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Hydrothermal activities
contribute to the strong metal
enrichments during early
Cambrian: evidence from the
comparison between black rock
series in Tarim and South China
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Cheng Cheng1 and Peng Qian1

1School of Geographic Science, Nantong University, Nantong, China, 2School of Geography Science,
Nanjing Normal University, Nanjing, China

The early Cambrian period is a critical time in Earth’s history, marked by
the second oxygenation of the atmosphere (known as the Neoproterozoic
Oxidation Event) and the rapid evolution of animals, as well as the worldwide
large-scale deposits. Polymetallic Ni-Mo deposits have been previously reported
in the black rocks at the base of the Cambrian strata on the Yangtze Block, South
China, while their genesis is still controversial, and their global occurrences
are uncertain. Therefore, we conduct a comprehensive analysis of trace
elements and rare earth elements in the black rocks at the base of the Yurtus
Formation in the Sugaitblak section (SGT) in Aksu, Tarim Block, and then make
a comprehensive study by combining our and other data from the Tarim and
Yangtze Block. The distribution patterns of the trace and rare earth element
data from our study and another two sections in the Aksu area have shown
that the black rocks in the Tarim were strongly enriched in V, Sr, Mo, Ba, and
U, moderately enriched in Zn, Cu, Cr, and Pb, and slightly depleted in Ni, and
Co during the early Cambrian. These enriched elements could mainly originate
from the waning hydrothermal fluids, and then precipitate and preserve in
sediments under anoxic environment. The comparison of trace elements in
the black rocks between the Tarim and the Yangtze Block suggests that the
types of enriched metal elements in these two regions were different, and
metal concentrations in the Yangtze Block were much higher than those in
the Tarim by 1–3 orders of magnitude. This result indicates that there are no
polymetallic Ni-Mo enrichment layers in the black rocks in the Tarim during the
early Cambrian, and the widespread polymetallic Ni-Mo enrichments in South
China have been more likely influenced by the local hydrothermal activity. It
could be further speculated that the early Cambrian period may have been an
active period for seafloor hydrothermal activity, with locally different chemical
components in hydrothermal fluids. Abundant metal nutrients brought by these
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hydrothermal activities may have been a potential factor for the rapid evolution
of life during this period.

KEYWORDS

polymetallic Ni-Mo enriched layers, rare earth elements, trace elements, black rock
series, early Cambrian, Tarim

1 Introduction

The early Cambrian was a crucial period, during which almost
all animal phyla on Earth suddenly appeared in a relatively short
time (Shu et al., 2014; Zhang et al., 2014). This biological event is
known as the famous “Cambrian Explosion” (Knoll and Carroll,
1999). Previous studies have shown that the rapid evolution of early
animals are closely related to the drastic changes in the surface
environment of the Earth during this period, including a dramatic
increase in atmospheric and oceanic oxygen levels, as well as some
significant chemical changes in the ocean (such as an increase in
the concentration of elements such as N, P, Mo, U, V, etc.) (Shields-
Zhou and Och, 2011; Och and Shields-Zhou, 2012; Lyons et al.,
2014; Chen et al., 2015; Reinhard et al., 2017). At the same time,
these chemical disturbances would lead to the formation of some
economic deposits, such as widely distributed phosphate deposits,
rhodochrosite deposits, and other metal deposits around the world
(Cook, 1992; Jiang et al., 2007; Xu et al., 2011; Gao et al., 2021). The
lower Cambrian black strata, composed of black shale and black
chert, arewidely distributed around theworld, including the Yangtze
Block in South China (Zhu et al., 2003), the Tarim Block in North
China (Li et al., 2022), the Small Karatau in Kazakhstan (Litvinova,
2007), and Oman (Ramseyer et al., 2013). Previous studies have
found that there are Ni-Mo sulfide deposits or Ni-Mo enrichment
layers at the bottom of the lower Cambrian black shale (Niutitang
Formation, Hetang Formation, and Xiaoyanxi Formation) in South
China (Guo et al., 2007; Jiang et al., 2007; Lehmann et al., 2007;
Gao et al., 2018). The formation of these deposits was likely closely
related to fluctuations in the oceanic chemical composition and
redox environment (Och and Shields-Zhou, 2012; Lan et al., 2017;
Yang et al., 2022). The research on the genesis of these deposits
could help with revealing the underlying causes of the biological
innovation in early Cambrian.

In the past few decades, numerous studies have been conducted
on the Ni-Mo enrichment layers on the Yangtze Block in South
China and it has been suggested that these polymetallic enrichment
layers are generally deposited in a sulfidic and anoxic marine
environment (Xu et al., 2013; Han et al., 2015), but the source
of these metals is still controversial. To data, there are three
possible scenarios, including: 1) submarine hydrothermal origin,
which means that the metal source of the Ni-Mo deposits was
mainly from the metal-rich hydrothermal fluids (Steiner et al.,
2001; Orberger et al., 2007; Xu et al., 2013). The deposition process
requires a large amount of organic matter reducing metal ions such
asNi,Mo, andU,whichwere thenpreserved in the anoxic sediments.
Therefore, the ratio of Ni, Mo, U, and other metal contents to total
organic carbon (TOC) in the lower Cambrian black shale were
far exceeds that of average shale; 2) seawater origin: that is, the
metal source of the Ni-Mo deposits was less affected or almost
unaffected by factors such as submarine hydrothermal fluids and

terrestrial debris, and its high metal content mainly came from
the seawater under the background of extremely low sedimentation
rates during the early Cambrian (Mao et al., 2002; Lehmann et al.,
2007; Lehmann et al., 2016); 3) Seawater and hydrothermal mixing
origin: that is, themetal source of theNi-Modeposit was contributed
by both submarine hydrothermal fluids and seawater at the same
time (Lan et al., 2017; Yang et al., 2022).

Previous studies on Ni-Mo deposits and enrichment layers have
mainly focused on the black shale deposited in early Cambrian on
theYangtze Block, and there have been relatively few studies on other
Blocks. Recently, there have been some studies on the trace metal
elements in the lower Cambrian black shale of the Tarim Block,
and have also identified the enrichments of the metal elements
(He et al., 2020; Liyuan et al., 2021; Zhu et al., 2022). However, it is
unclear whether the enrichment of these metal elements exhibited
the similar distribution patterns with those in South China. The
comparative study on the metal enrichments in Tarim and Yangtze
Blocks could help with revealing the genetic mechanisms of Ni-
Mo enriched layers in early Cambrian. Therefore, we conducted the
analysis of the rare earth elements and trace element contents in
black shale, chert, phosphorite samples from the Yurtus Formation
in the Aksu area, and combined them with other sections in the
Tarim region to analyze the source of metal elements, as well as
the sedimentary environments. Meanwhile, through the systematic
comparison between Tarim and South China, we aim to reveal the
global existence of the polymetallic Ni-Mo enrichment layers in the
Lower Cambrian black shale series, andmake further speculation on
the genetic mechanism of polymetallic Ni-Mo enrichment layers.

2 Geological setting

The Tarim Block is one of the oldest continents in China
(Zhang et al., 2012) and was once an isolated continent adjacent
to northwestern Australia in the early Cambrian (Li et al., 2018).
The Tarim Basin is located on the southern margin of the newly
formed South Tianshan Ocean, and transformed from a rift basin
to a continental margin basin against the background of the
Gondwana assemblage (Zhang et al., 2009; Cawood et al., 2016).
In the early Cambrian, the Tarim Basin experienced a large-scale
marine transgression (Lv et al., 2020), which led to widespread
deposition of a series of black rock series. These black rock series
consist of a combination of black shale (containing phosphatic
nodules) and chert (Figure 1A), which may be time equivalent with
the lowerCambrian black strata in theYangtze Basin of SouthChina.
The Sugaitblak section (SGT) in this study is located in the Aksu
area on the northwest margin of the Tarim Basin and was deposited
in the continental shelf facies (Gao and Fan, 2015; He et al., 2021;
Zeng et al., 2022).
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FIGURE 1
Sketch geological map of the northwestern Tarim Basin (A) and Aksu area (B), lithological column of the Yurtus Formation (C) [modified after Yao et al.
(2014), Wang et al. (2022)].

