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Research on soil contamination has become increasingly important, but there is
limited information about where to sample for pollutants. Thus, the use of three-
dimensional (3D) spatial interpolation techniques has been promoted in this area
of study. However, the application of traditional interpolation methods is limited
in geography, especially in the expression of anisotropy, and it is not associated
with geographical properties. To address this issue, we used a test site (a factory
in Nanjing) to develop a new research method based on the geographical
shading radial basis function (RBF) interpolation method, which considers 3D
anisotropy and geographical attribute expression. Drilling and uniform sampling
were used to sample the contaminated area at this test site. This approach
included two steps: i) An ellipsoid with anisotropic properties was constructed.
Thus, the first step was to determine the shape of the ellipsoid using principal
component analysis (PCA) to determine the main orientations and construct a
rotational and stretched matrix. The second step was determining the ellipsoid
size by computing the range using the variogram method for orientations.
ii) During field measurement, the geospatial direction influences soil attribute
values, so a shadowing calculation method was derived for quadratic weight
determination. Then, the weight of the attribute value of known points can be
assigned to meet the field conditions. Lastly, the model was evaluated using
the root mean square error (RMSE). For the 2D space, the RMSE values of
Kriging, RBF, and the proposed method are 6.09, 7.12, and 5.02, respectively.
The R2 values of Kriging, RBF, and the proposed method are 0.871, 0.832, and
0.946, respectively. For the 3D space, the RMSE values of Kriging, RBF, and the
proposed method are 2.65, 2.23, and 2.58, respectively. The R2 values of Kriging,
RBF, and the proposed method are 0.934, 0.912, and 0.953, respectively. The
resulting fitted model was relatively smooth and met experimental needs. Thus,
we believe that the interpolation method can be applied as a new method to
predict the distribution of soil pollutants.
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1 Introduction

Heavy metals and organic pollutants accumulate in soil due
to human activities and result in the release and rapid spread of
pollutants in human settlements and natural environments.Thus, soil
pollution adversely affects ecosystem functioning and poses a risk to
the environment. It also presents a risk to human health, which is a
major concern in the context of the global environmental problem.

Toluene is amonoaromatic volatile organic compound and a class
A carcinogen that causes enormous damage to the human nervous
system (Maksimova et al., 2018; Sudhakar et al., 2020; Pierre et al.,
2021). Soil is a complex three-dimensional (3D) system at and below
the surface. Therefore, when examining the 3D distribution of soil
pollutants, the soil boring sampling strategy and the model fitting
for pollutant delineation play crucial roles (Tao et al., 2022). In the
3D delineation, Hou et al. (2023) employed an interpolation model
and spatial correlation to determine the 3D distribution and spatial
autocorrelation of multiple pollutants at a steelworks site. Similarly,
Li et al. (2020) conducted a comparative study of antimony (Sb) at
contaminated sites using various interpolation models.

In such studies, accurate data for unknown points can be
obtained by incorporating existing soil data and other relevant
information into calculations. In other fields of geosciences,
interpolation has become an important research direction
(Qiao et al., 2019). The distribution of toluene has been predicted
using the radial basis function (RBF) interpolation method. RBF
interpolation was originally realized by Krige (1951) as an isotropic
and stable random function. Franke (1982) conducted a novel
application of RBF for interpolation. Based on a comparative
analysis involving 1982 cases and 29different interpolationmethods,
Franke concluded that multiple quadratic RBF interpolation
outperforms most other interpolation techniques. Today, RBF
interpolation is employed extensively in contemporary geography,
such as in the investigation of toxic substance distribution near
mining areas, analysis of spatial distribution patterns of pollutants,
and precipitation allocation within polluted sites (Ding et al., 2018;
Qiao et al., 2019; Yang and Xing, 2021; Gao et al., 2022). The RBF
interpolation method was chosen for this study due to several
key advantages, such as efficient solutions to linear equations,
easy extension into three dimensions, ability to offer smooth
interpolation of scattered data, and adept handling of discrete spatial
and temporal data (Carr et al., 2001; Fasshauer, 2007; Macêdo et al.,
2009; Skala, 2010; Cuomo et al., 2017).

