
TYPE Original Research
PUBLISHED 26 June 2024
DOI 10.3389/feart.2024.1342468

OPEN ACCESS

EDITED BY

Nick Varley,
University of Colima, Mexico

REVIEWED BY

Mario La Rocca,
University of Calabria, Italy
Gabriela Alejandra Badi,
National University of La Plata, Argentina
Francesca Bianco,
National Institute of Geophysics and
Volcanology (INGV), Italy

*CORRESPONDENCE

Pablo Rey-Devesa,
pablord@ugr.es

RECEIVED 21 November 2023
ACCEPTED 30 May 2024
PUBLISHED 26 June 2024

CITATION

Rey-Devesa P, Carthy J, Titos M, Prudencio J,
Ibáñez JM and Benítez C (2024), Universal
machine learning approach to volcanic
eruption forecasting using seismic features.
Front. Earth Sci. 12:1342468.
doi: 10.3389/feart.2024.1342468

COPYRIGHT

© 2024 Rey-Devesa, Carthy, Titos, Prudencio,
Ibáñez and Benítez. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Universal machine learning
approach to volcanic eruption
forecasting using seismic
features

Pablo Rey-Devesa1,2*, Joe Carthy3,4, Manuel Titos3,4,
Janire Prudencio1,2, Jesús M. Ibáñez1,2 and Carmen Benítez3,4

1Department of Theoretical Physics and Cosmos, Science Faculty, Avd. Fuentenueva s/n, University of
Granada, Granada, Spain, 2Andalusian Institute of Geophysics, University of Granada, Granada, Spain,
3Department of Signal Theory, Telematics and Communication, University of Granada, Informatics
and Telecommunication School, Granada, Spain, 4Center for Information and Communication
Technologies Research (CITIC), University of Granada, Granada, Spain

Introduction: Volcano seismology has successfully predicted several eruptions
and includes many reliable methods that have been adopted extensively
by volcanic observatories; however, there are several problems that still
lack solutions. Meanwhile, the overwhelming success of data-driven models
to solve predictive complex real-world problems positions them as an
effective addition to the monitoring systems deployed in volcanological
observatories.

Methods: By applying signal processing techniques on seismic records, we
extracted four different seismic features, which usually change their trend
when the system is approaching an eruptive episode. We built a temporal
matrix with these parameters then defined a label for each temporal moment
according to the real state of the volcanic activity (Unrest, Pre-Eruptive, Eruptive).
To solve the remaining problem developing early warning systems that are
transferable between volcanoes, we applied our methodology to databases
associated with different volcanic systems, including data from both explosive
and effusive episodes, recorded at several volcanic scenarios with open and
closed conduits: Mt. Etna, Bezymianny, Volcán de Colima, Mount St. Helens
and Augustine.

Results and Discussion: This work proposes the use of Neural Networks
to classify the volcanic state of alert based on the behaviour of these
features, providing a probability of having an eruption. This approach offers a
Machine Learning tool for probabilistic short-term volcanic eruption forecasting,
transferable to different volcanic systems. This innovative method classifies the
state of volcanic hazard in near real-time and estimates a probability of the
occurrence of an eruption, resulting in a period from at least hours to several
days to forecast an eruption.
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Introduction

Volcanic eruptions are powerful and complex natural phenomena
that can cause significant impact to the environment, human
lives and infrastructure. Being able to forecast and understand
these events is crucial to enable the instigation of preventive
measures and to mitigate the associated risks. For decades, the
scientific community has been developing reliable volcanic eruption
monitoring methods and early warning tools. Volcanoes are
dynamic systems with multiple correlated geophysical variables,
like seismicity, temperature anomalies, ground deformation or gas
emission (Fee et al., 2020; Girona et al., 2021; Angarita et al., 2022;
Grapenthin et al., 2022; Torrisi et al., 2022; Shreve et al., 2023). The
analysis and interpretationof these time-series remains a difficult task,
requiring an interdisciplinary approach.