The Yurtus Formation of the Sugaitblak section in this study
unconformably overlies the Baiyun limestone of the Qigeblaq
Formation and is in conformable contact with the overlying
Xiaoerblak Formation (Zhou et al., 2014; Zhou et al., 2015). The
lower part of the Yurtus Formation ismainly composed of laminated
black chert, black shale, and phosphorite interlayers, the middle
part mainly consists of black shale, and the upper part mainly
comprise limestone (Figure 1B). According to previous studies
on paleontology in the Aksu area, Asteridium-Heliosphaeridium-
Comasphaeridium (AHC) assemblages have been found in the
siliceous phosphorite of the lower part of the Yurtus Formation
(Xiao, 1989; Yao et al., 2005; Zhang et al., 2023). In addition, small
shell fossils (SSF), such as Anabarites trisulcatus (Xiao, 1989;
Qian et al., 2009), have also been found in the phosphoric chert of
the lower part of the Yurtus Formation. Based on the fossil records
of AHC and SSF, it is believed that the lower part of the Yurtus
Formation belongs to the Cambrian Fortunian Stage, which is time
equivalent with the phosphatic nodular black shale at the bottom of
the Niutitang Formation on the Yangtze Block (Steiner et al., 2005).
In addition, the presence of Aldanella attleborensis in the middle
part of the Yurtus Formation indicates that this stratigraphic unit
may belong to the Cambrian Stage 2 (Li, 2013). Previous studies
have suggested that the Ni-Mo polymetallic enrichment layers in
the lower part of the Nantuo/Hetang/Xiaoyanxi formations on the
Yangtze Block deposited during the Cambrian Stage 2, with a Re-
Os isochron age of 521 ± 5 Ma (Xu et al., 2012). Therefore, the black

rock series in the lower and middle parts of the Yurtus Formation in
the TarimBasinmay be time equivalentwith theNi-Mopolymetallic
enrichment layers in the Yangtze region. Although some studies
suggest that the Tommotiid Lapworthella xinjiangensis found in the
upper part of the Yurtus Formation (Yue, 1992) are time equivalent
with the Sinosachites flabelliformis-Tanannuolina zhangwentangi
assemblage zone of the Meishucun Stage (Steiner et al., 2007), the
widespread occurrence of Cambroclavus fangxianensis fossils in this
stratigraphic unit (Yue and Gao, 1992) indicates the limestone in
the upper part of the Yurtus Formation probably deposited in the
Cambrian Stage 3 (Steiner et al., 2007). Therefore, the upper part of
the Yurtus Formation is time equivalent with the upper part of the
Niutitang/Hetang/Xiaoyanxi formations on the Yangtze Block.

3 Samples and methods

In this study, eight samples were sampled from the bottom of
the Yurtus Formation at the Sugaitblak Section (SGT), including five
black shale (SGT-5, SGT-7, -8, -9, and 10), two chert (SGT-3, SGT-
6), one phosphorite sample (SGT-4), and one dolomite sample from
the underlying formation (SGT-1). Fresh sampleswithout veinswere
selected in the laboratory and washed with Milli-Q water, and then
crushed and ground into 200 mesh and dried completely at 40°C for
the further geochemical analysis. About 50 mg of sample powder
(200 mesh) was weighed and digested by mixed HF and HNO3
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with a ratio of 1:3 in a Teflon-sealed digestion vessel placed in a
190°C oven for 48 h. After digestion, the sample was diluted with
3% HNO3 for the analysis of trace and rare earth element contents.
The element analysis was conducted in the laboratory of the Beijing
Research Institute of Uranium Geology, using an ICP-MS. The
analysis accuracy of most elements was better than 5%.

The calculation formulas for Eu anomaly and Ce anomaly are as
follows (Bau, 1996; Lawrence and Kamber, 2006):

δEu = (3 ∗ EuPAAS)/(2 ∗ SmPAAS +TbPAAS) (1)

δCe = CePAAS /(Pr 2
PAAS /NdPAAS) (2)

ThetraceelementdatawasnormalizedusingthePaleozoicAustralia
Average Shale (PAAS) (Taylor and McLennan, 1985) (Figure 3).
Enrichment factors are calculated to minimize the influence of debris
input on the element content in the sample as much as possible.

PAAS normalized formula as follows:

XPAAS = Xsample/Xaverageshale (3)

Enrichment Factor (EF) formula as follows:

EFelementX = (Xsample/Alsample)/(Alaverageshale/Alaverageshale) (4)

Xsample represents the content of the element in the sample; Xaverage shale
represents the content of the element in PAAS (Taylor and McLennan,
1985); Alsample and Alaverage shale represent the content of aluminum
element in the sample and average shale, respectively.

4 Results

4.1 Rare earth elements

Rare Earth Element (REE) and Yttrium (Y) contents of the black
rock series at the bottom of the Yurtus Formation in the Sugaitblak
section (SGT) of the northwestern Tarim Basin are shown in Table 1
(data of Eu and Ce anomalies are calculated based on Eqs 1, 2), and
the PAAS-normalized REE diagram is shown in Figure 2 (REE data
are normalized based on Eq. 3).

The total rare earth element (ΣREE) content of the black shale is
263.94 ppm–422.2 ppm, with an average of 331.86 ppm, indicating
a relatively high total REE content. The PAAS-normalized REE
diagram shows 1) light REEs depletion, with a ΣLREE/ΣHREE
ratio of 1.07–2.40, averaging 1.87; 2) negative Ce anomaly (δCe =
0.48–0.66); 3) slight positive Eu anomaly (δEu = 1.25–4.23); 4) slight
positive Y anomalies (δY = 1.38–1.57); 5) A relatively high Y/Ho
ratio of 35.5–40.5.

The rare earth element distribution pattern of the phosphorite
is similar to that of the black shale, with a ΣREE of 474.43 ppm,
indicating a relatively high total REE content.The PAAS-normalized
REE distribution pattern shows that 1) light REEs depletion, with a
ΣLREE/ΣHREE ratio of 0.90; 2) negative Ce anomaly (δCe = 0.62);
3) slight positive Eu anomaly (δEu = 1.78); 4) positive Y anomaly
(δY = 1.98); 5) high Y/Ho ratio, with Y/Ho = 49.35.

The rare earth element distribution pattern of the chert sample
is similar to those of black and phosphorite, but with much
lower ΣREE content of 15.08–25.88 ppm and an average value

of 20.48 ppm. The PAAS-normalized REE distribution pattern
shows that 1) light REEs depletion, with a ΣLREE/ΣHREE ratio
of 1.13–1.29; 2) negative Ce anomaly (δCe = 0.48–0.62); 3) slight
positive Eu anomaly (δEu = 1.38–1.60); 4) positive Y anomaly
(δY = 1.69–1.79); 5) a relatively high Y/Ho ratio, with Y/Ho=
41.34–46.33.

The rare earth element distribution pattern of the dolomite
sample is similar to typical seawater, showing that 1) light REEs
depletion with a ΣLREE/ΣHREE ratio of 1.32; 2) negative Ce
anomaly (δCe = 0.66); 3) slight positive Eu anomaly (δEu = 1.04);
4) positive Y anomaly (δY = 1.54); 5) a relatively high Y/Ho ratio,
with Y/Ho = 38.42.