Many interpolation studies do not consider the characteristics
of anisotropy in 3D space (Smolyar et al., 2016). In the geographical
environment, the distribution trend of pollutants exhibits anisotropy,
particularly in theverticaldirectionwithin the3Dspace,becauseof the
influenceofvarious factors.Gravityandfactorsacting in thehorizontal
direction create great anisotropies within the 3D space. These are
influenced by various factors, including the content of the distribution
and nonlinear relationships in the vertical direction (Chilès, 2012;
Zhengquan et al., 2015; Ping, 2018; Brito, 2021).

The approach proposed in this study is geo-shadowing
anisotropic RBF–principal component analysis (PCA). The
technical path can be summarized as follows: First, an ellipsoid is
needed to express anisotropy. Constructing a matrix of rotation
and stretching and obtaining eigenvalues and eigenvectors by
using PCA involves computing a matrix of sub-sample data.

In this manner, we obtain an ellipsoidal reference model (the
eigenvector orientations mirror the ellipsoid). Next, the ranges of
the orientations are calculated using the variogram method, and
the ellipsoid of anisotropy is created. Lastly, within the ellipsoid,
to assign weights to known points more effectively, we introduced
the properties of geoscience to calculate the attribute values of
the interpolation points. The property, or process, of adjusting the
weights of known points in all directions is called shadowing.

2 Materials and methods

2.1 Study area

The study area, shown in Figure 1, was an abandoned factory
area in Nanjing City, China, located at the middle and lower reaches
of the Yangtze River (coordinates: 31°14′ to 32°37′ N, 118°22′ to
119°14′ E). Although the factory initially served industrial purposes,
it is now an experimental site for evaluating pollution control
measures.We uniformly sampled 130 boreholes with a length of 5 m
at the contaminated site with a sampling interval of 1 m, resulting in
650 sampling points. Drill hole analysis has indicated that toluene
and chromium are the main pollutants in this area and have already
caused severe groundwater pollution.The focus of this study was on
the distribution of toluene in the soil.

2.2 Framework of the research
methodology

The basic framework of the algorithm implementation, as
depicted in Figure 2, is introduced in this section. The numbers
in parentheses within the figure indicate the corresponding
sections, and we will elaborate on the algorithm based on this
procedural framework.

Details of the methodology are provided below:

(1) In the step for analysis using rawdata, experimental data points
that meet the demands of the gradient method are obtained.

(2) In the step of formulating the rotation and elongation matrix,
PCA is applied to the selected points to derive eigenvalues
and eigenvectors, which are then used to construct the matrix.
Thus, the local anisotropy characteristics can be expressed, and
the shape of an ellipsoid that varies with the local data can
be described.

(3) In the step for calculating the anisotropy scale and RBF
interpolation, the anisotropic RBF interpolation can be
constructed after modification of the RBF function.

(4) In the step for the shadowing weighting method, the points
inside the ellipsoid are weighted twice, which improves the
precision of the interpolation, and the formulation of the
anisotropic RBF interpolation function for geo-shadowing is
constructed.

2.3 Analysis of raw data

The gradient method was used to screen points with obvious
characteristics of pollutants.The specificmethod was applied within
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FIGURE 1
Overview map of the study area. The blue dots represent the locations of the drill holes.

a wide search space, in which the contamination value at each data
point was used as a function of the value for that particular point.
Because of the gridded structure of the dataset, isometric sampling
allowed the estimation of the gradient of a data point through
finite difference approximation along the respective dimension. For
a given data point (i, j, k), an approximation of the gradient in the x
direction can be obtained by utilizing the following (Eq. 1):

∂ f
∂x
≈

f(i+ 1, j,k) − f(i− 1, j,k)
2Δx

, (1)

where Δx represents the distance between adjacent grids (isometric
sampling in the x direction) and f is the contaminant function
value. The same principle can be used to calculate gradients in the
y and z directions. By calculating the approximation of the partial
derivatives in each direction, the gradient vector of the data point
can be obtained (∂f/∂x, ∂f/∂y, and ∂f/∂z). The trend threshold is set,
and the points that satisfy the criteria are filtered.

