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Total thrust and torque are two key indicators of shield movement performance.
Most existing data-driven machine learning studies focus on developing more
accurate models for predicting total thrust and torque but overlook the
interpretability of the models. To address this black-box issue, this study
proposes an interpretable probabilistic prediction algorithm for the shield
movement performance. The algorithm uses the natural gradient boosting
(NGBoost) model to iteratively update the parametric probability distributions
(e.g., mean and variance) and achieve probabilistic predictions of the total
thrust and torque. The impact of each feature on the prediction values and
uncertainty is quantified by extending the importance analysis of a single
deterministic predictive value to both the mean and variance. The feature
interactions are analyzed and their predictive contributions are quantified by the
shapley additive explanations (SHAP) method. The transparency of the NGBoost
model is improved through the visualization of the decision-making process. A
shield tunneling project in Hangzhou is used to validate the effectiveness of the
proposed algorithm. The results indicate that the NGboost model outperforms
other five models in terms of accuracy. The prediction results are interpretable,
and the interpretable probabilistic model provides decision-makers with a more
intuitive and reliable reference.

KEYWORDS

shield movement performance, probabilistic prediction, model interpretability,
NGBoost, shap

1 Introduction

With the progression of urbanization and the increasing demand for underground
space, shield tunneling technology has become increasingly important in modern
urban infrastructure development (Zhou et al., 2023). However, poor shield
movement performance (total thrust and torque) can lead to inefficient tunneling,
excessive ground settlements, tunnel structural damage, and even pose serious
threats to surrounding buildings and infrastructures (Chen et al., 2019). Total
thrust refers to the axial force generated by the shield machine to advance
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forward. It is produced by hydraulic jacks, mechanical rams, or
other mechanisms that push against the tunnel face. Torque is the
rotational force exerted on cutting tools to break and loosen the soil
or rock. Appropriate monitoring, adjustment, and optimization of
total thrust and torque are essential formaximizing productivity and
reducing risks in shield tunneling projects.

Due to the rapid advancements in big data and computational
capabilities, machine learning has received increasing attention
in the field of geotechnical engineering (Moayedi et al., 2020;
Zhang et al., 2021; Baghbani et al., 2022; Kannangara et al., 2022;
Tao et al., 2022a; Tao et al., 2022b; Zhang et al., 2022a; Phoon and
Zhang, 2023). Machine learning is a powerful tool that can
extract nonlinear relationships among features, leading to a better
understanding and prediction of geotechnical behaviors. In tunnel
constructions, machine learning models have been successfully
applied to predict the total thrust and torque (Lin et al., 2022a;
Li et al., 2023a; Li et al., 2023b; Yu et al., 2023). For example,
Gao et al. (2019) employed three recurrent neural network (RNN)
models, including basic RNN, long short-term memory (LSTM),
and gated recurrent unit (GRU), to predict the total thrust and
torque of the shield machine. These models were selected for their
inherent ability to process time-series data, effectively capturing
dynamic characteristics over time. However, manual parameter
tuning of these models is complex and prone to getting stuck in
local optima. Based on this, Lin et al. (2022b) developed a hybrid
model combining particle swarm optimization (PSO) and GRU
for torque predictions. PSO is a population-based optimization
algorithm that simulates the foraging behavior of flocks of birds
to select the best hyperparameters automatically. Elbaz et al. (2023)
applied reinforcement learning to optimize the process of PSO
hyperparameter tuning, which further improved the accuracy of
torque and total thrust predictions. It has been found in practice
that, although adding additional optimization layers (such as using
reinforcement learning to optimize PSO parameters) can enhance
prediction accuracy, the process is complex and time-consuming,
and the accuracy improvements are not so significant in most
cases. From the perspective of feature engineering, Shi et al. (2021)
used the variational mode decomposition and the empirical wavelet
transform to preprocess the raw dataset, which can also improve
the prediction accuracy of shield tunneling parameters. The studies
above focus on developing innovative algorithms to improve the
model accuracy for total thrust and torque, but to some extent
overlook the interpretability of the model. Due to the black-
box nature of machine learning models, especially deep learning
models like LSTM that involve multiple parameters and layers, the
prediction results and decision-making processes are difficult to
explain. This lack of transparency results in decision-makers having
insufficient confidence and a skeptical attitude toward applying
these models. Xu et al. (2021) compared the performance of various
machine learning models for predicting the total thrust and torque,
demonstrating that random forest, a tree-based model, offered the
best balance between model accuracy and computation time while
also being more interpretable compared to other models. Given its
performance and greater transparency relative to complex models
like LSTM, tree-based models like random forests provide a viable
option for interpretable total thrust and torque predictions.

