MLP

Hidden layers 1 to 3

Neurons 100 to 1500

Activation Function ReLU

Batch size 16 to 512

KNORA ensemble k 1 to 5

to speed up the training process, providing Lagrange multipliers
(alpha) in each iteration to identify critical support vectors that
define the margin boundary. SMOreg relies on two key parameters:
the margin complexity (C) and the exponent (E) for the kernel
function. The C parameter allows for flexible margin selection
by disregarding specific support vectors, while the E parameter
determines the kernel function’s exponential power.

SMOreg employs various kernel functions, including radial basis
function (RBF), Pearson VII kernel (PUK), and polynomial kernel
(PK), to effectively model the data (Patle and Chouhan, 2013). Our
study explored a range of SMOreg parameters, including C values
ranging from0 to three and the use of RBF, PUK, andPKkernels.The
E parameter varied from 1 to 5. Refer to Table 2 for a comprehensive
overview of the considered parameters for SMOreg.

4.2.5 MLP
MLP is a widely used neural network to approximate nonlinear

functions (Rosenblatt et al., 1962). It is made up of three layers:
input, concealed, and output. Multiple neurons with activation
functions are present in each layer. Data is sent from the input
layer to the hidden layer, where it is transformed to improve feature
representation before being routed to the output layer for regression
tasks. Backpropagation, which uses gradient descent, is employed
to update the layer weights and minimize the MLP error. The error
in each iteration is computed to modify the weights for better
performance.

In the experiment, the input layer’s dimensionality matches
the number of features used. The hidden layers comprise different
quantities of neurons, ranging from 100 to 1500. The experiment

involved various configurations, including one to three hidden
layers, and the batch size was systematically adjusted, increasing in
powers of 2 and ranging from 16 to 512. For more information on
the experiment’s parameters and their ranges, please refer to Table 2.

4.2.6 MR
Multiple Regression (MR) is a statistical method for

investigating the connection between a dependent variable (Y) and
several independent factors (X1,X2,…,Xi). It uses a linear Eq. 3 to
model the relationship between these variables:

y = β0 + β1x1 + β2x2 +⋯+ βixi + ε (3)

where y is the dependent variable, (X1,X2,…,Xi) are the input
features, (β0,β1,β2,…,βi) are regression coefficients (indicating the
impact of each independent variable), and ɛ is the error term. The
goal is to estimate the coefficients that best match the data and
minimize the sumof squared errors (ɛ) betweenpredicted and actual
dependent variable values.

MR analysis was performed in this work using theM5 (Modeled
Tree) or greedy strategy for feature selection. The ridge parameter,
a regularization term that helps prevent overfitting, was varied in
steps of 5 from 10 to 50. In addition, Table 2 shows the parameters
considered for the MR model.

4.2.7 K-Nearest oracles (KNORA) ensemble
The KNORA ensemble method dynamically aggregates

predictions from multiple base regression models, such as MLP,
SMOreg, and RF regressor. Initially, a set of base models is trained
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on a training dataset, each model capturing distinct patterns from
the data. Subsequently, predictions are generated for instances in
the validation or test dataset using these trained base models.

In KNORA, the competence of each base model is assessed
by evaluating its predictive performance through RMSE metrics
between its prediction and the true target value for each instance.
Based on these evaluations, KNORA identifies the k-nearest base
models with the lowest error (or highest competence) for each
instance. The parameter “k” denotes the number of nearest models
and is adjustable.These selectedmodels are deemed themost reliable
for predicting that specific instance, thus constituting an ensemble
of competent models to enhance overall performance.

By aggregating predictions from the chosen base models
through averaging, the KNORA ensemble generates a refined
prediction for each instance. This methodology effectively leverages
the collective knowledge of the most competent base models while
disregarding the contributions of less reliable ones. The parameter
“k” in the KNORA ensemble denotes the number of nearest models
and is adjustable. The range of “k” values typically varies between 2
and 5, as shown in Table 2.

4.3 Train-test splits

The train-test split was used to assess the performance of theML
models. The dataset was randomly shuffled and split into 70% train
data and 30% test data.