Between these disciplines, some of themost used tools inwarning
systems come from volcano seismology. Volcanic processes generate
seismic activity that can be recorded as time series and studied
to understand how the volcanic system is evolving. Through the
extraction of different parameters of this signal, like the energy and
the frequency content, several tools have been developed capable
of finding possible precursory indicators whenever an eruption is
approaching. Some of these methods are based on the study of the
temporal evolution of these seismic parameters (Boué et al., 2015;
Boué et al., 2016;Caudron et al., 2021;Ardid et al., 2022),while others
are based on the classification of different types of seismic signals, that
seismologists have been associating to different eruptive processes
occurring in the volcano (Chouet and Matoza, 2013; McNutt and
Roman, 2015; Girona et al., 2019).

Recently, machine learning (ML) emerged as an interesting
and promising tool for pattern recognition and volcanic
eruption forecasting (Curilem et al., 2009; Malfante et al., 2018a;
Malfante et al., 2018b; Manley et al., 2020). Due to its capability
of fast processing, the problem of large databases is being solved,
and ML is providing itself to be a robust real-time monitoring tool,
allowing continuous surveillance of volcanic processes and a rapid
identification of significant changes in volcano-seismic patterns, not
evident with traditional methods (Titos et al., 2018a; Manley et al.,
2021), as well as improved classification of volcano seismic events
associated with different volcanic processes (Titos et al., 2018b;
Titos et al., 2019; Tan et al., 2023).

However, ML solutions still have unsolved challenges and
limitations (Carniel and Guzmán, 2020; Whitehead and Bebbington,
2021). Performance of ML models depends on both the quality and
the size of the available dataset. If the conditions of the volcanic
system change abruptly within the training data, or if new volcanic
phenomenaappear, the classificationcapabilityof themodelmightnot
be very precise. Another limitation of ML models is that they fail to
generate evidence to enable the formulation of an underlying physical
model supported by geophysical and geochemical data to explain the
results they are obtaining. Thus, human supervision and experts are
still needed for interpreting the results obtained at observatories.

Besides these limitations, signal processing techniques
have enabled the development of volcanic early warning tools,
demonstrating its capability to detect significant changes in volcanic
and seismic activity (Rey-Devesa et al., 2023b; Ardid et al., 2022;
Caudron et al., 2020; Dempsey et al., 2020). This allows better
hazard evaluation policy and protection for the population living in

TABLE 1 Seismic Features and formula used to calculate them.

Seismic feature Formula

Energy
n
∑
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S[i]2

Frequency Index log10(
Ehighfreq
Elowfreq
)

Kurtosis 1
n

n
∑
(i=1)
( S[i]−S

σS
)
4

Shannon Entropy −
n
∑
(i=1)

P(S[i]) log2 (P(S[i]))

hazardous regions.These techniques take data frommultiparametric
forecasting systems and can provide a better understanding of the
underlying volcanic processes. They have great potential to detect
different type of changes in the system, their performance being
independent of the type of seismicity recorded (Rey-Devesa et al.,
2023a; Steinke et al., 2023).

In this work we show the forecasting potential of a machine
learning volcano-independent classification tool based on the
temporal evolution of 12 different seismic features, before and after
volcanic eruptions.We defined a label associated to the eruptive stage
as a function of the volcanic activity recorded on a set of different
volcanoes (unrest period, pre-eruptive activity and eruptive volcano).
Then we applied signal analysis techniques to the seismic records
of these volcanoes in order to extract underlying seismic features.
A moving window of 10 minutes was used with an overlap of 50%,
generating a vector of features for each window, considering these
as temporal units. After this, we associated the volcanic stage label
with each temporal unit of the volcanoes studied, each of them with
their corresponding values of the seismic features calculated.We used
different volcanic systems to test the transferability and universality
of the method. The studied volcanoes are associated with different
explosivemechanisms,pre-eruptiveactivitiesandsourceprocesses;we
worked with data from Augustine (United States), Mount St. Helens,
(United States), Volcán de Colima (Mexico), Mt. Etna (Italy), and
two different eruptive periods of Bezymianny (Russia), recorded in
2007 and 2017 respectively. This selection was dependent upon data
availability. To make the values obtained for the different volcanoes
comparable we normalized them using a z-score normalization.Then
we implemented a Neural Network classification model and tested
its performance for determining the volcanic stage of the system,
based on the values of the seismic features. This model classifies
the volcanic state of activity, generating a risk label in near real-
time. In addition, it estimates the probability of being in each of
the possible states. In this work we have seen that this probabilistic
numeric value of having an imminent eruption increases whenever
the volcanic eruption is approaching, independently of the volcanic
system studied. This allows the surveillance team to consider the
temporal evolution of a probabilistic numeric value as a reliable
forecasting tool. This machine learning model is straightforward and
allows its implementation in small and less powerful devices; the
algorithm focusses onTinyMachine Learning applications, to achieve
the minimum of computation power and time required for analysing
the data (Immonen and Hämäläinen, 2022).