2.4 Formulating the matrix for rotation and
elongation

2.4.1 Practicability of the PCA method
PCA is a widely used statistical technique. Previous studies

have primarily focused on employing PCA to conduct correlation
analyses between variables. Buttafuoco et al. (2017) compared the

PCA method with factorial Kriging analysis and concluded that
although PCA is limited by the weak spatial correlation between
variables, it is practical in trend analysis. Xiao et al. (2020) combined
spatially weighted singularity mapping (SWSM) and PCA to predict
the distribution of mineral resources in Hangzhou.

PCA is one of the most widely used data dimension reduction
algorithms for determining a set of orthogonal axes for the original
space. The largest proportion of variance is along the principal
axis, followed by the sub-principal axis, and, lastly, the sub-axis.
In this study, a rotation transformation matrix was determined
by preserving all eigenvectors corresponding to the eigenvalues,
such that the data from the original space could be projected
into a space with large variance after the transformation to realize
coordinate rotation.The search range can be obtained by calculating
the stretch matrix with eigenvalues. By rotating and stretching the
search space, we find more evenly distributed known points and
overcome the problem of interpolation failure in local interpolation
methods due to a lack of known interpolation points. A search
ellipse is defined on the 2D plane to conform to the two-dimensional
distribution of pollutants. The search ellipse is constructed because
the points in the ellipse have a strong correlation with the points to
be interpolated. The direction of pollutant distribution is consistent
with the direction of the local ellipse axis, and the size of the ellipse
is determined to facilitate the search for more sample points in the
search ellipse. Finding more data points in the ellipse improves the
fitting effect (Figure 3).
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FIGURE 2
Algorithm flow chart. The five-pointed stars represent the innovative portions of this research.

FIGURE 3
2D elliptic rotation. Data points from the experiment are used for demonstration. In the neighborhood search in the 2D plane, the ellipse rotates to
meet the 2D distribution of the contaminant, such that there are more points in the ellipse.

2.4.2 Implementation
2.4.2.1 Screening of raw data

Radial basis functions are accurate interpolation methods
in which the curve of the function encompasses every known
point. However, points with low contamination changes are not
conducive to finding the direction of change, and it is difficult
to reflect the spatial variability of pollutants at the data level.

Therefore, we use the gradient idea from Section 2.4.1 to filter
the data.

2.4.2.2 Establishment of thematrix for construction of
covariancematrix

Searching for sample points is performed within a local range,
specifically for n data samples, each containing three variables
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(x,y,z), which constitute the following matrices. Here, n is the
local search for the drilling sample data within the ellipsoid
(Eqs. (2) and (3)):

X =

[[[[[[[

[

x11 x12 x13
x21 x22 x23
⋮ ⋮ ⋮

xn1 xn2 xn3

]]]]]]]

]

. (2)

The data samples for constructing the variance-covariance
matrix were averaged by row. The covariance matrix is built to
calculate the amount of covariance and correlation in a given
geographic area. It explains how changes in one set of geographical
variables occur at the same time as changes in another.

Σx =
[[[[

[

cov(x1,x1) cov(x1,x2) cov(x1,x3)

cov(x2,x1) cov(x2,x2) cov(x2,x3)

cov(x3,x1) cov(x3,x2) cov(x3,x3)

]]]]

]

. (3)

2.4.2.3 Obtaining eigenvalues and feature vectors
λ1,λ2,λ3 are the eigenvalues determined by the following (Eq. 4),

Av = λv, (4)

to obtain the feature vector v = [v⃗1, v⃗2, v⃗3].