A series of interpretable methods, such as shapley additive
explanations (SHAP) (Lundberg and Lee, 2017) and causal artificial

intelligence methods (Kuang et al., 2020; Wang et al., 2023), have
been proposed to make complex machine learning models more
transparent and understandable (Zhou et al., 2021; Iban, 2022;
Wen et al., 2023; Das et al., 2024). For example, Iban and Bilgilioglu
(2023) employed the local explainable artificial intelligence method
of SHAP to attain the contribution of each factor to the avalanches.
Based on SHAP values, the most critical factors triggering
avalanches were identified. Scavuzzo et al. (2022) used SHAP
with extreme gradient boosting (XGBoost) for geospatial health
prediction, aiming to understand the impact of each input feature on
the predicted outcomes. Similarly, Parsa et al. (2020) used XGBoost
to predict real-time traffic accidents and employed SHAP to analyze
the factors leading to risk. Although SHAP has been successfully
applied in various fields, its effectiveness in providing interpretability
for thrust and torque predictions remains unclear. While SHAP can
explain how features affect predictions, it still lacks transparency in
clarifying the decision-making process. Moreover, it is commonly
acknowledged that there is inevitable uncertainty in geotechnical
engineering (Phoon and Kulhawy, 1999; Gu et al., 2023; Tao et al.,
2023; Tao, et al., 2024). However, the existing studies on shield
tunneling often overlook such uncertainty, which may result in
potential safety risks of the project.

This paper thoroughly compares and analyzes multiple machine
learning models used in current shield tunneling prediction
research, summarizing the findings as follows: First, although time
series models like LSTM can effectively utilize lagged time series
information to predict shield movement performance, tuning their
parameters is notably complex and time-consuming. Second, the
multi-layered and opaque structure of LSTM models complicates
the interpretation of their decision-making processes, adversely
affecting model transparency and explainability. Moreover, while
the SHAP method is a mature interpretability technique that has
proven effective in other domains, its effectiveness for predicting
total thrust and torque in shield tunneling applications has not yet
been validated. Crucially, SHAP struggles to assess the importance
of variance, which limits its utility in conducting uncertainty
analysis for risk assessments. To address these limitations, this
paper proposes an interpretable probabilistic prediction algorithm
for predicting the movement performance of shield machines
(i.e., total thrust and torque). By constructing a natural gradient
boosting (NGBoost) probabilistic prediction model, the approach
not only provides predictions for total thrust and torque but also
offers prediction uncertainty. This is essential for comprehensive
risk assessment, as improper loads can lead to equipment failures,
ground collapse, or tunnel instability. Unlike standard tree model
importance analyses, which typically evaluate only the mean
predictions, this study extends the importance analysis to include
both the mean and variance of the model. This allows for a more
comprehensive understanding of how each feature impacts the
overall prediction outcomes and associated uncertainties. The
model can quantitatively assess how geological conditions and
shield tunneling parameters specifically affect predictions of total
thrust and torque. The interactions between features are analyzed,
and their contributions to the predictions are quantified using
the SHAP method. The predictive mechanism of the model is
explained from both global and local perspectives, enhancing the
transparency and explainability of decision-making. Furthermore,
the transparency of the model is further enhanced by visualizing
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FIGURE 1
Structure of the NGBoost model.

the decision path. This visualization not only helps operators better
understand how the model predicts total thrust and torque but
can also show how the model responds to varying geological
conditions, thus optimizing decision-making and preventing
potential risks.

2 Methodology

This section is composed of three main parts: first, the
principle of the NGBoost model is introduced to provide a
theoretical basis for the subsequent model interpretability analysis;
second, the interpretability of model predictions is explored;
finally, an overview of the proposed interpretable probabilistic
algorithm is given.

2.1 Principle of the NGBoost model

Natural gradient boosting (NGBoost) (Duan et al., 2020) is an
advanced model designed for probabilistic forecasting. Figure 1
shows the structure of theNGBoostmodel. Unlike gradient boosting
and XGBoost methods (Friedman, 2001; Chen and Guestrin, 2016)
that focus on point predictions, NGBoost emphasizes the entire
probability distribution, making it possible to estimate prediction
uncertainty. In addition, an iterativemethod is employed to improve
model predictions based on the errors in the previous steps. This
approach consists of several key steps:

The natural gradient (Amari, 1998) is computed firstly. In
a standard gradient descent, the geometric structure of the
parameter space is not considered, resulting in potential instability
and inefficiency during optimization. By considering the local
curvature, the natural gradient can alleviate these problems.
Specifically, the Fisher information matrix measures the local
curvature of the parameter space. It shows how changes in pairs
of parameters affect the output distribution of the model. For a
parameterized distribution model, the Fisher information matrix is
defined in Eq. (1):