4.2 Trace elements

Thetrace element contents are shown inTable 2.The enrichment
factors of trace elements are calculated based on Eq. 4.

In the black shale, Ba, Mo, V, U, and Sr show a high degree of
enrichment, among which: Ba ranges from 30635.00 to 69935.00
ppm, with an average value of 51509.40 ppm, and the enrichment
factor (EFBa) ranges from 41.33 to 97.34, with an average value
of 74.38; Mo ranges from 31.20 to 55.10 ppm, with an average
values of 41.38 ppm, and the enrichment factor (EFMo) ranges
from 25.67 to 49.05, with an average value of 38.26; V ranges from
2671.00 to 5157.00 ppm, with an average value of 3800.20 ppm,
and the enrichment factor (EFV) ranges from 14.65 to 40.28, with
an average value of 24.25. U ranges from 45.00 to 105.00 ppm,
with an average value of 66.08 ppm, and the enrichment factor
(EFU) ranges from 13.13 to 39.68, with an average value of 20.60;
Sr ranges from 2053.00 to 3757.00 ppm, with an average value
of 2918.80 ppm, and the enrichment factor (EFSr) ranges from
8.45 to 21.44, with an average value of 13.89. Meanwhile, Cr, Cu,
and Pb show a moderate degree of enrichment, among which:
Cr ranges from 365.00 to 764.00 ppm, with an average value of
511.60 ppm, and the enrichment factor (EFCr) ranges from 2.73
to 8.14, with an average value of 4.49; Cu ranges from 106.00 to
403.00 ppm, with an average value of 226.60 ppm. The enrichment
factor of Cu (EFCu) ranges from 1.74 to 9.44, with an average value
of 4.45; Pb ranges from 46.80 to 121.00 ppm, with an average
value of 69.26 ppm, and the enrichment factor (EFPb) ranges from
1.93 to 7.09, with an average value of 3.39. Differently, Zn does
not show significant enrichment, with a range of 75.10–201.00
ppm, an average value of 115.28 ppm, and an enrichment factor
(EFZn) ranging from 0.73 to 2.07, with an average value of 1.25.
On the contrary, Ni shows a moderate degree of depletion, with
a range of 20.70–65.50 ppm, an average value of 35.76 ppm, and
an enrichment factor (EFNi) ranging from 0.37 to 1.04, with an
average value of 0.59. Co shows a significant degree of depletion,
with a range of 0.90–1.88 ppm, an average value of 1.32 ppm, and an
enrichment factor (EFCo) ranging from 0.04 to 0.07, with an average
value of 0.05.

For the phosphorite, Ba, U, Sr, and Mo show high degrees of
enrichment, among which: Ba is 66027.00 ppm, with an enrichment
factor (EFBa) of 891.57; U is 52.60 ppm, with an enrichment factor
(EFU) of 148.93; Sr is 3103.00 ppm, with an enrichment factor
(EFSr) of 136.18; Mo is 21.70 ppm, with an enrichment factor
(EFMo) of 190.46. Zn, V, Cu, and Ni show a moderate degree of
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TABLE 1 Rare earth elements of black rock series from the Yurtus Formation in the Sugaitblak section, Aksu, Tarim Block.

Formation Qigeblaq Yurtus

No. SGT-1 SGT-3 SGT-4 SGT-5 SGT-6 SGT-7 SGT-8 SGT-9 SGT-10

Depth/m 0 0.45 0.7 0.95 1.15 1.25 1.55 1.68 1.82

Lithology Dolostone Chert Phosphorite Black
shale

Chert Black
shale

Black
shale

Black
shale

Black
shale

La 2.42 4.76 64.8 50.4 2 76.4 92.4 72.5 86.8

Ce 2.32 3.5 66.4 41.1 2.32 78.1 74.2 60.5 66.7

Pr 0.402 0.766 14 7.21 0.624 18.3 13 12.3 13.4

Nd 1.59 3.62 63 29 2.77 77.3 47.1 47.9 44.8

Sm 0.314 0.862 12.3 6.82 0.594 12.5 8.5 8.39 7.13

Eu 0.073 0.239 4.82 1.82 0.174 10.4 3.33 2.84 1.97

Gd 0.284 0.945 13.7 7.34 0.565 13.2 8.77 9.41 7.13

Tb 0.064 0.133 2.39 1.24 0.069 1.8 1.3 1.27 1.16

Dy 0.377 0.805 15.3 8.92 0.427 10.6 8.02 8.11 7.91

Y 3.65 8.71 191 89.1 4.63 102 65.8 71 72

Ho 0.095 0.188 3.87 2.29 0.112 2.7 1.8 2 1.78

Er 0.281 0.557 10.3 6.98 0.327 7.59 5.34 5.53 5.37

Tm 0.074 0.104 1.91 1.55 0.061 1.53 1.06 1.15 1.14

Yb 0.488 0.597 9.31 8.87 0.354 8.47 6.29 6.49 6.61

Lu 0.077 0.093 1.33 1.3 0.052 1.31 0.924 1.04 1.01

Y/Ho 38.42 46.33 49.35 38.91 41.34 37.78 36.56 35.5 40.45

δEu 1.04 1.38 1.78 1.25 1.59 4.23 1.95 1.69 1.35

δCe 0.66 0.62 0.62 0.66 0.48 0.52 0.6 0.55 0.48

enrichment, among which: Zn = 166.00 ppm, with an enrichment
factor (EFZn) of 17.14; V = 457.00 ppm, with an average value
of 307.60 ppm, and an enrichment factor (EFV) of 26.00; Cu =
48.10 ppm, with an enrichment factor (EFCu) of 5.01; Ni = 10.10
ppm, with an enrichment factor (EFNi) of 1.05. Differently, Cr,
Co, and Pb do not show significant enrichment. The enrichment
factor (EFV) of V is 26.74; Pb is 23.90 ppm, with an enrichment
factor (EFPb) of 10.49; Cr is 115.00 ppm, with an enrichment
factor (EFCr) of 9.18; Cu is 70.90 ppm, with an enrichment factor
(EFCu) of 12.45; Ni is 36.30 ppm, with an enrichment factor
(EFNi) of 5.79. However, Co shows a certain degree of depletion,
with a concentration of 1.58 ppm and an enrichment factor
(EFCo) of 0.60.

For the chert,Mo, Sr, U, andV show high degrees of enrichment,
among which Mo ranges from 4.46 to 7.45 ppm, with an average
value of 5.96 ppm, and an enrichment factor (EFMo) ranging from
75.38 to 184.06, with an average value of 129.72; Sr ranges from

FIGURE 2
Rare earth element distribution pattern of the black rock series at the
base of the Yurtus Formation in the Sugaitblak section. Data of
Paleozoic Australia Average Shale (PAAS) are from Taylor and
McLennan (1985).
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TABLE 2 Trace elements of black rock series from the Yurtus Formation in the Sugaitblak section, Aksu, Tarim Block.