2.4.2.4 Elongation and rotationmatrices
Theelongation and rotationmatrices were defined as follows Eqs

(5), (6), (7):
Elongation coefficient:

k = 0.5 ∗ (λmin/λmax) (5)

Elongation matrix:

L =
[[[[

[

1 0 0

0 1 0

0 0 k

]]]]

]

(6)

Rotation matrix:

R = [v⃗1, v⃗2, v⃗3] (7)

λmin is the minimum eigenvalue sought and λmax is the maximum
eigenvalue sought. ⃗vi is the ith eigenvector.

2.4.2.5 Combinedmatrix
The rotation and the elongationmatrices were combined into an

operation transformation matrixM as follows (Eq. 8):

M = L ⋅R. (8)

The covariance matrix constructed in the PCA analysis is
symmetric, and the eigenvectors obtained are orthogonal. The data
are transformed based on these eigenvectors. The orthogonality
principle dictates that only rotation is present without any
dimension reduction. The PCA method was employed to derive
the characteristics of the pollutant distribution in the anisotropic
direction within the geographic 3D space. Finally, we obtained the
variable range in each direction by calculating the variance function
and integrating it into the stretchingmatrix to determine the variable
range of the anisotropy.

TABLE 1 Types of basis functions.

Basis function Expression

Gaussian surface function φ(r) = e(−
r2

2σ2
)

Multiquadric φ(r) = (1+ r2

σ2
)

1
2

Inverse multiquadric φ(r) = (1+ r2

σ2
)
− 1

2

Linear φ(r) = r

2.5 Building the anisotropic RBF
interpolation function

2.5.1 RBF interpolation
The methodology outlined in Section 2.4 describes the process

of identifying the three principal spatial directions of the pollutant,
with the RBF serving as an accurate interpolation method
(Ping, 2018). The basis function types are shown in Table 1.
Thus, N data samples were selected, and the following function
was assumed (Eq. 9):

f(x) =
N

∑
i
Ciρ(‖(x− xi)‖2), (9)

where Ci is the weight, f(x) is the concentration of pollutants at a
certain point in the soil, ‖x− xi‖2 is the Euclidean distance between
the interpolation point and the known point, and ρ(‖x− xi‖2) is a
basis function. The main types of basis functions (Aràndiga et al.,
2020) are shown in Table 1. We employed the monomial function as
the basis for our experiments. This function is better suited to non-
uniformly distributed data points and can provide more accurate
interpolation results for functions with significant local changes.

2.5.2 Calculating the anisotropy scale
In this study, the spatial scale of the pollution distribution in

all directions was determined by analyzing its spatial variation,
as inspired by the estimation by Sun et al. (2019) of the soil
pollution value in the field. The expression of anisotropy is thus
formulated. We aim to improve the accuracy of the pollutant
prediction and transform the radial basis function to develop an
anisotropic property.

The rotation matrices constructed by the anisotropic RBF stem
from the PCA analysis of the 3D coordinates of the data points,
where the rotation matrix is the eigenvector, and the stretching
matrix is related to the eigenvalues. In the geographical 3D
space, the position coordinate RBF model of Casciola et al. (2006)
was modified, and the RBF interpolation model considering the
anisotropic features of the 3D space field was constructed.

The stretching and rotation of the radially symmetric RBF
basis functions were as follows: From b to e, only the influence of
spatial position on the interpolation model is used; the influence of
the pollutant attribute value on the model is not used. Therefore,
we conducted a gradient analysis at each interpolation node and
screened the points with large changes in the surrounding attribute
values for model fitting. In particular, step f is our improvement:

a) Node anisotropic RBF interpolation function (Eq. 10):
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FIGURE 4
Spatial occlusion. Spatial relationship between known points and points to be interpolated.

TABLE 2 Local interpolation points.