I(θ) = E[∇θ log p(y|θ)∇θ log p(y|θ)
T] (1)

where θ represents the parameter of the model; I(θ) represents the
Fisher information matrix; E denotes the expectation, which is an
average of all possible outcomes;∇θ is the gradient; log p ( y | θ) is the
log-likelihood of the outcome y given the parameter θ. The natural
gradient ∇natural is then computed by using the Fisher information
matrix to correct the standard gradient, as shown in Eq. (2):

∇natural = I(θ)
−1∇θL (2)

where L is the loss function, and I(θ)−1 represents the inverse of
the Fisher information matrix I(θ). The natural gradient gives a
direction to the model optimization so that the prediction errors are
minimized more efficiently. This adjustment ensures that parameter
updates are in line with the geometry of the parameter space, leading
to faster convergence rates and improved robustness.

After calculating the natural gradient, the model residuals
can then be determined, which represent the prediction errors
in the current iteration. Specifically, yactual represents the actual
measurement, and y(1)pred is the predicted value in the first iteration.
Then, the residual in the first iteration is given by r1 = yactual − y

(1)
pred. It

is worth noting that the residuals inNGBoost include both themean
μ and standard deviation σ of the predicted distribution. Within the
framework of NGBoost, “base learner fitting” is a crucial step in
the iterative training loop. This step involves selecting and training
a base learner to fit the residual r1 of the current model. In this
study, the decision tree is chosen as the base learner due to its simple
structure and high interpretability. In each iteration, themodel takes
the residual r1 as the input andmakes predictions through a series of
decision nodes. For example, as shown by the red path in Figure 1,
the decision tree processes the residuals by examining “Feature 2”.
The data point moves to the left when the value of “Feature 2” ≤
168 and ≤76 and then goes to the right when the value >30. The
data point finally reaches the leaf node, which provides the predicted
residual r(2) pred.

Once the predicted residual r(2)pred is obtained from the leaf node,
the first prediction y(1)pred can be adjusted accordingly. Specifically,
y(1)pred is updated by adding the predicted residual r

(2)
pred (y

(2)
pred = y

(1)
pred +

r(2) pred). After n iterations, the model reaches the preset maximum
iteration number, and the model training stops.The final prediction
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accumulates results from all decision trees throughout the whole

iterations (y(n+1)pred = y
(1)
pred +

n+1
∑ r(i)pred).

2.2 Interpretability methods for NGBoost
model

Most existing machine learning models are seen as black boxes,
with unclear principles and decision processes (Guidotti et al.,
2018). To address this issue, this study interprets themodel from two
main perspectives: global interpretability and local interpretability.
For local interpretability, the decision tree-based NGBoost model
can visualize the decision-making process to track and explain
how an individual prediction is made through the branches of the
trees. In addition, the SHAP method (Lundberg and Lee, 2017) is
employed to explain the interactions between multiple features and
their contributions to the target individual prediction. SHAP utilizes
the principles of Shapley values from cooperative game theory to
quantify the importance of each feature within the NGBoost model.
Within cooperative game theory, Shapley values offer a way to fairly
share game rewards, ensuring participants receive compensation
in line with their overall contribution to the total gain. When
applied in machine learning, SHAP assesses how much each feature
contributes to the model prediction, specifically how each feature
impacts the final prediction result. Through this process, SHAP
uncovers the importance and function of each feature within the
internal decision-making mechanism of the model, significantly
improving model transparency.

For a given feature xj, its Shapley value is computed as shown in
Eq. (3):

ϕj = ∑
S⊆N\{j}

n!
|S|!(n− |S| − 1)!

[ f(S∪ {j}) − f(S)] (3)

where N denotes a set of all features; S is a subset excluding xj; n is
the total number of features in the set N ; |S| is the size (number of
elements) of the subset S; ϕj represents the Shapley value of feature;
N\{j} means the set of all features except xj; and f(S∪ {j}) represents
the output of a function when the feature subset S and the feature xj
are used together.

For global interpretability, SHAP summary plots are used to help
understand the overall trends and patterns in model predictions by
assessing the average contribution of features across all data points,
revealing which features have the greatest impact on the model
prediction. In addition, the decision tree-based NGBoost model can
also show the global importance analysis of each feature on the target
prediction, including the mean and the standard deviation of the
prediction, aiming to provide a global analysis method based on the
model itself for assessing prediction accuracy and uncertainty. The
importance of each feature is evaluated using Eq. (4):

FI(xj) = ∑
i∈nodes

I(i) × (Errorparent(i) −Errorchild(i)) (4)

where FI(xj) denotes the importance of feature xj; I(i) is an indicator
function, which is equal to one if the node i splits and 0 otherwise;
Errorparent(i) and Errorchild(i) represent the error of the parent node
before splitting and the error of the child node after splitting,
respectively.