Formation Qigeblaq Yurtus

No. SGT-1 SGT-3 SGT-4 SGT-5 SGT-6 SGT-7 SGT-8 SGT-9 SGT-10

Depth/m 0 0.45 0.7 0.95 1.15 1.25 1.55 1.68 1.82

Lithology Dolostone Chert Phosphorite Black
shale

Chert Black
shale

Black
shale

Black
shale

Black
shale

Sc 1.32 6.1 2.8 18.3 4.25 20.4 17.7 17 13.8

V 19.7 265 457 5157 210 3846 2671 3531 3796

Cr 4.32 85.3 115 764 15.6 480 365 494 455

Co 3.83 1.51 1.58 0.895 0.091 1.47 1.16 1.19 1.88

Ni 78.5 7.76 36.3 20.7 2.75 26.2 24.8 41.6 65.5

Cu 3.32 55.3 70.9 403 17.5 168 106 137 319

Zn 340 44.3 166 86.3 18.2 96 75.1 118 201

Sr 52.8 1178 3103 3659 771 3757 2053 2839 2286

Zr 9.23 4.11 7.6 70 2.95 87.6 84.6 81 82.9

Mo 0.878 4.46 21.7 32.1 7.45 55.1 31.2 48.2 40.3

Ba 50.2 16348 66027 51854 14703 64332 40791 69935 30635

Th 0.594 0.27 0.756 6.29 0.192 7.05 7.71 7.49 7.61

U 2.32 4.73 52.6 105 5.76 60.9 64.2 45 55.3

771.00 to 1178.00 ppm, with an average value of 974.50 ppm, and
an enrichment factor (EFSr) ranging from 95.24 to 99.55, with an
average value of 97.40; U ranges from 4.73 to 5.76 ppm, with an
average value of 5.25 ppm, and an enrichment factor (EFU) ranging
from 25.79 to 45.90, with an average value of 35.85. V ranges from
210.00 to 265.00 ppm, with an average value of 237.50 ppm, and
an enrichment factor (EFV) ranging from 29.86 to 34.59, with an
average value of 32.22. In the meantime, Cu, Pb, Cr, and Zn show
a moderate degree of enrichment: Cu ranges from 17.50 to 55.30
ppm, with an average value of 36.40 ppm, and an enrichment factor
(EFCu) ranging from 8.65 to 18.69, with an average value of 13.67;
Pb ranges from 10.40 to 15.10 ppm, with an average value of 12.75
ppm, and an enrichment factor (EFPb) ranging from 12.76 to 12.85,
with an average value of 12.80; Cr ranges from 15.60 to 85.30 ppm,
with an average value of 50.45 ppm, and an enrichment factor (EFCr)
ranging from 3.50 to 13.11, with an average value of 8.31; Zn ranges
from 18.20 to 44.30 ppm, with an average value of 31.25 ppm, and an
enrichment factor (EFZn) ranging from 5.29 to 8.81, with an average
value of 7.05. What’s more, Ni shows a slight degree of enrichment,
ranging from 2.75 to 7.76 ppm, with an average value of 5.26 ppm,
and an enrichment factor (EFNi) ranging from 1.24 to 2.38, with
an average value of 1.81. However, Co shows a slight degree of
depletion, ranging from 0.09 to 1.51 ppm, with an average value of
0.80 ppm, and an enrichment factor (EFCo) ranging from 0.10 to
1.11, with an average value of 0.60.

FIGURE 3
Trace elements in the black rock series at the base of the Yurtus
Formation in the Sugaitblak section. Data of PAAS are from Taylor and
McLennan (1985).

5 Discussion

5.1 Implication of rare earth and trace
elements in the SGT section

5.1.1 Similarities and differences between
different lithology

Rare earth elements in sedimentary rocks could provide good
records of seawater signature (Chen et al., 2006; Ling et al., 2013;

Frontiers in Earth Science 06 frontiersin.org

https://doi.org/10.3389/feart.2024.1343441
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Wang et al. 10.3389/feart.2024.1343441

Zhang et al., 2018). The rare earth distribution patterns of black
shales (SGT-5, SGT-6, -7, -8, -9, -10), chert (SGT-3, SGT-6), and
phosphorite (SGT-4) deposited in the early Cambrian are similar,
though with differences in contents. This result has also been
reported in other sections in the Aksu area (Yao et al., 2014).

On the other hand, the rare earth distribution patterns
of the three lithology show significant differences from typical
seawater (Johannesson et al., 2006) (Figure 2), and it is not yet
known whether these differences originated from local or global
signature, which require further analysis. Similarly, the distribution
characteristics of trace elements in different lithology within the
Yurtus Formation are basically the same, showing strong enrichment
of V, Sr, Mo, Ba, and U; moderate enrichment of Zn, Cu, Cr,
and Pb; and slight depletion of Zr, Ni, Co, Hf, and Th (Figure 3).
The consistency of the rare earth and trace element distribution
characteristics between the clastic rock (black shale) and chemical
sedimentary rocks (phosphorites and cherts) indicates that the
widespread distribution of black shales during this period can
effectively record seawater information. The metal element content
in black shales is barely affected by input of debris, making it an
excellent object for geochemical research on the metal enrichment
of early Cambrian Ocean.

5.1.2 Metal sources of the black rock series
The rare earth distribution pattern recorded in the limestone,

which underlies the Yurtus Formation in this study, can effectively
reflect the seawater information during the period before the
deposition of the Yurtus Formation (Figure 2). The limestone
sample (SGT-1) shows a “hook” shape, which is similar to the
modern seawater pattern (Johannesson et al., 2006), reflecting a
similar oceanic chemical environment between the late Ediacaran
and modern oceans. In the Yurtus Formation, the rare earth
distribution diagrams show similar patterns for black shale, cherts
and phosphorites, including strong Ce negative anomalies and Eu
positive anomalies (Figure 2).This phenomenon is commonly found
in the lower Cambrian black rock series in the Tarim Aksu area
(Yu et al., 2009; Yao et al., 2014; He et al., 2020; Li et al., 2022). Ce
negative anomalies are used to trace previous redox conditions,
due to the preferential absorbtion of oxidized Ce4+ onto particles
under oxic conditions (Ling et al., 2013). The degree of Ce negative
anomalies in seawater is related to the concentration of dissolved
oxygen, and hence modern oxygen-rich seawater shows a strong Ce
negative anomaly (Bau and Koschinsky, 2009; Tanaka et al., 2010;
Ling et al., 2013). Previous studies have shown that organic matter
from surface ocean biota can record information of Ce anomalies
in oxidized surface seawater, which is ultimately preserved in
sediments as organic matter settles (Pi et al., 2013). Therefore, the
Ce negative anomalies in the samples in this study may reflect the
recording of oxidized surface seawater by organic matter, which
is consistent with the relatively oxidized surface environment of
the Cambrian (Shields-Zhou and Och, 2011; Lyons et al., 2014).
Eu is enriched in highly reducing hydrothermal fluids (Michard
and Albarède, 1986; Olivarez and Owen, 1991), and Eu positive
anomalies are very common in marine hydrothermal sediments
(Cocherie et al., 1994). Therefore, the Eu positive anomaly in
the lower Cambrian black rock series in the Tarim Aksu area
could be considered as a sign of sediment influenced by seafloor
hydrothermal activity (Murray et al., 1991; Douville et al., 1999;

Owen et al., 1999; Yu et al., 2009; Long and Luo, 2017; He et al.,
2020). In the samples of this study, the rare earth distribution
pattern shows a positive Eu anomaly (1.26–4.32) and a negative Ce
anomaly (0.42–0.50) (Table 1), indicating that both seawater and
hydrothermal fluids were involved in the sedimentation process
(Barrett et al., 1990; Mills and Elderfield, 1995). In addition, all
samples in this study show similar characteristics in terms of Y/Ho
ratio (Y/Ho = 35.5–40.4, average 40.5), which is much higher than
the chondrite meteorite (Anders and Grevesse, 1989), and closer
to the typical seawater Y/Ho ratio (Zhang et al., 1994; Nozaki et al.,
1997). This indicates that the samples in this study can still reflect
the seawater environment to some extent. It is preliminary inferred
that the sedimentary rocks during this period were influenced
by a combination of seafloor hydrothermal activity and seawater
(Zhang et al., 2020).These factors can also explain the changes in the
rare earth distribution pattern from the Ediacaran to the Cambrian
sedimentary rocks.