The results obtained in this work evidence the reliability of
this method as an automatic tool capable of forecasting volcanic
eruptions with great potential, and it is shown to be transferable to
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FIGURE 1
Correlation Matrix showing the relation between the temporal evolution of the 12 different features extracted from the seismic signal and used as the
input for the neural network.

different volcanic systems around the world. The method could be
implemented in volcanic observatories with a consideration of not
only seismic datasets. We are able to define a volcanic risk alert state
in near real-time based on the experience of previous case studies.

Method and materials

Characterizing seismic signals is possible by using a small set of
underlying features. Based on the work of Rey-Devesa et al. (2023a),
and by using four seismic features (Energy, softened Shannon
Entropy, Kurtosis and Frequency Index) most properties of an
evolving volcanic system can be understood (Table 1). Traditionally,
the energy of the seismicity and the source process of the seismic
activity, defined through the waveform and spectrum of the seismic
records, were used to understand the behaviour of the volcanic
system and characterize its activity (McNutt and Roman, 2015).The
study of parameters like Kurtosis and Frequency Index reflects the
type of activity present in the volcano; kurtosis characterizes the
presence of spectral peaks in temporal series, so impulsive high
frequency signals like volcanic tectonic events will induce changes
in the Kurtosis values (Cortés et al., 2015); on the other hand,
the frequency index indicates changes in the spectral tendency of
the signal, so energetic tremor or a swarm of long period events,
which are both low frequency signals, will produce a displacement
of the Energy content to the lower frequency bands, reflected
in the trend of the Frequency Index (Bueno et al., 2019; Rey-
Devesa et al., 2023a). In addition, Shannon Entropy is a measure
of the uncertainty, or the amount of information, of a dataset,

which provides a quantitative value of the predictability of the
system; Shannon Entropy decreases whenever the volcanic seismic
signals are homogeneous; thus, the changes of a volcano self-
organizing prior to an eruption are reflected in a decreasing trend
of the temporal evolution of the Shannon Entropy to minimum
values (Shannon, 1948; Delgado-Bonal and Marshak, 2019; Rey-
Devesa et al., 2023b). With these seismic features, we built a
temporal matrix that involves data from several volcanoes; the data
correspond to both eruptive and non-eruptive phases, involving
seismicity associated to the noise prior of the eruption, the pre-
eruptive activity, and the explosions. We want to highlight that we
are working with databases from different volcanoes, each one of
them with its own type of explosive activity, magma characteristics,
source processes, pre-eruptive seismicity and conduit opening
(Acocella et al., 2024).

In Table 1 we can see the formulas used to estimate the values of
our features in each window of analysis. Notice that S[i] is the value
of the filtered seismic signal at i. In the estimation of the Frequency
Index, we have used the energy measured in the frequency band
between 1 and 5.5 Hz for the low frequencies, and for the high
frequency band the energy between 6 and 16 Hz, following the
results of previous works (Rey-Devesa et al., 2023a). In the formula
of Shannon Entropy, the P stands for probability density function.

Several authors have used these set of features among others
with the idea of classifying different volcanic-seismic signals
(Malfante et al., 2018a; Malfante et al., 2018b; Titos et al., 2018a;
Titos et al., 2018b). In this work we use this experience to take a step
forward and automatically classify the volcanic alert level, defining
three labels of volcanic activity (unrest, pre-eruptive and eruptive)
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FIGURE 2
Flowchart of the methodology designed for this analysis. In first place we apply signal processing techniques over the seismic records of each volcanic
dataset, creating a matrix with the temporal evolution of the seismic features. We use a z-score normalization for each matrix and create a unique
matrix involving all the datasets, which now are comparable. We label this matrix in function of the volcanic state of the system (unrest, pre-eruptive
and eruptive). We do the analysis independently for each dataset, so we leave one dataset out every time we run the model. Finally, we create a neural
network model with a hidden dense layer of 32 units and a ReLU activation function and a second layer with a softmax function for classification. We
use a k-fold cross validation model for the training; each of the 5 iterations use 80% of the data for training and 20% for validation. The model obtained
is run over the excluded volcanic dataset.