ID X Y Z C

E7 512273.8183 3360129.9915 3.15 24

E8 512342.9062 3360130.0695 2.405 22

F7 512273.8957 3360061.2483 2.89 12.6

F8 512342.9840 3360061.3264 2.12 13.2

F9 512412.0724 3360061.4048 2.298 7.6

D7 512273.7409 3360198.7342 2.56 20

D8 512342.8283 3360198.8123 2.53 40

E7 512273.8183 3360129.9915 2.15 20

E8 512342.9062 3360130.0695 1.405 17.6

F7 512273.8957 3360061.2483 1.89 10

F8 512342.9840 3360061.3264 1.12 10.4

D7 512273.7409 3360198.7342 1.56 12

F(x,y,z) =
n

∑
k=1

wk(x,y,z)Sk(x,y,z) (10)

Sk(x,y,z) is an expression for RBF, and wk(x,y,z) is the weight.
k is an unknown point in spatial data.

b) Define the local search region for the point of k to be
interpolated xk: Local reference points were selected to find
the covariance matrix c(xk), and the diagonal matrix of the
eigenvalues ∧ was constructed. The eigenvalues were λ1 > λ2 >

λ3, and the eigenvector corresponding to the value of c(xk) was
V = ( ⃗v1, ⃗v2, ⃗v3).

c) Custom T norm (Eq. 11):

Tk = λmax
c(xk)

C−1(xk) = λmax
c(xk)

VkΛ−1k VT
k . (11)

λmax
c(xk)

is the largest eigenvalue obtained from the covariance

matrix constructed with a local reference point k.
d) Transform the node RBF to (Eq. 12)

S = S(x) =
N

∑
k=1

ckϕ(∥ (xk − x)∥T) (12)

e) Compute the M matrix as follows (Eqs 13, 14, 15), which
facilitates later calculations by (Eq. 8):

M = L ⋅R = √λmax
c(xk)
⋅ √Λ−1 ⋅VT, (13)

λmax
c(xk)
= 1
2
λ1, (14)

∥ x∥T = √xTTx = √xTMTMx=∥Mx∥2. (15)

f) Replacing S(x) with fTk
(x,y,z), an anisotropic radial basis

function is obtained (Eqs 16, 17):

F(x,y,z) =
n

∑
k=1

wk(x,y,z) fTk
(x,y,z), (16)

fTk(x,y,z) = fTk(x) =
N

∑
k=1

ckϕ(∥ (xk − x)∥Tk)

XTk=∥R ⋅ Lk ⋅ x∥2

Lk =
[[[

[

h′x/max(h′x,h
′
y,h
′
z) 0 0

0 h′y/max(h′x,h
′
y,h
′
z) 0

0 0 h′z/max(h′x,h′y,h′z)

]]]

]

.

(17)
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The above is the anisotropic RBF interpolation model. The RBF
function varies from the node RBF function jointly by the rotation
matrix (R) and the stretching matrix (Lk). It finds the influence
range of the three directions (h´x, h´y, and h´z) and, finally, the
change range of the three directions. The rate of variation in the
three directions is set to form the diagonal matrix. In terms of the
fitting weights, weighting by grouping distance is more efficient for
pollutant distribution (Eq. 18):

wi = hi/hall, (18)

where hi is the current grouping distance and hall is the sum of all
grouping distances. The inherent properties of pollutants imply that
when the distance is smaller, the spatial correlation and the weight
are greater.

F(x,y,z) =
n

∑
k=1

wk(x,y,z) fTk
(x,y,z). (19)

2.6 Revising the formulation of the
anisotropic RBF interpolation function for
geo-shadowing

The above studies were only spatially interpolated in terms of
data and did not consider the impact of real geographic space. In
contrast, spatial fitting of the data for known and interpolated points
(unknownpoints) reliesonthecorrelationbetweenEuclideandistance
and pollution distribution, where the surrounding pollutant locations
(direction) and pollution values impact the pollutant distribution.
The influence is informed by relevant geoscientific experience; thus,
(Eq. 19) is adjusted to establish the correlation between pollution
valueandspatialpositionthroughquadraticweightdetermination.We
refer to this quadratic weight as the “geographic shading coefficient.”
A detailed explanation is provided below. Figure 4 shows that
the included angle between Point 3 and Point 2 concerning the
interpolation Point 0 is narrow and that the influence of Point 2 on
the interpolation Point 0 is more prominent than that of Point 3. In
this context, Point 2 would have some protection from Point 3. The
larger values observed for the other points of each angle lead us to
believe that either no geographic shading is present or that the impact
of geographic shading is minimal.