As mentioned above, the distribution characteristics of trace
elements in different lithologies within the Yurtus Formation are
basically the same, showing strong enrichment of V, Sr, Mo, Ba,
and U, while Zn, Cu, Cr, and Pb are generally enriched and Zr,
Ni, Co, Hf, and Th are slightly depleted (Figure 3). Based on the
enrichment of Ni, Co, and other elements in the black shale of
the early Cambrian in South China (Tao et al., 2015), it is inferred
that the strong enrichment of metallic elements in the sedimentary
rocks may be related to basic and ultrabasic rocks, with which the
hydrothermal systemmay be in contact, leaching out a large amount
of Ni, Co, and other metallic elements. In general, basic magmas are
enriched inmetallic elements such asNi andCo,while felsicmagmas
are enriched in metallic elements such as Zr and Hf (Sakai, 1968). In
this study, neither of these two types of elements are enriched in the
SGT section, suggesting that there was no contact with felsic rocks
or basic and ultrabasic rocks, and that the chemical composition
of the hydrothermal system is significantly different from that of
South China. However, in any case, the rare earth and trace element
characteristics of the samples in this study indicate that the Tarim
Basin was mainly influenced by hydrothermal activity during the
early Cambrian, and that the hydrothermal fluids released into the
seawater partially changed the chemical composition of the seawater,
ultimately recorded in the sediment and forming a pattern ofmixing
information from both hydrothermal and seawater.

5.2 Genetic mechanism of metal
enrichments in the Tarim

Two another Cambrian sections in the Aksu area of the Tarim
were compiled in this study, including theXiaoerblak section (XCM)
and the Sugaitblak No. 2 section (SCM) (Yu et al., 2009), to better
explore the enrichment characteristics and genetic mechanism of
metal elements in the black rock series at the base of the Cambrian
strata in the Tarim (Figure 1). Previous studies have reported reliable
data of rare earth and trace element contents in these two sections
(Table 3; Yu et al., 2009), which have relatively complete outcrops.
According to the fossil record in the Yurtus Formation (Xiao, 1989;
Yao et al., 2005; Zhang et al., 2023), it can be estimated that the black
rock series at the base of the Yurtus Formation in the Aksu area
belongs to the Cambrian Fortunian Stage, the low-middle black
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TABLE 3 Trace and rare earth elements of black rock series from the Yurtus Formation in the Xiaoerblak section (XCM) and the Sugaitblak No. 2 section
(SCM) (data are from Yu et al., 2009).

No. XCM2-
1

XCM-
3

XCM-
5

XCM
7-1

XCM
8-1

XCM
9-1

XCM
9-2

XCM
10-1

XCM
10-2

XCM
10-3

XCM
10-4

XCM
10-5

Lithology Black
shale

Black
shale

Black
shale

Black
shale

Black
shale

Black
shale

Black
shale

Black
shale

Black
shale

Black
shale

Black
shale

Black
shale

Sc 10 10.5 3.31 8.9 8.4 5.85 4.81 3.53 3.53 4.24 3.58 3.25

V 2039 2965 1049 12207 3976 2883 1728 1324 998 1069 290 620

Cr 1163 1057 308 1471 646 609 411 265 187 252 119 218

Co 1.58 3 2.27 2.84 9.38 2.8 5.63 7.26 6.43 4.98 2.45 1.34

Ni 38.8 46 16.7 131 303 51.8 126 111 87.5 104 47.3 55.3

Cu 217 618 53.8 1038 245 179 149 105 60.3 89.8 53.6 45.5

Zn 60.9 178 86.7 553 955 164 332 419 213 282 70.5 66

Sr 3669 374 999 1044 307 288 453 215 234 238 431 335

Zr 87.6 98.4 11 82.2 66.2 57.7 45.1 30.7 30.4 34.2 32.6 30.7

Mo 11.6 9.9 1.1 78.9 57.1 42.6 40.9 35 47.8 24 14.8 6.04

Ba 26448 3730 6335 885 652 905 901 536 378 380 484 474

Th 7.14 8.25 1.34 6.04 4.93 4.39 3.78 2.05 2.29 2.48 2.48 2.58

U 37.1 27 74.4 194.9 71.8 65.9 70.6 69.2 52 32.8 25.6 21.1

La 52.4 43.9 101 62.8 48.2 35.4 54.5 16.1 20.3 23.3 23 22.1

Ce 52 44.5 133 53.4 55.2 38.8 63.3 18.7 22.8 26.1 27.5 20.6

Pr 10.4 7.58 22.3 13 10.3 7.62 13.5 3.2 4.19 4.78 4.54 3.92

Nd 42.7 30.7 94.8 58.7 43.3 31.2 61.8 13.3 17.3 19.7 18.4 15.8

Sm 9.35 6.42 20.9 13.6 9.66 6.7 15.2 2.66 3.65 4.19 3.42 3.07

Eu 1.95 1.51 4.42 3.27 2.31 1.41 3.3 0.58 0.81 0.91 0.82 0.67

Gd 10.8 7.28 23.6 18 11.6 7.55 19.2 2.78 4.09 4.54 3.72 3.32

Tb 1.72 1.16 3.67 2.9 1.81 1.28 2.79 0.45 0.67 0.7 0.55 0.53

Y 98.7 62.8 244 216 137 96.1 174 27.8 47.7 46.6 40.4 33.7

Ho 2.43 1.56 4.96 4.84 2.91 2.24 3.69 0.66 1.03 1.04 0.79 0.74

Er 7.42 5.28 14.9 15.7 9.48 7.38 11 2.03 3.33 3.23 2.78 2.32

Tm 1.14 0.81 1.81 2.16 1.27 1.04 1.33 0.27 0.42 0.43 0.34 0.33

Yb 7.26 5.54 9.49 12.91 7.5 6.25 7.18 1.76 2.65 2.69 2.12 2.08

Lu 1.12 0.9 1.29 1.93 1.11 0.95 1.05 0.25 0.37 0.38 0.29 0.29

Dy 11 7.65 23.8 20.6 12.7 9.32 17.7 2.92 4.21 4.73 3.72 3.27

Y/Ho 40.62 40.26 49.19 44.63 47.08 42.9 47.15 42.06 46.31 44.81 50.95 45.66

δEu 0.97 1.1 1 1.05 1.1 0.96 1.01 1.05 1.03 1.05 1.18 1.04

δCe 0.59 0.69 0.73 0.54 0.65 0.6 0.62 0.7 0.65 0.65 0.71 0.61

(Continued on the following page)
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TABLE 3 (Continued) Trace and rare earth elements of black rock series from the Yurtus Formation in the Xiaoerblak section (XCM) and the Sugaitblak
No. 2 section (SCM) (data are from Yu et al., 2009).