4.4 Error measures

The root mean squared error (RMSE) was used to determine the
error between the actual and predicted values. The following is the
equation for RMSE:

RMSE = √ 1
n

n

∑
i=1
(yi − (ŷi))

2 (4)

where yi represents the actual data point, (ŷi) signifies the value
predicted by the ML model, and “n” denotes the total count of
data points.

5 Results

In this study, the guided backpropagation feature selection
technique was employed, and the models were trained using 10-fold
cross-validation. During the feature selection process, the nineteen
features were evaluated, and their rankings were determined based
on their frequency of being ranked as the top feature across the
ten folds. Table 3 presents the ranks assigned to each feature,
which were determined according to the highest accumulated
gradient observed in the ten folds. This approach allowed for
the identification of the most influential features that significantly
contributed to the model’s performance and predictive accuracy.
The optimized MLP model for feature selection consisted of two
hidden layers with 100 and 500 neurons, respectively.The activation
function used in all layers was ReLU.

TABLE 3 Rank of the attributes given by feature selection technique.

Feature Ranking

Temp 1

Humidity 2

Silt 3

Thickness 4

Soil Type 5

SMAM 6

FMAM 7

TMAM 8

γdmax 9

SL 10

Sand 11

Clay 12

LL 13

PL 14

G 15

Womc 16

Phi 17

AEV 18

Wr 19

The results of the several ML models using the train-test split
techniques for top-5, top-10, and all features are displayed in
Table 4. The top-5 features are Temp, Humidity, Silt, Thickness,
and Soil Type. Table 4 illustrates that the KNORA ensemble
model demonstrated the highest performance among the models
considered, achieving a test RMSE of 7.54 mg/h with the top-10
features. Following closely, the MLP model, utilizing the top-10
features, emerged as the second best-performing model with a test
RMSE of 25.1 mg/h. Furthermore, the KNORA ensemble model
possessed the smallest RMSE among all models for top-5, top-10,
and all features in the dataset. Table 5 shows the performance of
the empirical model over train and test data, where 70% of the
original data was taken for train, and the remaining 30% of the data
was taken for testing. The calibrated values of various parameters
used by the RF, MR, KNN, SMOreg, and MLP models are displayed
in Table 6. For instance, for the top-5 features, the RF in Table 6
contains 300 bags and four numbers of iterations.The ridge value five
and the M5 feature selection method were the best MR parameters.
The Manhattan distance was chosen for the KNN model’s distance
measurement after determining that 3 was the best number for the k
parameter. Additionally, 14 and 1 were the optimal values for the
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TABLE 4 The performance of various ML models in the train-test split.

Models
Top-5 features Top-10 features All features

Train RMSE Test RMSE Train RMSE Test RMSE Train RMSE Test RMSE

KNORA ensemble 3.18 12.73 10.91 7.54 17.81 21.74

MLP 1.35 31.41 2.79 25.1 15.78 26.88

SMOreg 1.82 27.27 1.64 30.71 1.62 31.05

RF 18.37 35.59 16.45 36.4 16.8 38.79

KNN 33.85 48.35 35.7 54.27 35.7 54.27

MR 107.13 104.62 72.2 73.69 72.22 73.47

TABLE 5 The performance of the empirical model in the train test split.

Model Train RMSE (mg/h) Test RMSE (mg/h)

Empirical Model 15766.9 1319.1

C and E parameters in SMOreg. In the SMOreg model, the PUK
function selects a kernel function. Furthermore, two hidden layers
of the MLP model, each including 100 and 500 neurons, produced
the best result. Next, in KNORA ensemble, the value of k was set to
2 for the top-5 and top-10 features, and 3 for all features.

Figure 2 presents the detailed results analysis of 5 ML models,
namely, MLP, SMOreg, RF, KNN, and MR, with varying feature
selections. The analysis includes three scenarios: using the top-5
features, the top-10 features, and all features in the training and
testing. The y-axis represents the RMSE values under different
feature selections: using the top-5 features, the top-10 features, and
all features. The x-axis denotes the different models and feature
selections. The chart allows for a comprehensive comparison of
each model’s RMSE performance under different feature selections,
providing insights into the impact of feature importance on the
predictive capabilities of the ML models.