The space angle is calculated in a manner similar to that of two
dimensions. When calculating the angle between two vectors, the
dot product operation can be used to determine the relationship
between them and convert it to the angle value through the inverse
cosine (arccos) function. The dot product of two vectors, A and B,
can be computed in 3D using the following (Eq. 20)

A •B = |A| × |B| × cos θ, (20)

where |A| and |B| represent the length of vectors A and B and θ
represents the angle between them. According to the above (Eq. 20),
we can find the value of θ (Eq. 21).

θ = arc(A •B/(|A| × |B|)). (21)

The number of sample points will depend on the search ellipsoid
constructed, and the points in the ellipsoid will all be used for
interpolation calculations of unknown points.

The following formula is used to calculate masking
Eqs (22), (23):

Lij =
{
{
{

1 αij ≥ 360°/m

sinr θij = (1− cos2 θij)
r
2 αij < 360°/m

, (22)

w′i =
{
{
{

1

∏j=i−1
j=1

Lij

i = 1

i = 2,3, ...,m
, (23)

where m represents the number of sample points in an ellipsoid
search, Lij represents the shadowing degree of sample point j to
sample point i, and θij is the angle between any two points in space
and the interpolation point.

The calculation method used as pseudocode:

(1) Statistics indicate that the number of points in the ellipsoid
search ism.

(2) A depth-first search is conducted, and the angle between
sample points and interpolation points is calculated and stored
in the container.

(3) The values in the container are calculated.

F(x,y,z) =
n

∑
k=1

w′kwk(x,y,z) fTk
(x,y,z). (24)

2.7 Precision analysis

The precision and robustness of interpolation methods under
various basis functions were compared to evaluate the robustness
of the empirical shadowing weighted anisotropy RBF models and
methods. To this end, theKriging interpolation andRBF interpolation
methods were utilized in the comparative validation. Furthermore,
the following statistical metrics were used to evaluate the precision:
minimum (MIN), maximum (MAX), mean (ME), and root mean
square error (RMSE) (Ahn and Lee, 2022). Furthermore, the
determination coefficient (R2) is used to represent the fitting degre.
The corresponding formulae for calculating these statistical metrics,
where Z is the true value, z is the estimated value, Z is the average
value, n is the interpolation point, and the error was as follows (Eq.
25):

ε = Z− z. (25)

The minimum error expression (Eq. 26):

MIN = min(|εi|), i = 1,…,n (26)

The maximum error expression (Eq. 27):

MAX = max(|εi|), i = 1,…,n (27)

The expression of mean error (Eq. 28):

ME =
n

∑
i=1
|εi|/n, i = 1,…,n (28)

The root mean square error (Eq. 29):

RMSE = √
n

∑
i=1

ε2i /n, i = 1,…,n (29)
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FIGURE 5
(A) Original spatial location. (B) The position in space after rotation. The axis shows the three main directions of pollutant distribution.

The determination coefficient (Eq. 30):

R2 = 1−
∑(Zi − zi)

2

∑(Zi −Z)
2 (30)

3 Results and discussion

3.1 PCA interpretation of results

Some sample points in a search ellipsoid are shown in Table 2
for illustration. The first column of the table is the borehole ID.
The X column is the east coordinate, the Y column is the north
coordinate, the Z column is the elevation, and the C column is
the toluene pollutant content (mg/Kg). Points with higher pollutant
concentrations were chosen for the argument.Thematrix formula is
shown in (Eq. 31):

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

[

512273.8183 3360129.992 3.15

512342.9062 3360130.07 2.405

512273.8957 3360061.248 2.89

512342.984 3360061.326 2.12

512412.0724 3360061.405 2.298

512273.7409 3360198.734 2.56

512342.8283 3360198.812 2.53

512273.8183 3360129.992 2.15

512342.9062 3360130.07 1.405

512273.8957 3360061.248 1.89

512342.984 3360061.326 1.12

512273.7409 3360198.734 1.56

]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]

]

. (31)

We show the data graph to better explain PCA rotation.
Figure 5A shows the original data effect, and Figure 5B shows the
data distribution after PCA rotation.