2.3 Flowchart of the interpretable
probabilistic prediction algorithm

The proposed algorithm for shield movement performance
has five main steps: data acquisition, data preprocessing, model
construction, model evaluation, and model interpretability, as
shown in Figure 2. For the tunnel boring excavation, data are
acquired from the installed sensors on the shield machine
equipment. Typical parameters include the total thrust, torque,
advance rate, etc. These data are sequentially stored in a secured
database, either locally or in the cloud. In the data preprocessing
step, the downtime data and outliers are first removed.The reserved
dataset is then divided into a training set and a test set at a ratio of 8:2.
In the model construction step, the NGBoost model is constructed
using a decision tree as a base learner. Decision trees are chosen
because they are highly interpretable (Quinlan, 1986). The model
undergoes an iterative training loop that consists of natural gradient
calculation for optimization, fitting of base learners, and adaptive
model updating. Specifically, the NGBoost model uses the natural
gradient descent to adjust the model parameters. The base decision
tree fits the residuals from the previous iteration and serves as the
current base learner. A natural gradient is then computed from the
loss function MSE (mean squared error) and model parameters,
guiding an adaptive parameter update. This process is repeated
until a predefined maximum iteration number is met. Next, the
trained NGBoost model can provide probabilistic prediction results
due to its inherent capability to estimate the distribution of the
target variable. Optimal hyperparameters and the superior model
are determined through comparative analysis. Finally, based on the
prediction results, the importance and influence of each feature on
the target variable are analyzed. By visualizing the decision-making
process, the transparency of the model can be improved.

3 Case study

3.1 Data acquisition

A shield tunneling project in Hangzhou is used to illustrate the
proposed method. The dataset has real-time tunneling information
from 100 rings, all gathered by the monitoring system. Specifically,
this tunneling dataset is collected from seven subsystems: the
propulsion system, cylinder stroke system, mud and water silo
pressure system, air cushion silo pressure system, cutter system,
grouting system, and shield attitude system, totaling 50 tunneling
parameters. Among these parameters, the total thrust and torque
directly reflect the shieldmovement performance.The values of total
thrust and torque at the next moment are chosen as the output
for the prediction model (Ntoutsi et al., 2020). Advance rate is the
distance that the shield machine tunnels within a unit of time.
Penetration is an important indicator for assessing the propulsive
capacity of a shield machine. A higher penetration means the shield
can traverse hard geological conditions more easily. Ring number is
usually used to label segments of the tunnel, and it is an indicator
of construction progress. The aforementioned three parameters
(advance rate, penetration, and ring number) are closely related
to the shield movement performance. Therefore, they are selected
as input parameters for the predictive model. In addition, as this
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FIGURE 2
Flowchart of shield movement performance predictions.

task is a time-series prediction, the future states are influenced by
the past states. Therefore, the torque and total thrust at the current
moment are also selected as the input parameters for the model.The
monitoring system automatically logs data every 10 s, resulting in
approximately 350,000 data samples.

3.2 Data preprocessing

Data preprocessing is crucial to ensure data quality and
model accuracy (Liu et al., 2019; Zhang et al., 2022b). The data
preprocessing in this study includes removing the downtime data
and the outliers.

In practical engineering projects, there is a significant amount of
downtime data for shield machines due to cutterhead replacement,
electrical circuit inspections, lubrication system maintenance, and
so on. Figure 3 shows the change in advance rate during the shield
tunneling process. A complete shield tunneling operational cycle,
as illustrated in the upper subfigure, consists of a rising phase, a
stable phase, and a declining phase. When the advance rate = 0, it

indicates that the shieldmachine has stopped tunneling. In this case,
the downtime data cannot provide practical value for predicting
the shield movement performance, therefore, they are removed, and
66,224 data samples are then reserved.

The raw dataset may include outliers caused by factors such
as sensor errors or human operational mistakes, which could
negatively affect the training of the model. To solve this problem,
this paper firstly divides the 66,224 samples into a training set
and a test set at a ratio of 8:2. Boxplot analysis has been proved
as an effective method for identifying and addressing outliers in
shield tunneling, as shown inHou et al. (2022), Ma et al. (2024), and
Chen et al. (2024). Given its proven efficacy, this technique is utilized
to discern and remove outliers from the training set. Specifically,
the boxplot analysis is used to identify and eliminate the outliers
in the training set to improve the data quality. Figure 4 illustrates
the outlier removal for the total thrust and torque. In the boxplot,
the central horizontal line rep-resents the median, while the bottom
and top of the box denote the first and third quartiles, respectively.
The upper and lower edges of the boxplot represent the maxi-mum
and minimum values of the data. The scattered points represent the
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FIGURE 3
Advance rate during the shield tunneling process.