No. SCM1-
1

SCM2-
1

SCM3-
1

SCM4-
1

SCM4-
2

SCM5-
1

SCM5-
2

SCM5-
3

SCM5-
4

SCM5-
5

Lithology Black
shale

Black
shale

Black
shale

Black
shale

Black
shale

Black
shale

Black
shale

Black
shale

Black
shale

Black
shale

Sc 6.83 4.6 4.07 5.76 4.75 3.55 2.78 2.36 2.59 2.27

V 1668 1338 4419 5394 2286 1537 1217 874 789 686

Cr 740 455 593 805 518 340 225 151 146 133

Co 1.53 1.76 1.7 4.08 4.06 2.81 4.3 4.56 3.8 2.93

Ni 38.3 30.9 69.2 155 118 69.1 78.7 66 63.7 60.8

Cu 278 224 364 428 241 109 84.7 65.1 50 46.6

Zn 79.5 88.1 213 503 373 165 250 211 175 159

Sr 1348 458 681 450 198 247 223 150 157 132

Zr 62 36.5 31.1 49.5 41.3 34.2 25.3 20.4 21.5 18.6

Mo 7.16 13.7 26.7 55.3 33.2 27.8 25.3 27.6 23.9 16

Ba 10059 3355 2407 2512 519 602 479 305 253 211

Th 5.13 3.2 2.46 3.66 3.11 2.72 1.94 1.45 1.59 1.36

U 21.4 33.8 89.8 148.9 65.9 45.5 46.6 40.4 28.2 20.3

La 64.05 72.2 72.7 55.5 45 41.8 35.3 23.2 21.8 18.2

Ce 68.71 88.7 83.1 54.3 51.1 47 41 26.8 24.4 20.8

Pr 13.15 14.9 14.7 11.6 10.6 8.95 8.35 4.66 4.49 3.69

Nd 59.87 62.8 68.7 51 46.5 37.2 37.5 19.1 18.5 15.3

Sm 12.91 13.6 14.2 11.6 11 8.18 8.94 3.8 3.92 3.16

Eu 2.82 2.97 2.85 2.79 2.36 1.86 1.94 0.87 0.86 0.69

Gd 15.31 15.5 15.8 14.8 13.4 9.56 10.98 4.13 4.31 3.43

Tb 2.32 2.41 2.29 2.36 2.04 1.54 1.62 0.62 0.69 0.56

Y 53.8 102 153 167 77.6 90 67.2 25.2 31.5 26

Ho 3.89 3.26 3.9 3.88 2.96 2.57 2.17 0.92 1.03 0.84

Er 11.94 10.1 11.3 12.6 9.21 8.43 6.53 3.01 3.28 2.68

Tm 1.55 1.31 1.38 1.72 1.18 1.16 0.8 0.39 0.42 0.35

Yb 9.7 7.52 9.2 10.2 6.71 6.87 4.47 2.4 2.67 2.2

Lu 1.41 1.09 1.31 1.52 1 1.03 0.65 0.33 0.38 0.31

Dy 16.93 15.7 17.2 16.7 13.5 11 10.3 4.23 4.47 3.57

Y/Ho 13.83 31.29 39.23 43.04 26.22 35.02 30.97 27.39 30.58 30.95

δEu 1.02 1.03 0.98 1.07 0.99 1.05 1.01 1.11 1.04 1.03

δCe 0.69 0.72 0.76 0.59 0.61 0.63 0.64 0.68 0.65 0.68
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FIGURE 4
Rare earth element distribution diagram of black shale in the Yurtus Formation in the Aksu area. Data of XCM and SCM sections are from Yu et al.
(2009). Data of PAAS are from Taylor and McLennan (1985).

FIGURE 5
Trace element spider diagram of black shale in the Yurtus Formation in the Aksu area. Data of XCM and SCM sections are from Yu et al. (2009). Data of
PAAS are from Taylor and McLennan (1985).

shale belongs to theCambrian Stage 2, and the top limestone belongs
to the Cambrian Stage 3.

On the basis of stratigraphic correlation above, rare earth and
trace element data from three section have been plotted together
in Figures 4, 5. Obviously, the Eu anomaly and Ba contents of the
Sugaitblak section in this study are higher than those in other
two sections (Figures 4, 5). The high Eu anomaly may also be the
result of Ba interference during the analyzing process (Martínez-
Ruiz et al., 1999; Mazumdar et al., 1999; Shields and Stille, 2001).
Fortunately, there are no apparent covariance between Ba and Eu
anomalies in all three sections (Figure 6), indicating the reliability

of the Eu anomalies without interference of various Ba-containing
compounds during themeasurements. Furthermore, previous study
has shown that there are barite layers at the base of the Cambrian
in the Tarim region, and the abundant Ba is most likely derived
from hydrothermal fluids (Zhou et al., 2015). Therefore, the spatial
variations in Eu anomaly and Ba contents among the three sections
should reflect that the Sugaitblak section was more strongly affected
by hydrothermal activity, being closer to the hydrothermal vent,
while the other two compiled sections were further away. On the
other hand, it seems that the Eu anomaly is most pronounced
in the Cambrian Fortunian Stage, and the rare earth element
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FIGURE 6
Diagram of Ba/Eu versus δEu for Sugaitblak section in this study and XCM and SCM sections in the Aksu area. Data of XCM and SCM sections are from
Yu et al. (2009).

content is relatively high at this time (Figure 4). In the meantime,
the trace element data also shows that the Ba content is higher
in the Cambrian Fortunian Stage (Figure 5). All these results
could indicate a gradual weakening trend of hydrothermal activity
from the Cambrian Fortunian Stage to the Stage 2 (He et al.,
2020; Zhang et al., 2020). In addition, the comprehensive rare
earth distribution shows that all three sections in the Tarim
region have negative Ce anomalies (Figure 4) and Y/Ho ratios
close to seawater (Zhang et al., 1994; Nozaki et al., 1997) (Y/Ho =
13.83–50.95, average 39.56, with some samples having lower Y/Ho
ratios, as shown in Table 1), indicating that the sediment in the
early Cambrian of the Tarim Basin did indeed record information
from both hydrothermal fluids and seawater, or that the elemental
characteristics in the sediment were simultaneously influenced by
hydrothermal fluids and seawater (Zhang et al., 2020).

Ni and Zn deposits have been suggested to be often associated
with hydrothermal fissures on the seafloor, while Co deposits are
often far from hydrothermal sedimentary areas.Therefore, themetal
source can be determined by the relationship of these three elements
in sedimentary rocks (Choi andHariya, 1992). For the samples in the
low-middle part of the Yurtus Formation in Aksu area, data from all
three studied sections fell within the hydrothermal sedimentary area
inNi-Co-Zn ternary diagram (Figure 7), which is consistentwith the
positive Eu anomaly (Figure 4) (Yu et al., 2009). Therefore, it can be
confirmed that hydrothermal fluids are an important source ofmetal
elements for early Cambrian sediments in the Tarim. Unlike the rare
earth element, the distribution pattern of the trace element for all the
three studied sections (SGT,XCM, and SCM) are basically consistent
(the variation trend and average value are relatively consistent, as
shown in Figure 8A), without showing spatial differences. It may

be due to the slow sedimentation rate of trace elements relative
to rare earth elements, so that the trace element could diffuse
over longer distances (Olivarez and Owen, 1991). However, trace
elements show similar temporal variation pattern to rare earth
elements, with the average trace element content in the Cambrian
Fortunian Stage slightly higher than that in Cambrian Stage 2
(Figure 8B), indicating a gradual weakening trend of hydrothermal
activity with time (He et al., 2020; Zhang et al., 2020). In addition,
all three sections show depletion in Ni-Co and Zr-Hf, indicating a
single hydrothermal fluid source in the study area, which brings a
large amount of metal elements such as Mo, V, and U.