and associating them to the values of these features. We consider
as unrest a deviation of the typical background noise, that might
or might not prelude an eruption (Phillipson et al., 2013). When
the recorded seismic activity increases significatively, reflecting an
imminent eruption, we define the pre-eruptive state (or impending
eruption). This defines a database useful to compare with new
datasets and, based upon that comparison, establish a real-time
definition of the volcanic state.

Building the matrix

First, we analysed the vertical component of the seismic records
associated with each volcanic system separately. We started by
preprocessing the signal with a Butterworth bandpass filter to
eliminate low frequencies below 1 Hz and high frequencies over
16 Hz. This is done to remove anthropogenic noise, weather
condition noise and tidal noise (Almendros et al., 2000). Then we
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TABLE 2 Number of data associated with the volcanoes and the eruptive stages.

Unrest Pre-eruptive Eruptive Total

Augustine 212 188 102 502

Bezymianny 07 2000 2,756 245 5,001

Bezymianny 17 260 182 19 461

Colima 2,640 1,259 882 4,781

Mt. Etna 2,222 913 705 3,840

Saint Helens 282 231 292 805

Total 7,616 (49.5%) 5,529 (35.9%) 2,245 (14.6%) 15390

FIGURE 3
Results of the model for Volcán de Colima dataset. Left: we can see the temporal evolution of the probability of being on each state (green for unrest,
yellow for pre-eruptive and red for eruptive); the vertical dashed line represents the onset of the eruption of 11 July 2015. Top right: the confusion
matrix of the classification system. Bottom right: the training and validation convergence curves for loss and accuracy, showing that the model is not
overfitting.

defined a moving window for the analysis, which is displaced along
the filtered seismic record. The length of this window was 10 min,
since we were working with very large databases, and has an overlap
of 50%. We analyse the record of that 10 minutes window and

estimate the corresponding value of the four features of interest,
then move to the next window and repeat the process. This way,
we build a temporal vector for every feature, creating a matrix
associated with the temporal evolution of each volcanic system, in
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FIGURE 4
Results of the model for Mount St. Helens volcano dataset. Left: we can see the temporal evolution of the probability of being on each state (green for
unrest, yellow for pre-eruptive and red for eruptive); the vertical dashed line represents the onset of the eruption of 01 October 2004. Top right: the
confusion matrix of the classification system. Bottom right: the training and validation convergence curves for loss and accuracy, showing that the
model is not overfitting.

which the rows represent the temporal unit and the columns the
feature. We want to capture temporal fluctuations and trends in the
behaviour of our seismic features; this way, the neural network can
learn from the present information, and also from how the signal
is changing according to the previous window. This would make
our matrix more sensitive to changes that indicate an evolution of
the volcanic activity. To make our matrix consistent over time, we
also added the first and the second derivates of every feature, so we
have 12 parameters in ourmatrix.The correlationmatrix of the used
features (Figure 1) shows that there is no redundant information
from our four original input variables, which could negatively affect
the performance of our model.

Based on the catalogues and the activity during the studied
periods, we associated a volcanic stage label to each temporal unit
(references in the Databases section). We defined three different
labels: unrest, pre-eruptive and eruptive periods.

In order to make this system universal and transferable to every
volcano, we built a unique large database involving the temporal
matrix of each studied volcano. To ensure comparability among
the matrices of different volcanoes, we normalized the temporal
evolution values of each feature within its relative volcanic matrix
using z-score normalization. This standardization offers several

advantages in the context of machine learning analysis. It eliminates
scale differences between features, prevents certain features from
dominating the analysis, facilitates comparison, and reduces the
risk of numerical problems, like convergence difficulties. To test the
comparability of the different databases we generated the correlation
matrix of the features for each studied volcano and found that all
of them exhibit high similarity, both among themselves and to the
reference Figure 1 (Supplementary Figure S1). After normalizing
the temporal evolution of the features, we assembled the sixmatrices
into a single matrix. We labelled this matrix with the corresponding
label for each temporal unit.The full process is described in Figure 2.