FIGURE 6
Variogram of the X, Y, and Z-axes.
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TABLE 3 X, Y, and Z variogram fitting analysis.

Axis RSS R2 a

X 0.36 0.985 414.53

Y 0.11 0.977 309.44

Z 0.14 0.902 2.97

TABLE 4 2D accuracy analysis of 130 sample points.

MIN MAX ME RMSE R2

Kriging 0.036 10.91 2.68 6.09 0.871

RBF 0.024 14.98 4.11 7.12 0.832

This method 0.037 6.55 2.66 5.02 0.946

3.2 Analysis of the variogram of
contaminated areas

The distribution direction of pollutants was calculated above,
and the axis length of the ellipsoid in three directions was
determined by calculating the variation function to determine the
shape of the ellipsoid. In addition, Figure 6 shows the variogram
analysis of pollutant concentrations in the X-axis, Y-axis, and Z-
axis in a local range, and the boxes in the figure are sample data.
When the distance is below 207 m on the X-axis, the curvature
gradually increases due to the small distance. Beyond 207 m, the
curvature flattens. At 276.35 m, the curve tends to be parallel to
the X-axis. The variogram curve shows increased steepness around
207 m, indicating a significant spatial correlation within this range.
Therefore, with a total variable range of 414.53, it is feasible to
use the semi-variable range as the range calculated for the X-axis
direction of the model. A significant change in curvature occurs
at the abscissa of 206.29 m in the Y-axis. At approximately 155 m,
there is a pronounced curvature and spatial correlation, making it

feasible to select the semi-variable range as the search range in the
Y-axis direction. On the Z-axis, the curvature undergoes significant
changes after 1.98 m, with notable curvature and high spatial
correlation near 1.5 m.Therefore, the semi-variance is utilized as the
search range in the Z-axis direction.

The residual sum of squares (RSS) served as a metric for
assessing the correlation between the independent and dependent
variables. Fundamentally, a smaller RSS value indicates a stronger
spatial correlation. The coefficient of certainty (R2) was used to
estimate the goodness of fit of the regression equation. Variogram
analysis revealed regional anisotropy in the distribution of soil
pollutants, as summarized in Table 3 (RSS is the sum of squared
residuals. When the value of the semivariogram changes from the
nugget value to the sill value, the distance between sampling points
is called the range, that is, “a”).

3.3 Analysis of the precision of
contaminated areas

To assess the accuracy of the method, this section evaluates the
fitting effect of the model and the precision of the data. The Kriging
and RBF methods were selected for comparative validation. The
specific approach involves removing the known points one by one
for spatial interpolation. Each model is then evaluated based on
criteria such asMIN,MAX,ME, RMSE, and R2, calculated from the
comparison between true values and estimated values to determine
the reliability of the model.

3.3.1 Analysis of the precision of 2D spatial
interpolation for geo-shadowing weighted
anisotropy RBF-PCA

In this study, a stratumwith a sampling depth of 1 mwas selected
for two-dimensional precision analysis, as shown in Table 4.

We selected 130 samples from the soil layer at the 1 m depth.
Comparing the RMSE values, it is noticeable that the RMSE
(6.09) for Kriging does not change much with the RBF (7.12)
value. Conversely, the performance of the method proposed in
this article exhibits a slightly improved RMSE at 5.02 compared to

FIGURE 7
Precision analysis plot of the 2D interpolation method.
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FIGURE 8
2D interpolation of toluene contaminants for 130 sample points.

TABLE 5 3D precision analysis.

