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The mechanical characteristics of rocks, specifically uniaxial compressive
strength (UCS) and elastic modulus (E), serve as crucial factors in ensuring
the integrity and stability of relevant projects in mining and civil engineering.
This study proposes a novel hybrid PSO (particle swarm optimization) with
tree-based models, such as gradient boosting regressor (GBR), light gradient
boosting machine (LightGBM), random forest (RF), and extreme gradient
boosting (XGBoost) for predicting UCS and E of rock samples from Block
IX of the Thar Coalfield in Pakistan. A total of 122 datasets were divided
into training and testing sets, with an 80:20 ratio, respectively, to develop
the predictive models. Key performance metrics, including the coefficient
of determination (R2), mean absolute error (MAE), and root mean square
error (RMSE), were employed to assess the model’s predictive performance.
The results indicate that the PSO-XGBoost model demonstrated the highest
accuracy in predicting UCS and E, outperforming the other models, which
exhibited inferior predictive performance. Furthermore, this study utilized the
SHAP (Shapley Additive exPlanations) machine learning method to enhance our
understanding of how each input feature variable influences the output values of
UCS and E. In conclusion, the proposed framework offers significant advantages
in evaluating the strength and deformation of rocks at Thar Coalfield, with
promising applications in the field of mining and rock engineering.
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metaheuristic algorithm, mining rock mechanics, tree-based models, uniaxial
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Abbreviations: ANFIS, Adaptive neuro-fuzzy inference system; ANN, Artificial neural networks; ASTM,
American Society for Testing and Materials; BTS, Brazilian tensile strength; DD, Dry density; E, Elastic
modulus; ELM, Extreme learning machine; GBR, Gradient boosting regressor; GRNN, Generalized
regression neural network; ISRM, International Society for Rock Mechanics; LightGBM, Light gradient
boosting machine; LS-SVM, Least square support vector machine; MAE, Mean absolute error; ML,
Machine learning; MPMR,Minimumprobabilisticmachine regression; MRA,Multiple regression analysis;
MVR, Multivariate regression; PSO, Particle swarm optimization; R2, Coefficient of determination;
RF, Random forest; RMSE, Root mean square error; SHAP, Shapley Additive exPlanations; SH, Shore
hardness; UCS, Uniaxial compressive strength; XGBoost, Extreme gradient boosting; WD, Wet density.
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1 Introduction

1.1 Background

The rock’s mechanical characteristics, including uniaxial
compressive strength [UCS (MPa)] and elastic modulus [E (GPa)],
play a pivotal role in the planning and design of relevant projects
in mining and civil engineering. The success of both underground
and surface mining endeavors greatly relies on a comprehensive
understanding of various rock characteristics, withUCS and E being
pivotal components of rock mechanical assessment. Ensuring the
accuracy and precision of UCS and E measurements is fundamental
in the design and execution of any mining engineering project.
The development of machine learning (ML) intelligent indirect
methods for studying subsurface structures based on limited
data holds the potential to save time and cost while ensuring
structural stability. This study carries significant socio-economic
advantages and stands as an essential contributor to sustainable
development. Furthermore, it specifically focuses on Block IX
of the Thar Coalfield in Pakistan, with the primary objective of
assessing the stability of the surrounding rock during underground
excavation. This effort aims to prevent any disturbance to overlying
aquifers and the ground surface due to underground mining while
minimizing adverse environmental impacts. The study offers an
in-depth exploration of rock deformation and characterization
induced by changes in the stress field. “Various forms of rock
deformation behavior have been scrutinized by researchers
(Zhao et al., 2017; Rahimi and Nygaard, 2018; Davarpanah et al.,
2019; Xiong et al., 2019), and the methods for estimating rock
strength and deformation encompass both destructive and non-
destructive techniques”. As per the recommended standards of
the International Society for Rock Mechanics (ISRM) and the
American Society for Testing and Materials (ASTM), the direct
estimation of UCS and E through laboratory-based destructive
testing is recognized as a difficult, time-consuming, and expensive
endeavor, especially when working with delicate, internally
fractured, thin, or highly foliated rock samples (Jing et al., 2021).
Consequently, exploring indirect methods to assess UCS and E,
such as rock index tests or predictive approaches based onML-based
intelligent methods.

The investigation of the rocks’ mechanical characteristics is
integral to the extraction of energy resources and forms the
fundamental basis for their safe exploitation. The importance of
rock mechanics extends to the advancement of natural resource
extraction, encompassing the safeguarding of energy reserves,
such as petroleum products (oil, coal, and natural gas), and
the preservation of the surrounding geological environment.
Furthermore, waste disposal and hydroelectric energy projects
necessitate a deeper exploration of rocks and soils, mandating
comprehensive research into the mechanical characteristics of
rocks (National Research Council, 1978; Demirdag et al., 2010).
Various numerical techniques, such as peridynamic models,
general particle dynamics, and uniaxial compression experiments
on granite rock samples, have been employed to investigate
the fracture behavior of brittle materials featuring preexisting
cracks. These methods offer valuable insights into the complex
mechanisms governing fracture (Zhou et al., 2014; Zhou et al.,
2015; Wang et al., 2016; Wang et al., 2017; Wang et al., 2018;

Zhou et al., 2019). The UCS and E of rocks play pivotal roles
in addressing issues related to rock mechanics and the design
of coal mining operations (Török and Vásárhelyi, 2010; Hakan
and Kanik, 2012; Jahed Armaghani et al., 2015a; Armaghani et al.,
2016).