Neural network

Volcano seismology advances during last decades have been
driven by the improvement of deep learning and machine learning
techniques (Benítez et al., 2006; Cortés et al., 2021; Titos et al.,
2022), particularly neural networks (Falsaperla et al., 1996;
Scarpetta et al., 2005; Titos et al., 2018a; Titos et al., 2018b). Neural
Networks are a computational model inspired by the structure
of the human brain. These powerful tools have demonstrated
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FIGURE 5
Results of the model for the Bezymianny 2007 dataset. Left: we can see the temporal evolution of the probability of being on each state (green for
unrest, yellow for pre-eruptive and red for eruptive); the vertical dashed line represents the onset of the eruption of 14 October 2007. Top right: the
confusion matrix of the classification system. Bottom right: the training and validation convergence curves for loss and accuracy, showing that the
model is not overfitting.

exceptional efficacy in identifying underlying patterns and non-
linear relationships in complex seismic datasets (Simpson, 1992;
Bengio et al., 2007; Deng and Dong, 2014; LeCun et al., 2015),
transforming monitoring and forecasting approaches of volcanic
eruptions. The integration of higher sampling frequency data
and extensive time series has led to more robust predictive
models, capable of anticipating changes in volcanic activity with
an unprecedented level of detail. These models can analyse raw
seismic data in near real-time, identifying anomalous patterns that
may indicate imminent eruptive activity. In addition, deep learning
techniques have enabled the integration of data from multiple
sources, including satellite imagery and volcanic gas measurements,
for a holistic assessment of volcanic threat (Shoji et al., 2018;
Martínez et al., 2021; Amato et al., 2023).

Our neural network approach is designed with a dense layer
of 32 units, followed by a Rectified Linear Unit (ReLU) activation
function, used to pass positive values unchanged and convert
negative values to zero; this makes the extraction of crucial features
easier (Boob et al., 2022).Then, a second dense layer with a softmax
function; this function transforms a vector of real values into
a vector of probabilities, enabling the classification of the three
different volcanic states (Wang et al., 2018). The model compilation
uses the categorical cross-entropy loss function to measure the

difference between the predicted probability distribution and the
actual distributions of the labels, making the training of the model
more accurate; we used the Adam optimizer for updating the
network weights during training, fine-tuning the model for multi-
class classification challenge (Mehta et al., 2019; Mao et al., 2023).
We implemented a K-Fold cross-validation model to improve
the training and validation method of our analysis (Bengio and
Grandvalet, 2003). We selected a specific volcano dataset of our
matrix, leaving it out of the training set, and used it after the model
was built for evaluating its performance. This process is repeated
for each volcano. We used the remaining volcanoes for creating the
models. 80% of this remaining dataset was used for training and the
20% for validation, permuting in each one of our 5 K-Fold iterations,
ensuring that each part is used for both training and validation.

Databases

Wehave selected data from six eruptive periods associated to five
different volcanoes. For each eruptive period we used one seismic
station, chosen due to the completeness of the dataset and the
distance to the volcanic crater; it has been observed that depending
on the magnitude of the eruption, the location of the seismic
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FIGURE 6
Results of the model for the Bezymianny 2017 dataset. Left: we can see the temporal evolution of the probability of being on each state (green for
unrest, yellow for pre-eruptive and red for eruptive); the vertical dashed line represents the onset of the eruption of 20 December 2017. Top right: the
confusion matrix of the classification system. Bottom right: the training and validation convergence curves for loss and accuracy, showing that the
model is not overfitting.

station is relevant (Rey-Devesa et al., 2023a); we suggest distances
below 5 km. Each dataset corresponds to the seismic signal recorded
during several days or weeks prior to the eruptive episodes studied.
These eruptive periods are: Augustine 2006 (AUH station, managed
by Alaska Volcano Observatory); Bezymianny 2007 and 2017
(BELO and BZ01 stations respectively, by Kamchatkan Branch of
Geophysical Survey); Volcán de Colima, involving a pyroclastic flow
in July 2015 (SOMA station, by Centro Universitario de Estudios
Vulcanológicos, University of Colima); Mt. Etna eruptive period
in November 2013 (EBEM, by Instituto Nazionale di Geofisica e
Vulcanologia); Mount St. Helens 2004 (SHW, by Pacific Northwest
Seismic Network, University of Washington). The exact location of
the seismic stations can be seen in Rey-Devesa et al., 2023a; Rey-
Devesa et al., 2023b. Table 2 shows the classification of the total
dataset according to the volcanic stage label and the eruptive period.