FIGURE 4
Outliers for the total thrust and torque (training set).

outliers.There are 1782 outliers for total thrust and 1,508 outliers for
torque in the training set. To improve data quality, records including
these outliers are removed (Qin et al., 2023).

3.3 Model construction

Based on the preprocessed dataset, a shield movement
performance prediction model is developed. The hyperparameters
of the NGBoost model are determined through random search,
and the last 20% of the training set is used as a validation set for
model evaluation. The optimal hyperparameters are summarized
in Table 1. The “n_estimators” parameter is set to 300 iterations.
The normal distribution is selected as the target distribution for the
NGBoost model. This is because when the number of independent
random variables is large enough, their sum tends to approximate

TABLE 1 Optimal hyperparameter settings for the NGBoost model.

Hyperparameter Description Value

n_estimators Number of boosting iterations to
be run

300

Learning rate A parameter controlling the step
size during model updates. The

value bound is (0,1)

0.001

Base learner The individual learning algorithm
or model used in ensemble

methods

Decision tree

Distribution Probability distribution of the
targets

Normal

a normal distribution. In regression problems, the target variable
can be considered as the sum of multiple factors (Devore, 2011).
To determine the learning rate and the base learner combination,
a systematic comparison of model performance is then conducted.
Mean absolute error (MAE), R-squared (R2), and Root mean square
error (RMSE) shown in Eqs 5–7 are used as the evaluation metrics.

R2 = 1−
∑(yi − ŷi)

2

∑(yi − yi)
2

(5)

MAE = 1
n

n

∑
i=1
|yi − ŷi| (6)

RMSE = √ 1
n

n

∑
i=1
(yi − ŷi)

2 (7)

where n represents the number of measurements, yi is the actual
value for the ith measurement. ŷi is the prediction for the ith
measurement; yi is the mean of the measurements.

The selection of base learner and learning rate has significant
impact on the model performance. Figure 5 shows the model
performance for the total thrust and torque. The decision tree
is a simple and effective model for making decisions based on
previous data, and random forest is an ensemble method that
aggregatesmultiple decision trees.The twomodels both show steady
performances across different learning rates. Extreme gradient
boosting (XGBoost) improves predictions by adding weak learners
iteratively, but it does not perform well in this case. Specifically, for
the total thrust shown in Figure 5A, the decision tree with a learning
rate of 0.001 achieves the highest R2 value of 0.948. In contrast,
XGBoost with a learning rate of 0.1 results in the lowest R2 of 0.840.
For the torque shown in Figure 5B, the decision tree with a learning
rate of 0.001 leads to the best R2 value of 0.933. In contrast, XGBoost
with a learning rate of 0.05 has the lowest R2 of 0.852. Therefore,
the base learner is selected as the decision tree, with a learning
rate of 0.001.

3.4 Model evaluation

Probabilistic prediction is helpful for risk management and
decision-making as it provides decision makers with a prediction
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FIGURE 5
Model performance using various learning rates and base learner combinations for (A) Total thrust; and (B) Torque.

interval besides a single prediction value. Figure 6 displays the
prediction results of the NGBoost model. The 95% confidence
interval (CI) is plotted, which means that it includes the actual
dataset parameter in about 95 out of 100 cases when sampled
repeatedly. Overall, the measurements predominantly reside within
the 95% confidence interval.This indicates that themodel has a high
level of predictive accuracy. Specifically, between the 3000th and
7500th sample points, the CI is considerably wider, which indicates
a larger prediction uncertainty in this region. According to the
geological survey report, this region is transitioning from a uniform
layer to an upper-soft and lower-hard composite stratum, leading
to heightened prediction challenges. In this complex geological
situation, it is particularly important to control the operational
parameters of the shieldmachine with greater precision and caution.
In practice, the shield control system can automatically adjust the
advance rate and rotation speed of the shield machine based on the
confidence interval to adapt to the current geological conditions.
When the model provides significant uncertainty in complex strata,
such as the area between the 3000th and 7500th sample points, the
systemmay suggest reducing the advance rate and increasing torque
to ensure that the cutting head can effectively break through hard
strata without causing mechanical overload.

In addition, the width of the confidence interval is also
suddenly increased at the area marked by the red box, where no
anomalies are identified by the geological survey. The possible
reason is that the geological survey report is not detailed enough
to reflect the local variations in strata. The scatter plot shows
the comparison between the model predictions and the actual
monitored values. Most of the points are densely clustered around
the diagonal line. This indicates that the model can predict the
total thrust force and torque accurately. However, Figure 6 also
displays several noticeable outliers, where the model overestimates
the monitored values. Specifically, these outliers mainly appear
during the descending phase of the shield tunneling operational
cycle. The appearance of outliers during the descending phase can
be attributed to various factors, such as geological shifts, equipment
malfunctions, or regular inspections of the shield machine. These

factors introduce significant randomness to abrupt changes, which
makes the prediction more challenging.