Redox-sensitive elements (including Mo, U, V, Co, etc.) are
sensitive to the concentration of oxygen in seawater, which are
usually dissolved in high-valence states under oxidizing conditions
and precipitated in low-valence states under anoxic or even sulfidic
conditions (Tribovillard et al., 2006). Therefore, the enrichment of
redox-sensitive elements in sediment can be the good proxy to
trace the marine redox conditions (Algeo and Maynard, 2008).
Due to the influence of many factors on element concentrations
(such as the sedimentary rates), element ratios are widely used to
trace the marine redox state, including: V/(V+Ni) > 0.6, which
usually indicates a reducing sedimentary environment (Hatch
and Leventhal, 1992; Jones and Manning, 1994), Ni/Co < 5
represents an oxidizing sedimentary environment, 5–7 represents a
suboxic sedimentary environment, and >7 indicates a sedimentary
environment from suboxic to reducing (Jones and Manning,
1994). For the three studied sections in this study (SGT, XCM,
SCM), V/(V+Ni) and Ni/Co ratios indicate anoxic sedimentary
environment (Figure 9).On the other hand, the negativeCe anomaly
in the Tarim region reflect oxygenated surface seawater recorded by
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FIGURE 7
Co-Ni-Zn ternary diagram of different lithologies in the Yurtus
Formation in the Aksu area [modified from Choi and Hariya (1992)].
Data of XCM and SCM sections are from Yu et al. (2009).

organic matter in the sediments (Figure 4) (Shields-Zhou and Och,
2011; Lyons et al., 2014). These results further suggest that metal
elements in the early Cambrian period in the Tarim Basin probably
originated from both hydrothermal fluids and seawater and were
then deposited and enriched in sediment under reducing conditions
in deep waters.

On the other hand, Mo and U tend to precipitate from seawater
in a low-valence state under anoxic condition (Tribovillard et al.,
2006). The difference is that Mo elements will rapidly precipitate
in the presence of H2S in seawater (Tribovillard et al., 2006). If Mo
cannot be replenished from the open ocean in time, its content in
the basin will decrease and eventually be recorded in sediments
(Algeo and Rowe, 2012; Tribovillard et al., 2012). Therefore, the
relationship between the enrichment factors of Mo and U in the
samples (i.e., Mo-U co-variation diagram) can be used to determine
the redox environment and the restrictions of the continental basin
(Algeo and Tribovillard, 2009). In the Mo-U co-variation diagram,
the data from three sections (SGT, XCM, SCM) in the Tarim Basin
are distributed in the anoxic sedimentary environment, consistent
with the implications of V/(V+Ni) and Ni/Co ratios (Figure 10).
Taking together, these results indicate that the Tarim Basin was
influenced by hydrothermal activity in the early Cambrian period,
bringing a large amount of metal elements such as V, Mo, and U
(V = 290–12,207 ppm, averaging 2334.36 ppm; Mo = 1.1–78.9 ppm,
averaging 28.47 ppm, U = 20.3–194.9 ppm, averaging 58.33 ppm).
These metal elements subsequently precipitated in large quantities
in the reducing marine environment and were then preserved in
sediments. In addition, the Mo-U co-variation diagram shows that
the data points exhibit a trend where the EFU increases faster than
the EFMo, indicating that H2S existed in the seawater of the Tarim
Basin in the early Cambrian period, causing rapid sedimentation
of Mo elements, and there was no timely replenishment from

hydrothermal fluids and the open ocean, resulting in a relative
decrease in Mo content in the seawater (Algeo and Tribovillard,
2009; Algeo and Rowe, 2012; Tribovillard et al., 2012). This suggests
that the Tarim Basin was a slightly restricted basin in the early
Cambrian period (Algeo et al., 2012), and further indicates that
the element enrichment pattern of seawater in the Tarim Basin
may at least partially record the chemical composition in the
open ocean.

5.3 Global existence and genetic
mechanism of metal enrichments in early
Cambrian

By making a comprehensive comparison between the middle
black shale of the Yurtus Formation (deposited in Cambrian
Stage 2) in the Tarim Basin and the contemporaneous Ni-Mo
enrichment layers in SouthChina [data are fromTable 4 (Jiang et al.,
2006; Tao et al., 2015)], it has been found that the trace element
enrichment on the two Blocks are significantly different (Figure 11).
In South China, theNi-Mo enriched layers are significantly enriched
in Ni, V, Zn, Mo, Co, etc. (EFNi = 443.01–19994.85, average
4522.90; EFV = 2.25–151.50, average 32.63; EFZn = 68.19–6660.13,
average 1793.37; EFMo = 15897.78–3225847.88, average 481113.52).
In the Tarim, except for Mo, V, and Zn elements (EFMo =
11.99–304.75, average 143.45; EFV = 11.38–196.71, average 65.41;
EFZn = 1.47–35.11, average 14.99), Cr in the black shale from
the middle part of the Yurtus Formation is also enriched (EFCr =
6.37–32.32, average 18.32), while Ni only shows a slight degree of
enrichment (EFNi = 1.44–16.31, average 7.82), and Co even shows
a certain degree of depletion (EFCo = 0.14–2.25, average 0.91).
Therefore, it can be seen that the differences in trace elements in
black rock series at the base of the Cambrian strata between the
Tarim Basin and the South China mainly manifest in: 1) different
types of enriched metal elements; 2) different degrees of element
enrichment, differing by 1–3 orders of magnitude.

The Ni-Mo enriched layers/deposits at the base of the Cambrian
strata in South China are important economic metal deposits
(Zhang et al., 2022). Although a large amount of research has
been carried out, the genesis mechanism of these deposits remains
controversial. The focus of the controversy is whether metals
such as Ni and Mo are only derived from seawater or whether
there is a contribution from hydrothermal activity (Steiner et al.,
2001; Mao et al., 2002; Lehmann et al., 2007; Orberger et al., 2007;
Sláma et al., 2008; Xu et al., 2013; Lehmann et al., 2016; Lan et al.,
2017; Yang et al., 2022). As is mentioned above, the Ni-Mo enriched
layers in South China are mainly enriched in Mo, V, Zn, Ni
and Co, while the contemporaneous black shales in Tarim are
enriched in Mo, V, Zn and Cr, with Ni slight enrichment and Co
depletion. It has been suggested in this and previous studies that
the both South China and Tarim basin were weakly restricted basins
with relatively rapid seawater renewal rates in the early Cambrian
(Zhang et al., 2020; Wei et al., 2021; Wang et al., 2022). Assuming
the metal enrichment in South China are solely derived from
seawater, seawater was probably simultaneously enriched in Mo, V,
Zn, Ni, and Co elements. Meanwhile, it has been suggested in this
and previous studies that the metal enrichment in Tarim probably
derived fromboth seawater and local hydrothermal fluids (Yao et al.,
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FIGURE 8
Average trace element content in the Yurtus Formation in the Aksu area. (A) Average trace element content in the Cambrian Fortunian Stage; (B)
Average trace element content from Cambrian Fortunian to Stage 2. Data of XCM and SCM sections are from Yu et al. (2009).

FIGURE 9
The V/(V+Ni)-Ni/Co diagram of black shale in the Yurtus Formation in
the Aksu area. Data of XCM and SCM sections are from Yu et al. (2009).

2014; Zhang et al., 2020). In this case, the enrichment of Ni and Co
elements should also be theoretically recorded in the Tarim Basin,
unless they have been diluted by local hydrothermal fluids. In fact,
Ni and Co in the contemporaneous black rock series in Tarim are
much less enriched or even relatively depleted, requiring Ni and
Co depletion in the hydrothermal fluid. However, the submarine
hydrothermal flux into the basin was unlikely large enough to
cause the dilution effect on Ni and Co elements by two or three
orders of magnitude in element enrichment between the Tarim and

FIGURE 10
The Mo-U co-variation diagram of black shale in the Yurtus Formation
in the Tarim Basin [modified according to Algeo et al. (2012), Algeo
and Tribovillard (2009), Tribovillard et al. (2012)]. Data of XCM and SCM
sections are from Yu et al. (2009).