These volcanoes are representative of different types of volcanic
region and eruptions, with and without relevant hydrothermal
systems. The case studies are representative of open conduit,
like Mt. Etna and Volcán de Colima (Chaussard et al., 2013;

Zuccarello et al., 2022), semi-open conduit, like Bezymianny
2007 (West, 2013) and closed conduit systems like Augustine,
Bezymianny 2017 and Mount St. Helens (De Angelis et al., 2013;
Mania et al., 2019; Schlieder et al., 2022) respectively. Here we
describe some differences between the type of eruptive activity, the
seismicity generated by the eruptions and the composition of the
lavas emitted.

The cases of study involve: a phreatic eruption at Mount St.
Helens (De Siena et al., 2014; Gabrielli et al., 2020), pyroclastic
flows and VT swarms at Volcán de Colima (Arámbula-
Mendoza et al., 2019; Dávila et al., 2019), four episodes of lava
fountaining and Strombolian activity at Mt. Etna (Bonaccorso et al.,
2014), dome growth activity at Bezimianny (Thelen et al., 2010;
Girina et al., 2013; Koulakov et al., 2021) and a Vulcanian
eruption at Augustine (Manley et al., 2021; Zhan et al., 2022).
In addition, there are variations on the characteristics of
the seismicity representing pre-eruptive activity: tremor at
Mt. Etna, VT swarms at Bezimianny, and mixed activity at
Mount St. Helens (Spampinato et al., 2019; Rey-Devesa et al.,
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FIGURE 7
Results of the model for Mt. Etna. Left: we can see the temporal evolution of the probability of being on each state (green for unrest, yellow for
pre-eruptive and red for eruptive); every vertical dashed line represents the onset of the eruptive paroxysms of November 2013. Top right: the
confusion matrix of the classification system. Bottom right: the training and validation convergence curves for loss and accuracy, showing that the
model is not overfitting.

2023a). Moreover, the volcanoes studied are representative of
different lava types: basaltic lavas at Mt. Etna (Polacci et al.,
2019; Zuccarello et al., 2022), andesitic at Bezymianny
(Davydova et al., 2022) and dacitic-rhyolitic at Augustine
(Wasser et al., 2021).

Results

In Figures 3–8 we show the temporal evolution of the unrest,
pre-eruptive and eruptive state probabilities over time for the
six different volcanic databases. Confusion matrices provide a
detailed view of the model performance for each volcanic database.
In this case, an excellent correspondence is observed between
the model predictions and the actual states. The loss and
accuracy curves offer crucial insights into the model performance
during training. The curves indicate that there is no evidence
of overfitting. The loss consistently decreases during training,
while accuracy increases, suggesting that the model generalizes
well to unseen data. These results are very promising and
suggest that the model has effectively captured the characteristic
patterns associated with the different eruptive phases of these
case studies.

Discussion

These results show the temporal evolution of the probability of
being in each volcanic state (unrest, pre-eruptive and eruptive) for
each of the six databases studied. One key observation is that the
unrest state is the easiest to determine for the neural network, being
almost never confused with other eruptive states. The probability of
being in the unrest state remains almost 100% for every case of study
when the volcanic systems are in an unrest period. To complement
this observation, we applied the model trained with all databases to
1 month of seismic data recorded at Bezymianny during an unrest
period in September 2017. These data were not included in our
training dataset. The performance was >95% of data interpreted as
unrest and the remaining <5% as a pre-eruptive state, which might
be due toVT swarms recorded during that period (Titos et al., 2023).
We can affirm that our model hardly ever displays false alarms when
it comes to determine that the system is in unrest, displaying great
robustness.