The performance of the NGBoost model is compared to five
other machine learning models. The hyperparameter settings for
the five models are determined through random search, as detailed
in Table 2. Three popular decision-tree-based models are used for
comparison, specifically, random forest consists of a collection
of decision trees. Each tree is trained on a random subset of
the data and gives its own prediction. The random forest model
then averages these results to produce a final outcome. Extreme
gradient boosting (XGBoost) is a decision tree-based ensemble
model that uses a gradient boosting framework. It iteratively adds
new trees and corrects errorsmade by previously trained trees. Light
gradient boosting machine (LightGBM) also follows the gradient
boosting framework. Instead of simply growing trees level by level,
it prioritizes splitting the most optimal leaf nodes. In addition, to
further demonstrate the effectiveness of the established NGBoost
model, two commonly used machine learning models for the shield
tunneling problem, namely extreme learning machine (ELM) and
K-nearest neighbors (KNN), are also included for comparison. ELM
is a feedforward neural network with a single layer of hidden nodes,
where theweights are randomly assigned and do not require iterative
tuning. KNN considers the “k” nearest data points to estimate the
value of a data point based on the average of neighbors. Table 3
summarizes the performance of all the models for predicting the
total thrust. The LightGBM and NGBoost models show superior
accuracy, with an R2 value of 0.9477. The ELM model has the worst
performance, with an R2 of 0.3633. In terms of MAE, NGBoost has
the lowest MAE of 361.60 kN, which is less than 1% of the total
thrust during the stable phase, indicating that the average deviation
of its predictions from the measurements is small. Table 4 shows
the model performance for predicting the torque. The NGBoost
model performs the best with an R2 value of 0.9329 and an MAE of
432.22 kN m. For both torque and total thrust, the NGBoost model
performs best in term of the R2, MAE, and RMSE. The predictive
accuracy of the LightGBM model is close to that of the NGBoost.
However, the NGBoost model can provide probabilistic predictions
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FIGURE 6
Probabilistic prediction results of the NGBoost model for (A) total thrust and (B) torque.

TABLE 2 Hyperparameter settings of the five machine learning models.

Hyperparameter Description Value

Random forest

num_models The number of trees in the forest 100

max_depth The maximum depth of the tree 4

min_samples_leaf The minimum number of samples required to be at a leaf node 1

ELM hidden_units The number of computational units in the hidden layer 128

XGBoost

n_estimators Number of boosting iterations to be run 100

learning_rate A parameter controlling the step size during model updates. Range is (0,1] 0.03

max_depth The maximum depth of the tree 6

KNN n_neighbors Number of neighboring points used for averaging 5

LightGBM

n_estimators Number of boosting iterations to be run 100

learning_rate A parameter controlling the step size during model updates. Range is (0,1) 0.01

max_depth The maximum depth of the tree 4

num_leaves The maximum number of leaves in one tree 31
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TABLE 3 Performance of different machine learning models for predicting the total thrust.

Model Random forest ELM XGBoost KNN LightGBM NGBoost

R2 0.8752 0.3633 0.6468 0.6288 0.9477 0.9477

MAE 599.94 1,490.91 1,010.14 1740.69 370.47 361.60

TABLE 4 Performance of different machine learning models for predicting the torque.

Model Random forest ELM XGBoost KNN LightGBM NGBoost

R2 0.8394 0.4531 0.5995 0.8488 0.9229 0.9329

MAE 613.37 1,043.54 1,049 795.54 432.22 367.84

FIGURE 7
Decision path of the NGBoost model for predicting the total thrust at the next moment: (A) first iteration; (B) 300th iteration.

for the shield movement performance. Based on these probabilistic
results, decision-makers can better understand the uncertainty of
predictions and make more reasonable adjustments accordingly.

3.5 Model interpretability

Sections 3.4, 3.5 show the accuracy of the decision tree-
based NGBoost model. In practical engineering applications, an
interpretable model is preferable because it improves transparency

and acceptance of the model. The paper visualizes the decision
pathways ofNGBoost andutilizes the SHAP technique to explore the
influence of different features on the prediction of shield movement
performance.

Each decision tree path can translate into clear rules to improve
model interpretability and transparency of its decisions. This study
combines this highly interpretable feature with the NGBoost model
to explain the decision path changes during each iteration of
NGBoost. Figure 7 shows the decision path of the 1st and 300th
iterations in the NGBoost model for predicting the total thrust.
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FIGURE 8
Importance of input features for predicting the (A) total thrust and (B) torque.