MIN MAX ME RMSE R2

Kriging 0.087 12.38 1.07 2.65 0.912

RBF 0.069 10.01 1.60 2.23 0.934

This method 0.057 6.33 1.22 2.58 0.953

the other methods. This is because the proposed method uses a
local interpolation method, and more points can be searched for
spatial fitting by rotation. In the fitting of extreme points, when
the observed value is 25.6 mg/kg, the fitting effect of the proposed
method is 19.2, which is significantly better than that of RBF (10.62)
and Kriging (13.76) (Figure 7). Furthermore, the R2 of the linear
regression between the observed and estimated values calculated are
Kriging (0.871), RBF (0.832), and the proposed method (0.946).

The 2D graph (Figure 8) illustrates a gradual decrease in
pollutant concentration from the central value of 24.5 mg/kg to a
level below 0.011 mg/kg.The fitting effect of the proposedmethod is
notably smooth, devoid of any fitting cavities.The region exhibiting a
high concentration of pollutants within the field corresponds to the
waste treatment zone of the plant. This figure effectively illustrates
the distribution range of pollutants in the soil.

3.3.2 Evaluating the analysis of 3D spatial
interpolation for empirical shadowing weighted
anisotropy RBF

The precision assessment of 3D spatial interpolation was
performed utilizing only vertical depth data. The main arguments

were demonstrated by point-by-point interpolation, as shown in
Table 5.

Through the analysis of 3D data and the comparison of RMSE,
it can be seen that the RMSE of the proposed method in 3D space
(2.58) is still better than that of Kriging (2.65). This is because
the anisotropic ellipsoid in the proposed method in 3D space can
change shape with the change of sample space. Thus, more known
points conforming to interpolation are searched. In geospatial
contexts, the involvement of a greater number of reasonable points
in estimating an unknown point is a key factor in improving the
RMSE evaluation metric. At the same time, the directionality in
3D space is more diverse, and the weight distribution of geoscience
direction plays an important role.This enables further quantification
of the varying degrees of influence each known point has on an
unknown point, thereby enhancing the RSME evaluation metric.
Compared with the RMSE in 2D space, the fitting effect of 3D
is better because there are more data points in 3D space. In the
analysis of extreme points, when the observed value is 40 mg/kg, it
is consistent with the 2D situation because the change of pollutants
near the extremepoints is relatively large.TheR2 in three dimensions
is 0.912 for Kriging, 0.934 for RBF, and 0.953 for the proposed
method (Figure 9).

As shown in Figure 10, by cutting the contaminated object
along the main axis, we learned that the cell body of a pollutant
at the waste site could contain a high concentration of pollutant in
this area. The vertical profile display offers a more comprehensive
representation of the pollutant distribution state, revealing a
maximum pollution value of 40 mg/kg at the surface that gradually
decreases to 2.23 mg/kg with increasing depth. This process
at hand does not follow a linear or conventional function
reduction approach. Within this reduction process, the lithology
of the soil from the surface down to filling, silt, silt sand,
and clay plays a significant role in determining soil porosity
and other related factors. Overall, the two cases mentioned
earlier suggested that combining anisotropy based on accurate
interpolation and the introduction of geological experience to better
allocate the weight of data improves the precision of the results. In
Figure 10, for the sake of intuitive data analysis, after interpolation,
we expanded the Z-axis by a factor of 70 during the image
display phase.

4 Conclusion

In this study, the RBF function was integrated with PCA to
redefine the local anisotropy, which varied within the sample
space in the form of an ellipsoid. The directional characteristics
of geoscience are introduced to improve the accuracy of
the algorithm. We called it the geo-shadowing anisotropic
RBF-PCA method.

For the 2D space, the RMSE values of Kriging, RBF, and
the proposed method are 6.09, 7.12, and 5.02, respectively. In
the interpolation results, the proposed method had better spatial
continuity, smoothness, and higher feasibility. For the 3D space,
the RMSE values of Kriging, RBF, and the proposed method
are 2.65, 2.23, and 2.58, respectively. The latter also has high
reliability.
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FIGURE 9
Precision analysis plot of the 3D interpolation method.

FIGURE 10
3D interpolation of toluene contaminants for 650 sample points.
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