6 Discussion

The increased occurrence of evaporation rates in soils, driven
by global climate change and extreme weather events, may have
significant implications for natural hazards such as soil movements
and slope stability. As soils undergo swift dehydration, especially
those rich in clay content, distinct geometric patterns of cracks
emerge on the soil’s surface. These cracks can weaken the soil
structure, leading to increased susceptibility to soil movements such
as landslides and slope instability. Therefore, understanding and
predicting soil moisture evaporation rates are crucial for assessing
and mitigating the risks associated with these natural hazards.

Historically, soil moisture evaporation rates have been estimated
using empirical methods (Uday et al., 2015), which often resulted
in significant errors. To address this issue, this study focused
on developing ML models to predict soil moisture evaporation

rates more accurately, aiming to minimize estimation errors and
improve predictive capabilities. By leveraging ML techniques, we
aimed to enhance our understanding of soil moisture evaporation
dynamics and providemore reliable predictions to support decision-
making processes in mitigating natural hazards.The dataset utilized
in this study encompassed twenty-one ground-based parameters,
including variables such as temperature, humidity, thickness, and
other pertinent soil attributes. These parameters were meticulously
collected through field sampling and rigorous laboratory analyses,
ensuring a comprehensive representation of soil characteristics.

To identify the most influential features from the complex
dataset, we introduced an innovative guided backpropagation-based
feature selection technique.Thismethod not only prioritized the top
ten parameters exhibiting the strongest correlation with evaporation
rates but also emphasized the importance of these parameters based
on their gradient values, reflecting their direct influence on model
predictions. It involved spotlighting the top-5 features, the top-
10 features, and the entire feature set, creating a comprehensive
framework for comparative analysis. The evaluation of various
ML models followed a train-test split approach, with 70% of the
data allocated for training and the remaining 30% reserved for
testing. The RMSE served as the primary metric for assessing
predictive accuracy.

Comparing the array of ML models developed, particularly the
top two models, KNORA ensemble and MLP, it was evident that
both models exhibited superior predictive capabilities compared to
the empirical (physical) model. Across all feature subsets and on
both training and testing data, the KNORA ensemble consistently
outperformed theMLPmodel regarding RMSE values. For instance,
on the testing set, the KNORA ensemble achieved an RMSE of
7.54 mg/h, compared to MLP’s 25.1 mg/h, showcasing the KNORA
ensemble’s capacity to effectively discern intricate patterns within
the data, leading to reduced prediction errors. Furthermore, the
KNORA ensemble and MLP exhibited substantial improvements
over the empirical model’s performance, as highlighted by the
notable contrast in RMSE values. The empirical model, with
RMSE values of 1319.1 mg/h on the testing set, underscored its
limitations in capturing the underlying relationships within the
dataset. In contrast, the KNORA ensemble and MLP models
achieved significantly lower RMSE values on the testing set while
consistently displaying enhancements in training RMSE values.
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TABLE 6 Optimized parameters for RF, MR, SMOreg, MLP, and KNORA ensemble.

Models Parameters Top-5 features Top-10 features All features

RF
Iterations (I) 300 400 250

No of features (nF) 4 7 15

MR
Ridge 5 5 5

Feature Selection method M5 M5 M5

KNN
K 3 3 3

Distance function Manhattan Manhattan Manhattan

SMOreg

C 1 1 1

E

Kernel function PUK PUK PUK

MLP

Hidden layers 2 2 3

Neurons in Hidden Layers 100, 500 500, 1000 500, 1000, 1300

Batch size 512 512 512

KNORA ensemble k 2 2 3

FIGURE 2
Results of the KNORA ensemble, MLP, SMOreg, RF, KNN, and MR Models with Top-5, Top −10, and all features in the training and testing.

Overall, these results underscore the considerable enhancement
in predictive accuracy achievable by adopting advanced ML
techniques, highlighting their potential to surpass traditional
empirical approaches.

The selection of key features, notably temperature, humidity,
silt content, thickness, and soil type, stems from their substantial

influence on the intricate dynamics of evaporation (Budhu,
2010). The most influential minerals within the soil matrix
(the SMAM category) included Illite, Montmorillonite, and
Quartz. These minerals greatly influenced the prediction of soil
moisture evaporation rates. Following closely, the second most
important minerals in soil composition, including Kaolinite,

Frontiers in Earth Science 10 frontiersin.org

https://doi.org/10.3389/feart.2024.1344690
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Priyanka et al. 10.3389/feart.2024.1344690

Calcite, Hallosite, Montmorillonite, and Quartz, influenced the
prediction of soil moisture evaporation rates. Finally, the third
tier of importance (TMAM category) consisted of Berilonite and
Feldspar minerals influencing the prediction of soil moisture
evaporation rates.