The results for determining the probability of being in
pre-eruptive and eruptive states are also outstanding. However,
confusion between states increases slightly when it comes to
determine the difference between pre-eruptive or eruptive state
scenarios. One case study that stands out is Augustine volcano. This
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FIGURE 8
Results of the model for Augustine. Left: we can see the temporal evolution of the probability of being on each state (green for unrest, yellow for
pre-eruptive and red for eruptive); the vertical dashed line represents the onset of the eruption of 11 January 2006. Top right: the confusion matrix of
the classification system. Bottom right: the training and validation convergence curves for loss and accuracy, showing that the model is not overfitting.

can be explained by considering that a volcanic eruption can evolve,
or even be temporarily interrupted, implying that the eruptive
state is an unstable scenario. The Augustine eruption combined
eruptive paroxysms with intervals of low seismicity and quiescence
(Global Volcanism Program, 2006).

We want to highlight an observed characteristic pattern, which
is relevant to the development of early warning systems for volcanic
eruption forecasting. We observe that the pre-eruptive probability
starts to increase days before the eruption, dominating the other
categories. This is sufficient to establish in real-time that a certain
process is ongoing in the volcanic system. Furthermore, it is
particularly interesting to note that before entering the period in
which the eruptive state dominates, the probability of that state
shows a gradual increase. Notice that our model might confuse the
beginning of the pre-eruptive state with the unrest, but not with the
eruptive, which hast a probability around 0%; however, when the
pre-eruptive state is about to finish, the model might confuse it with
the eruptive state, and the unrest state probability decays until 0%.

Upon observing our case studies, we notice that the model
determines the beginning of the pre-eruptive state between at least
10–15 h before the beginning of the eruption in the worst case,
which is the lava fountains at Mt. Etna, and several days in the
best case, like Volcán de Colima or Mount St. Helens; these time

intervals calculated for the lava fountains at Mt. Etna complement
the results of previous seismicity and infrasound forecasting
studies (Ripepe et al., 2018; Rey-Devesa et al., 2023a). Moreover, the
methodology determines the eruptive state of the volcanic system in
near real-time. Identifying the increasing probability of being in an
eruptive state is highlighting the possibility of an imminent eruption;
this is a reliable numeric value for affirming the probability of a
volcanic eruption to happen in the short-term and would improve
the surveillance of a volcanic system and the capability of forecasting
an eruption. The probability of being in the eruptive state usually
goes up to 80% whenever a volcanic eruption is about to start,
demonstrating that the methodology has potential as a universal
surveillance tool. This method could allow the team responsible
of making choices to take preventive measures, thus reducing the
volcanic risk and the impact to the surrounding communities.

The relationship between the duration of the pre-eruptive stage
and features like the degree of conduit opening (open, closed, semi-
open), or the explosivity of the eruption, is crucial for understanding
volcanic eruption dynamics and its forecasting. In closed conduit
and semi-open conduit systems, a longer pre-eruptive stage results
in significant magma accumulation and pressure buildup, leading
to explosive eruptions, as seen with Mount St. Helens in 2004,
Augustine in 2006 and Bezymianny in 2007 and 2017. Open
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conduits typically have shorter pre-eruptive stages, allowing magma
to ascendmore freely and resulting in effusive eruptions, as observed
at Etna in 2013. However, in some cases like Colima in 2014, a
prolonged pre-eruptive stage can still be associated with an open
conduit situation; this might be induced by the presence of a dome
covering the crater of the volcano (Reyes-Dávila et al., 2016). This
correlation highlights the results of Acocella et al. (2024), noticing
that longer pre-eruptive durations are generally associated with
closed conduits and more explosive activity, while shorter durations
usually correspond to open conduits and predominantly effusive
eruptions.