FIGURE 9
SHAP summary plot of (A) total thrust and (B) torque.

Node 0 is the root node of the decision tree; “Samples” denotes
the number of samples under the path; and “Correction value”
denotes an adjustment to the model prediction. The decision path
directs samples from the root node to the leaf nodes based on their
feature values and node rules. Samples go left if they meet the rule;
otherwise, they go right. For example, during the 300th iteration
as shown in Figure 7B, given the input conditions of penetration =
16 mm/r, advance rate = 25 mm/min, and total thrust = 5,000 kN,
the path proceeds left to Node 1 as the penetration 16 mm/r ≤
17 mm/r meets the condition at Node 0. At Node 1, since the

advance rate 25 mm/min ≤28 mm/min is met, the path continues
left to Node 2. However, failing to meet the condition of advance
rate ≤12 mm/min at Node two (i.e., 25 ≥ 12), it finally reaches Node
4 with a correction value of −1.7 kN. Note that the correction from
the 300th iteration is just one example.The actual prediction is based
on the cumulative sum of the corrections from 300 iterations.

In the first iteration of theNGBoostmodel, only the feature “total
thrust” is used as the criterion for decision-making. This indicates
that in this task of predicting the total thrust, the total thrust of the
current moment is the most crucial feature for forecasting the total
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FIGURE 10
Interaction of two features on the next-moment torque: (A) advance rate vs. total thrust; (B) penetration vs. torque; (C) total thrust vs. torque; and (D)
ring number vs. advance rate.

thrust of the next moment. The large correction values in the first
iteration indicate that the model initially tends to make a wide range
of parameter adjustments to move quickly towards the target value.
In contrast, in the 300th iteration of NGBoost, more features are
used for parameter tuning.The corrections are small and are mainly
used to fine-tune the model. These results indicate that in the 300th
iteration, the model has gradually stabilized and attempts to reduce
the prediction error using as many features as possible.

The importance of input features for total thrust and torque at
the next moment is shown in Figure 8. Overall, “total thrust” and
“torque” show the highest levels of importance when predicting
their respective future values, and the value of importance is
significantly higher than all other input features. The torque and
total thrust significantly affect the standard deviation of their
respective predicted outcomes (see Figures 8A, B). This is because
the torque mainly overcomes the friction between the cutter and
the soil, and the total thrust pushes the shield machine forward.
Excessive thrust with insufficient torque may cause the cutting tools
to slip or jam, while insufficient thrust can lead to slow progress
or machine stalling. Therefore, an increase in one parameter
leads to a higher demand for the other, resulting in increased
uncertainty in the predictive results. The ring number in shield
tunneling significantly affects the standard deviation of the predicted
values for total thrust and torque. The possible reason might be
the variation in geological layers traversed by shield machine at
different ring numbers, which also leads to increased predictive
uncertainty.

A SHAP summary plot shown in Figure 9 is used to illustrate
how the different features of shield tunneling affect model
predictions. The SHAP values on the horizontal axis show how
much each feature contributes to the prediction, and the features
are listed on the vertical axis in order of their importance, from
most to least. The color indicates the magnitude of the feature
values, with blue colors for lower values and green colors for higher
values. Overall, the two subfigures show distinct orders of impact for
different prediction targets. For the total thrust at the next moment,
the order of impact is total thrust > penetration > ring number
> advance rate > torque. For the torque at the next moment, the
order of impact is torque > penetration > ring number > advance
rate > total thrust. Specifically, Figure 9A explains that the total
thrust at the next moment is mostly influenced by its previous
value, highlighting the significance of past conditions on future
predictions. Other factors like penetration rate, advance rate, and
torque have a more minor effect, and they usually reduce the total
thrust at the next moment. Although the impact of the ring number
is similarly small, higher ring numbers tend to reduce the total thrust
for the next ring more significantly. Figure 9B discusses the torque
required at the next moment and shows that, except for a significant
impact of torque, all other features have minor impacts and no
apparent trends.