Beyond these mineral rankings, parameters such as γdmax and
SL held the ninth and 10th positions, respectively.These parameters
were prioritized due to their demonstrated significance in shaping
the evaporation process. These features encompass pivotal facets
of the soil’s physical composition, moisture-retaining capacity,
mineralogical composition, and structural behavior. The selection
of these features was based on their well-documented and strong
correlations with evaporation rates, underscoring their capacity to
offer valuable insights into the underlying mechanisms that govern
the process of evaporation (Budhu, 2010). By integrating these
crucial features, the resultant predictive models could tap into a
comprehensive comprehension of the intricate relationship between
these variables and evaporation, thereby enablingmore accurate and
informed predictions.

The complexity of soil behavior under real-world conditions,
including variability in soil properties such as cohesion, infiltration
rate, water table levels, and environmental factors, presents
significant challenges in accurately modeling soil moisture
evaporation rates. As highlighted by Morris et al. (1992),
the dynamic nature of soil physical properties can greatly
influence moisture dynamics, necessitating models that can
adapt to this variability to predict evaporation rates accurately.
Moreover, Tao et al. (2005) emphasizes the importance of
considering soil volume changes and crack development, which are
critical in understanding soil moisture evaporation under varying
environmental conditions.

Environmental factors may likely play a pivotal role in the
evaporation process. Uday et al. (2015) and Wanare et al. (2022)
have documented the significant impact of temperature, humidity,
and solar radiation on soil moisture dynamics. These studies
underscore the necessity of incorporating a broad spectrum of
environmental conditions into predictive models to enhance their
applicability to real-world scenarios. This includes integrating
temporal data on weather patterns and precipitation events, as
these factors are crucial in shaping the soil’s moisture content
over time.

Recognizing the limitations of studies conducted in
controlled settings, our research echoes the call by Xu et al.
(2022) and Andrushia et al. (2022) for the development of hybrid
models that leverage both field and laboratory data. Such models
would offer a more comprehensive framework for understanding
the interplay between soil properties, environmental factors, and
soil moisture evaporation. By incorporating a wider range of
data reflecting the natural variability of these factors, predictive
models can be significantly improved to reflect the complexities of
real-world conditions.

The inclusion of dynamic soil properties and environmental
factors in soil moisture evaporation models not only enhances
their predictive accuracy but also their practical applicability in
addressing geotechnical and agricultural challenges. For instance,
the work of Yesiller et al. (2000) on the desiccation and cracking
behavior of soils provides a foundation for understanding how
these processes can impact soil stability and plant growth. Similarly,

the exploration of ML techniques in geotechnical engineering
by Kardani et al. (2022) and Nguyen et al. (2022) illustrates the
potential of these models to adapt and learn from complex datasets,
offering promising avenues for future research.

In light of these considerations, our study acknowledges
the need for ongoing efforts to refine and enhance ML
models for soil moisture evaporation prediction. Future
research should aim to integrate a more diverse array of soil
types, environmental conditions, and temporal variability to
capture the full spectrum of factors influencing soil moisture
dynamics. Through these advancements, we can move closer to
developing robust models capable of assisting in the sustainable
management of soil resources in the face of changing global
climate conditions.

7 Conclusion

The study’s findings underscore the importance of accurately
predicting soil moisture evaporation rates, particularly in the
context of mitigating natural hazards such as soil movements
and slope instability. By leveraging advanced ML models, we
have demonstrated the potential to significantly improve the
accuracy of soil moisture evaporation rate predictions compared
to traditional empirical methods. We have developed a robust
methodology for forecasting soil moisture evaporation rates
through a meticulous analysis of twenty-one ground-based
parameters, including temperature, humidity, thickness, and
soil attributes.

Our innovative guided backpropagation-based feature selection
technique has identified key parameters that exhibit strong
correlations with evaporation rates, shedding light on the intricate
dynamics of soil moisture evaporation. Through comparative
analysis, we have shown that ML models, particularly the novel
KNORA ensemble and MLP, outperform empirical models in
predicting soil moisture evaporation rates with higher accuracy.