Conclusion

Efforts to enhance the predictive capabilities of volcanic
eruptions have led to the development of sophisticated machine
learning applications in volcano seismology. Despite its successes,
there remain challenges that require innovative solutions. In this
context, data-drivenmodels have emerged as an effective alternative
to complement monitoring systems in volcanic observatories. This
study introduces a tool designed to establish eruption risk alerts
and estimate associated probabilities using a neural network. Signal
analysis techniques were applied to seismic records, enabling
the extraction of 12 distinct seismic features. These features,
typically stable during periods of inactivity, revealed significant
trends in the lead-up to eruptive episodes (Rey-Devesa et al.,
2023a; b). Through a temporal matrix of parameters linked
to the volcanic system and labels corresponding to real states
(Unrest, Pre-Eruptive, Eruptive), a robust analytical foundation
was established. However, for testing the exportability of the
model we needed several databases corresponding to various
volcanic systems, including both explosive and effusive eruptive
episodes. In this regard, a meticulous analysis of seismic data was
conducted in diverse volcanic scenarios: Mount Etna, Bezymianny
(2007 and 2017 paroxysms), Volcán de Colima, Mount St. Helens,
and Augustine.

We showed the results of the applications of Machine Learning
to classify the volcanic alert state based on the behaviour of
these features and provide an estimation of the probability of
future eruptions. Evaluation was carried out through a neural
network approach on the selected volcanoes, using the previously
constructed feature databases, demonstrating its transferability
by building a model that incorporates data from various case
studies. These scenarios represent a diverse set of eruptive activities
(explosive and effusive) as well as different seismic precursory
patterns (volcano-tectonic events, tremor, mixed activity, etc.) and
different conduit systems.

We propose a preliminary tool that can be easily implemented
in near real-time at volcanic observatories for complementing the
decision-making systems used nowadays for establishing volcanic
alerts. The methodology is simple since the features used for
training the network have been chosen in a precise way due to the
relevant information that they offer about the temporal evolution
of the volcanic activity. The extraction of features like Kurtosis and
Frequency Index from the continuous seismic signal evaluates the
variation of the number of highly impulsive events, like earthquakes,
or changes in the frequency band in which the more energetic

seismic activity is being recorded, respectively; on the other hand,
previous studies on Differential Shannon Entropy give an insight on
the role of this statistical parameter as an indicator of the uncertainty
of the volcanic state (Rey-Devesa et al., 2023a; b). Thus, this system
searches non-linear combinations of these features that allow the
classification of three possible states of the volcanic system: Unrest,
indicating a deviation from the background noise; Pre-Eruptive,
indicating significant changes of the trend of the seismic features
calculated that preludes eruptive activity; and the Eruptive state, in
which different types of eruptive activity might be ongoing. This
approach could be improved including more seismic features in the
input matrix.

Our study has been developed in different volcanic scenarios
with widely studied eruptive processes. Our neural network
approach is not complex; the architecture is provided with 2 dense
layers. As the convergence curves show, themodel is not overtrained.
In the Databases section and Table 2, the number of events and
volcanic processes required for the training and for used these
experiments are described.During the experimentswe have used the
80% of the data for training and the 20% for validation, repeating the
procedure 5 times, permuting the data used for each process during
the iterations; in every experiment, the database used for evaluation
was left out before the training.

The aimof ourwork is determining the probability of a transition
from an apparently quiescence or unrest state of the volcanic system
to another state, rather than determining the internal processes of
the volcano. Our approximation using statistical features might be
not enough for the development of the physical model explaining
the underlying processes of the volcanic system. In order to improve
the method reliability and performance, the incorporation of real-
time datasets of other monitored parameters, like geodesy, gas
emissions or temperature measurements would have enormous
potential; due to the feasibility of working with the time interval of
the windows of analysis, their variety in the sampling frequency is
not a problem. Moreover, we have been working with datasets from
only one seismic station for every case of study, but to make the
methodology more applicable for volcanic observatories it would
be interesting to consider training the neural network with data
recorded in the largest possible number of available seismic stations
at each volcano.

These results represent a step further in the development of
effective non-biased volcanic forecasting tools. In addition to
this we can offer a quantification of the increasing probability
of an eruption as the activity is approaching. The early
identification of the pre-eruptive activity offers sufficient time
for the decision making before the situation escalates, allowing
the application of the appropriate measures in case of a
volcanic crisis.

Despite the promising results achieved, we want to acknowledge
that the model reliability is associated to the quality and
availability of seismic datasets. Thus, human supervision and
interpretation of the evolution of the probability is still a
crucial step.

In summary, the results of this machine learning approach
suggest that the methodology shows great promise as an effective
and quantitative method for volcanic eruption forecasting across a
variety of volcanic systems.
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