Shield tunneling is a highly intricate process involving multiple
variables andcomplex interactions.Thecontributionofa single feature
to the tunneling performance is not isolated but depends on the other
features. Partial dependence plots for double features are employed
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FIGURE 11
Interaction of two features on the next-moment total thrust: (A) advance rate vs. torque; (B) penetration vs. total thrust; (C) torque vs. total thrust; and
(D) ring number vs. advance rate.

to examine the influence of these feature on the predictive accuracy,
which illustrate how two features interact to affect the predictions of
the NGBoost model. The SHAP value quantifies the contribution of
each feature to thepredictionsmadeby theNGBoostmodel.The larger
the value, the greater the contribution. The horizonal axis represents
the valueof themost important feature, and the vertical axis represents
the SHAP values contributed by the main feature. The color intensity
of each point represents the value of the second important feature,
with darker colors indicating larger values. Figure 10A shows the
interplay between the advance rate and the total thrust and how they
affect the torque at the next moment. When the advance rate ranges
from 0 mm/min to 1.3 mm/min, it makes a negative contribution
to the predicted value of torque at the next moment. The negative
contribution increases as the advance rate is gradually decreased.This
phenomenon indicates that the shield machine faces less resistance at
a lower advance rate, leading to a lower torque.When the range of the
advance rate is between 1.3 mm/min and 3.2 mm/min, a total thrust
of 70,000 kN to 75,000 kN causes no increase in the torque. Similarly,
Figure 10Bshows the interplaybetween thepenetrationandthe torque
and how they affect the torque at the nextmoment.When the value of
penetration is less than 1 mm/r, it results in a negative contribution.
However, when it exceeds 1 mm/r, the contribution becomes positive,
peaking at around a SHAP value of 3. Figure 10C shows that as the
total thrust increases, its negative contribution to the torque at thenext
moment decreases to about 0. This means that the total thrust can be

adjustedtoreducethetorque,butnottoincreasethetorque.Figure 10D
demonstrates that the SHAP values remain unchanged with the
changes in the ring number. The ring number has little effect on the
subsequent torque. Based on these interpretable results, the proposed
algorithm can adjust various tunneling parameters more precisely,
thereby significantly enhancing shield movement performance. The
partial dependence plots and SHAP value analysis provide a scientific
basis for this predictive adjustment. For example, these analyses reveal
that the relationship between increasing the advance rate, torque and
the total thrust at the next moment is not simply linear but exhibits
complex non-linear dynamics, with significant boosts in some ranges
and reductions in others. This not only helps maintain the shield
machine in optimal working condition but also effectively minimizes
downtime caused by inappropriate adjustments, thereby improving
the overall construction efficiency and safety of the project.

Figure 11 shows the partial dependence plots for the total
thrust at the next moment. Overall, the trends observed in
Figure 11 are similar to those for the next-moment torque shown
in Figure 10. Specifically, Figure 11C demonstrates that as the
penetration increases to about 1.7 mm/r, its negative impact on the
next-moment thrust decreases to 0. As the penetration increases
further, its impact suddenly changes, dropping to about −0.7 mm/r
and continuing to decline to −3 mm/r. This pattern of change
is different from that for the next-moment torque shown in
Figure 10C. In Figure 10C, as the penetration increases, the negative
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impact on the torque changes from negative to positive, eventually
increasing to about +2 mm/r. This difference may be due to a
change in the penetration mechanism from cutting to squeezing
upon reaching a certain penetration. After the transition, the shield
tunneling needs to overcome greater resistance, thus negatively
impacting the total thrust.

4 Conclusion

In this study, an interpretable probabilistic prediction algorithm
is proposed for predicting the shield movement performance (i.e.,
total thrust and torque). Specifically, the natural gradient boosting
(NGBoost) model is used to iteratively update the parametric
probability distributions and achieve probabilistic predictions. The
impact of each feature on the prediction values and uncertainty
is quantified by extending the importance analysis of a single
predictive value to the mean and variance. The feature interactions
are analyzed and their contributions to the predictions are quantified
by the SHAP method. The transparency of the NGBoost model is
improved through the visualization of the decision-making process.
The main conclusions are as follows.

(1) The NGBoost model can provide a probabilistic prediction of
the total thrust and torque. The results show that the model
produces a wider confidence interval in the complex geological
conditions, guiding decision-makers to adjust the tunneling
parameters with more caution.

(2) In terms of model interpretability, the total thrust and torque
rank themost important features for predicting their respective
future values. During the decision visualization process, the
NGBoost model mainly uses the most important features for
making decisions at the first iteration and makes significant
corrections to the predicted outcomes. However, as the
number of iterations increases, themodel begins to incorporate
additional features and fine-tunes the outcomes. In addition,
partial dependence plots for double features show that the
interaction between different features significantly affects the
torque at the next moment. Based on these interpretable
results, the proposed algorithm can acquire more information
to help decision-making and adjust tunneling parametersmore
accurately, leading to improved shieldmovement performance.

(3) The NGBoost model outperforms the random forest, ELM,
XGBoost, KNN, and LightGBM in terms of prediction
accuracy. Optimal performance is achieved using the decision
trees as the base learner and a learning rate of 0.001. These
indicate that the NGBoost model, under these hyperparameter
settings, is most suitable for predicting the torque and total
thrust for the studied project.
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