Moreover, our study has highlighted the significance of specific
soil minerals and physical characteristics, such as clay content
and soil type, in influencing soil moisture evaporation dynamics.
By integrating these crucial features into predictive models, we
can better understand the underlying mechanisms governing soil
moisture evaporation and make more informed decisions regarding
natural hazard mitigation.

Looking ahead, future research should focus on refining ML
algorithms, incorporating additional variables, and conducting field
validation studies to further enhance the accuracy and applicability
of soil moisture evaporation rate predictions. By continuing to
advance our understanding of soil moisture evaporation dynamics,
we can better safeguard against natural hazards and ensure the
resilience of ecosystems and infrastructure in the face of global
climate change.

In our study, we employed a novel feature selection technique,
guided backpropagation, to identify and rank the most relevant
features correlated with soil moisture evaporation rates. While
direct experimental studies to correlate each individual feature
with moisture evaporation were not conducted due to the scope
and resource limitations of our work, the selection of features was
grounded in an extensive literature review and prior experimental
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findings from related studies (Yilmaz and Kaynar, 2011; Chou et al.,
2016; Kumar et al., 2019; Wani et al., 2021; Kardani et al., 2022;
More et al., 2022; Nguyen et al., 2022; Verma et al., 2023), including
the foundational work of (Uday and Singh, 2013) that detailed the
impact of various soil and environmental factors on evaporation
rates. The guided backpropagation method allowed us to prioritize
features scientifically known to influence evaporation, such as
temperature, humidity, soil type, and specific gravity, among
others. Our ML model’s performance, particularly the MLP and
SMOreg models, further validated the significance of these selected
features in accurately predicting soil moisture evaporation rates,
demonstrating their empirical correlation through advanced
computational techniques. The guided backpropagation method
allowed us to prioritize features scientifically known to influence
evaporation, such as temperature, humidity, soil type, and
specific gravity, among others. Our ML model’s performance,
particularly the KNORA ensemble, MLP, and SMOreg models,
further validated the significance of these selected features in
accurately predicting soilmoisture evaporation rates, demonstrating
their empirical correlation through advanced computational
techniques.

This study has not only advanced our understanding of soil
moisture evaporation rates through the application of ML models
but also set a precedent for future research in this vital area of
environmental science. Key takeaways from our investigation
include the successful implementation of hybrid models, such as the
stacking ensemblemodel incorporating the novelKNORAensemble
technique, which significantly improved prediction accuracy.
Additionally, our work highlights the importance of considering
real-world variability in soil properties and environmental
conditions to enhance model robustness and applicability.

In conclusion, this study highlights the critical role of thoughtful
feature selection and the application of ML models in enhancing
the accuracy of evaporation rate predictions. The selected top
features emphasize the intricate relationship between the soil’s
inherent characteristics and the evaporation process. Our study
contributes a critical piece to the puzzle of understanding soil water
dynamics, offering a foundation upon which future researchers
can build. It is our hope that the methodologies and insights
presented herein will inspire continued exploration and innovation
in the quest to develop sustainable solutions to the challenges
posed by changing environmental conditions. Looking ahead, this
research paves the way for further studies aimed at refining
predictive models for soil moisture dynamics, incorporating a wider
array of environmental variables, and employing advanced ML
models. Specifically, future work could explore the integration of
temporal and spatial data to better understand the effects of climate
change on soil moisture and evaporation processes. Moreover,
our findings have practical implications for soil management
practices, offering insights that can inform water conservation
strategies, agricultural planning, and the design of infrastructural
projects to mitigate the impacts of soil moisture variability.
Looking ahead, exploring hybrid approaches that combine methods
like Principal Component Analysis (PCA) with neural network-
based feature selection holds promise for further improving the
accuracy of evaporation rate predictions, especially in complex
datasets. In considering future research directions, it is crucial to
acknowledge the importance of rainfall in the natural soil water

cycle and suggest that future research could specifically address the
complex dynamics between rainfall, soil moisture, and evaporation.
Incorporating rainfall as a variable would indeed enhance the
model’s applicability to real-world conditions, providing a more
comprehensive framework for predicting soil moisture dynamics in
various climatic scenarios.
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