“Typically, two common methods, namely, static and dynamic,
are utilized to determine E. Static E is often derived by analyzing
the stress-strain curve up to 50% of the maximum strength of
the rock core sample. Conversely, dynamic E is determined by
considering the rock’s density and the velocities of compressional
and shear waves”. The disparity between static and dynamic E is a
well-researched aspect of rock engineering (Brotons et al., 2016). It
is generally observed that the dynamic E tends to be slightly higher
than the static E, as observed by various researchers (Zhang, 2006;
Kolesnikov, 2009). The dynamic-to-static E ratio has been reported
in the range of 1–20 (Wang, 2000).

1.2 Related work

Different authors have devised predictive models to mitigate
these challenges, employing various ML approaches (Ozcelik et al.,
2013; Abdi et al., 2018; Yang et al., 2020; Cao et al., 2021;Duan et al.,
2021; Harandizadeh and Armaghani, 2021; Pham et al., 2021;
Armaghani et al., 2022). This departure from the direct utilization
of tests prescribed by international standards is primarily due
to the perceived drawbacks of those tests, including their time-
consuming, costly, and unreliable nature (Jahed Armaghani et al.,
2016; Jamshidi et al., 2016). “The evolution of ML has been
strongly influenced by the emergence of novel learning algorithms,
theoretical advancements, as well as the continuous enhancement
of online data resources and high-speed computing capabilities”
(Jordan and Mitchell, 2015). Although these models excel in
addressing complex problems promptly and effectively, they
predominantly focus on unraveling intricate relationships among
variables for goal estimation, rather than offering insights into the
associations between predictors and output values (Chelgani et al.,
2016). Abdi and Taheri-Garavand (2020) developed the ANFIS
(adaptive neuro-fuzzy inference system) algorithm to estimate the
UCS of a sandstone consisting of 136 data points. ANFIS proved
to be highly accurate based on the evaluation of the model by R2,
RMSE and VAF. Ceryan and Samui (2020) predicted the volcanic
rocks’ UCS using extreme learning machine (ELM) and minimum
probabilistic machine regression (MPMR), and also incorporated
the least square support vector machine (LS-SVM) model to
compare the performance of the model. The results showed that
ELM and MPMR gave better results than LS-SVM. Aboutaleb et al.
(2018) used simple regression analysis (SRA), MRA, ANN (artificial
neural networks), and support vector regression (SVR) to predict
the UCS of carbonate rock. It was found that the SVR model was
more accurate than the other models. Ceryan et al. (2018) used
various ML models, namely, FIS (fuzzy inference system), ANN,
and LV-SVM. So, the LV-SVM model was the best in predicting
UCS. Ghasemi et al. (2018) employed the model tree method to
estimate the UCS of carbonate rocks and demonstrated the high
performance of the method. For predicting the UCS of travertine
rocks, (Barzegar et al., 2020) used RF, M5 model trees, and multiple
adaptive regression splines (MARS). In addition, they built an ANN
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model based on an ensemble committee to correlate the results
of the implemented models. The results showed that the MARS
model outperformed the other models (Barzegar et al., 2020).
Zhong et al. (2021) predicted UCS employing the XGBoost model
with highly accurate results. Yesiloglu-Gultekin and Gokceoglu
(2022) developed NLMR, ANN, and ANFIS models using 137 data
points (including unit weight, porosity, and sound velocity) as input
features to indirectly estimate the UCS of basalt. The ANN was
successful based on the performance metrics of R2, RMSE, VAF,
and a20-index. Predicting rock strength is an efficient alternative
technique to direct estimation. Diamantis and Moussas (2021)
applied multiple regression and ANNs to estimate the UCS of
peridotites collected from central Greece. Based on their results,
the proposed ANNs were found to be the most effective instead of
multiple regression. Mai et al. (2021) employed RF, one of the most
powerful ML models to predict concrete strength using GBFS, and
concluded that RF is the most powerful prediction tool with R2 =
0.97, which is recommended for engineers to reduce the cost of
experiments. The mechanical properties of rock, specifically UCS
are considered a key parameter that plays an important role in
the design of any rock engineering structure and energy resource
recovery and development. Therefore, an accurate estimation of
it is essential. UCS was predicted using RF by Matin et al. (2018).
For comparison, multivariate regression (MVR) and generalized
regression neural network (GRNN) were used for the prediction.
According to their results, RF yielded more satisfactory conclusions
than MVR and GRNN. Wang et al. (2020) determined the UCS
of rocks indirectly by developing RF as a prediction tool using
two indirect input features, namely, Schmidt hammer rebound
values (L-type) and Vp. Thus, the applied RF model has high
accuracy and suggests that the predicted UCS values can be better
applied in the fields of rock mechanics and engineering geology.
Gupta and Natarajan (2021) developed new intelligent prediction
models, namely, RF, ELM, LSSVR, and primal least squares dual
SVR (PLSTSVR) proposed as density-weighted least squares twin
support vector regression (PDWLSTSVR) to predict the UCS of
rock samples. The model’s efficiency was estimated identically
at the testing dataset of 47 samples out of overall 179 samples.
Consequently, PDWLSTSVR performed well with high accuracy
compared to other studied models such as RF, ELM, LSSVR, and
PLSTSVR. The UCS of rocks was modeled using soft computing
methods such as MLPNN (multilayer perceptron neural network),
M5 model tree, and ELM by Gül et al. (2021). The MLPNN model
performed excellently with an R2 of 0.9982. Sampath et al. (2019)
utilized advanced soft computing models, especially ANFIS and
ANN, to effectively predict the strength alterations. Similarly,
Abdi et al. (2018) introduced ANN and MRA for predictive
modeling of E. Their study incorporated input variables, including
porosity, dry density, P-wave velocity, and water absorption. The
findings demonstrated that the ANN model outperformed the
MRA model. Ghasemi et al. (2018) employed a model tree-based
method to evaluate the E of carbonate rocks. Their findings
indicated that the studied technique yielded the best predictive
results. Shahani et al. (2021) utilized a novel XGBoost algorithm.
The applied model, XGBoost achieved a high level of accuracy
in predicting E. Furthermore, Shahani et al. (2022a) developed
six ML models such as “LightGBM, SVM, Catboost, GBRT, RF, and
XGBoost” to estimate E of the Thar Coalfield. Thus, the XGBoost