South China. Meanwhile, the differences cannot be explained by the
differences in sedimentation rates between the two basins as well.
Therefore, it can basically rule out the hypothesis that the Ni-Mo
enriched layers at the base of the Cambrian strata in South China
are solely derived from seawater.

Indeed, many studies suggest that the Ni-Mo enriched layers at
the base of the Cambrian strata in South China have involvement
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TABLE 4 Trace elements of Ni-Mo enrichment layers from the Lower Cambrian Niutitang Formation, South China (data are from Han et al., 2015;
Jiang et al., 2006).

Sample Sc V Cr Co Ni Cu Zn Sr Zr Mo Ba Th U

SD6-10 1.32 217 43.5 261 20679 1997 5532 56.8 12.8 72913 211 0.33 11.2

SD3-16 6 204 38.2 316 36194 2628 95774 320 19.8 36643 161 3.4 424

SD7-1 7.81 198 56.9 437 67330 3847 62495 402 34.8 36267 267 4.46 359

SD7-2 12 237 50 300 38720 2772 66602 426 45.6 31242 288 5.77 431

SD7-3 2.83 61.5 16.6 109 14688 740 12915 298 8.91 7346 2875 1.42 156

SD8-7 5.5 105 50.5 137 18050 1116 16842 286 30.4 25647 502 3.02 219

SD8-8 2.96 71.2 25.1 150 21231 1201 10045 306 8.23 17569 259 1.75 143

SD5-4 5.96 152 51.3 275 48284 2530 115515 322 22.3 37492 1041 3.72 512

SD1-6 7.08 552 79.9 397 51009 2545 14637 278 70.1 40082 403 4.32 373

JL-1 5.13 151 48.8 409 70292 3314 116712 294 17.4 29857 2173 3.01 520

DJLZ2-1 2.5 158 51.7 368 30347 3339 26175 74.1 18 84922 1802 1.24 74.3

DJLZ3-1 7.04 163 38.5 180 19942 1484 35800 414 35.5 30714 481 3.34 257

DJLZ3-2 8.42 184 50.5 313 41538 2440 49439 312 31.5 49905 634 3.72 354

HN-1a 0.97 52.8 22.9 9.62 9237 814 1284 46.2 1.06 2027 27 1.13 57.2

HN-1b 0.1 14.9 6.73 0.45 615 68.7 204 3.87 0.99 552 66.6 0.17 16.6

HN-1c 0.3 358 39.7 42.6 7381 248 390 7.44 4.98 26973 40.3 0.23 90.6

HN-1d 0.35 149 17.6 3.52 595 24 39.7 2.17 11 1407 128 0.1 5.72

HN-2a 0.87 25.4 13.1 8.49 8789 429 1739 142 0.4 1203 40 0.97 61.9

HN-2b 0.18 10.4 6.5 0.57 751 74.9 194 22.2 0.43 490 25 0.45 34.2

HN-2c 0.3 152 23.2 41.8 9792 451 374 4.04 4.71 19677 8.64 0.13 123

HN-2d 0.46 102 16.8 3.66 688 40.4 39.7 2.1 11.1 1007 119 0.08 6.8

GZ-1a 1.49 64.4 1.6 2.72 578 62.4 162 324 2.06 369 134 1.52 28.5

GZ-1b 0.09 7.65 0.3 0.88 53.5 6.79 101 17.6 1 76.8 157 0.3 17.3

GZ-1c 0.61 283 14.7 9.8 1494 199 235 17.9 6.27 418 354 0.46 20.5

GZ-1d 0.4 97 6.11 0.41 64.1 9.02 18.6 7.74 11.9 16.6 173 0.09 2.82

of hydrothermal activity (Steiner et al., 2001; Orberger et al., 2007;
Xu et al., 2013), and some studies specifically point out that
the Ni-Mo enriched layers in South China have characteristics
of being rich in Ni, Pb, Co, and other elements, indicating
that the submarine hydrothermal fluids in the South China
sedimentary basin have interacted with basic and ultrabasic rocks
and leached metal elements (such as Ni, Pb and Co) from the rocks
(Jiang et al., 2006; Zhang et al., 2014; Lan et al., 2017). In contrast,
the contemporaneous Cambrian Strata in Tarim did not show
similar characteristics, with only slightly Ni enrichment and Co

depletion, which indicates totally different chemical composition
of the hydrothermal fluid. Meanwhile, the Ni-Mo enriched layers
in Tarim are also depleted in Zr and Hf, which exclude the
possibility of the hydrothermal fluid interaction with felsic rocks.
Previous study has reported underlying rock series containing
metamorphic basic-intermediate volcanic rocks inTarim (Zhu et al.,
2018). The hydrothermal system in Tarim probably originated from
intermediate magma ormigrated upwards through the intermediate
rocks in early Cambrian, and leaching amount of Mo, V, U into
the seawater.
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FIGURE 11
Trace element spider diagrams of black shales in the middle section of the Yurtus Formation in the Tarim Basin and Ni-Mo ore layers in the Niutitang
Formation in South China. Data of Yurtus Formation in Tarim are from Yu et al. (2009), and data of Niutitang Formation in South China are from
Jiang et al. (2006) and Tao et al. (2015).

Taking into account the significant differences in the degree of
metal enrichment at the base of the Cambrian strata in the Tarim
and South China (differing by 1–3 orders of magnitude), it could be
concluded that there are no Ni-Mo enriched layers in Tarim similar
to those in South China. Both metal enrichments on the two Blocks
were likely influenced by the local hydrothermal activity, only with
different types of hydrothermal fluids, which resulted in discrepancy
in content and types of their metal elements. Previous studies
have suggested that the hydrothermal activity mainly occurred
in slope area in South China, which is totally consistent with
the distribution of Ni-Mo enriched layers (Zhao et al., 2024). In
this study, an active seafloor hydrothermal activity was confirmed
in Aksu area. However, given that the limited data published
in Tarim, it is difficult to determine the detailed distribution of
the hydrothermal system throughout the Tarim basin by now,
which await further study. Nevertheless, both continental basins
were influenced by hydrothermal activity during the same period,
supposedly indicating a period of global submarine hydrothermal
activity. The extensive hydrothermal fluids brought abundant metal
nutrients and may have been one of the important causes for
the increase in marine productivity, biodiversity, and rapid animal
evolution (Zhu, 2010). This conclusion needs to be confirmed by
further research in the future.

6 Conclusion

Polymetallic Ni-Mo enriched layers have been verified to be
widely developed in the black rock series at the base of the Cambrian
strata in SouthChina, yet their genesismechanism remain unsettled.
This work has conducted a comprehensive study on the trace and
rare earth elements of the black rock series deposited during early
Cambrian in Tarim, attempting to make a systematic comparison
on metal enrichments between South China and Tarim. The new

and previous published data from the Tarim suggest that the black
rock series deposited in early Cambrian were mainly enriched in
Mo, V, Zn and Cr, with Ni slight enrichment and Co depletion.
Thesemetal elementsmainly derived from thewaning hydrothermal
fluids, and precipitated and preserved in sediments in a reduced
seawater environment. On the contrary, the contemporaneous black
rock series in South China were generally enriched in Mo, V, Zn,
Ni and Co, with much higher metal concentrations by 1–3 orders of
magnitude.These results could indicate that the polymetallic Ni-Mo
enriched layers did not develop in the Tarim and were at least partly
derived from the local hydrothermal activities in South China. We
further proposed that the early Cambrian may have been an active
period of submarine volcanoes, which have provided large number
of nutrient elements for the rapid evolution of animals.
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