model showed better results than the other models. Umrao et al.
(2018) studied the ANFIS method to determine the strength and
E of non-homogeneous sedimentary rocks. The anticipated ANFIS
model exhibited excellent predictive capabilities. Davarpanah et al.
(2020) established both linear and nonlinear relationships between
static and dynamic deformation parameters in various types of
rocks. Their research revealed a strong correlation between these
parameters. For predicting E of CO2-rich coals, Guha Roy and
Singh (2018) employed ANN, ANFIS, and MR techniques. The
findings indicated that both ANN and ANFIS have outdone the
MR model. Jahed Armaghani et al. (2015b) conducted a study
where they predicted the E of rocks, comparing the ANFIS against
MRA and ANN. The consequences demonstrated that ANFIS
exhibited superior performance compared to MRA and ANN.
Singh et al. (2012) introduced the ANFIS architecture as a method
for predicting rock E. Cao et al. (2022) adopted an innovative
approach by combining XGBoost and the Firefly Algorithm (FA)
in supervised ML to predict E. The results showed that this novel
method was effective. Yang et al. (2019) used a Bayesian method
to predict intact granite’s E, and the model produced suitable
predictions. Rastegarnia et al. (2018) predicted the mechanical
characteristics of sedimentary rocks, especially UCS and E, using
ANN with R2 of 0.99 and 0.97, respectively. Singh et al. (2017)
assessed a range of geomechanical parameters, with a specific focus
on the parameter E using a combination of MRVA and ANFIS
methods. As a result, the ANFIS model yielded a significantly
more accurate.

1.3 Significance of the study

Considering the limitations in existing literature and
conventional prediction methods, a single model often proves to
be insufficiently adaptable and inclusive, leading to suboptimal
solutions in complex scenarios, with varying performance outcomes
dependent on input features. To our knowledge, previous research
has addressed complex and unpredictable engineering situations
without leveraging intelligent prediction methods, specifically in
the context of the Thar Coalfield. There is a dearth of research
focused on predicting the UCS and E, and the comprehensive
exploration of model selection and application in UCS and E
prediction remains uncharted territory. To address this gap,
this study employs a hybrid ML-based model that amalgamates
multiple models to counterbalance the limitations of a single-
model approach, substantially enhancing the accuracy of predictive
results. In this study, hybrid PSO with tree-based models, such as
gradient boosting regressor (GBR), light gradient boosting machine
(LightGBM), random forest (RF), and extreme gradient boosting
(XGBoost) including wet density (WD) in g/cm3, moisture in %,
dry density (DD) in g/cm3, and (BTS) in MPa and shore hardness
(SH) as input features. The dataset used in this study was collected
from Block IX of the Thar Coalfield in Pakistan. A training-testing
split of 80% and 20%, respectively, was implemented on a dataset
consisting of 122 samples. To optimize the performance of the
developed models, a repetitive hyperparameters tuning and cross-
validation method is employed. Furthermore, SHAP (Shapley
Additive exPlanations) ML analysis was conducted to identify
the influence of each input feature on the predicted UCS and E.
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FIGURE 1
The flowchart of the research methodology.

This research represents the first application of a hybrid model to
predict UCS and E at Block IX of the Thar Coalfield in Pakistan.
Figure 1 illustrates the flowchart of the research methodology used
in this study.

2 Materials and methods

The Thar Coalfield in Pakistan ranks as the seventh-largest
coal field globally (Ahmed et al., 2020). The Thar Coalfield consists
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FIGURE 2
Geographical map of Block IX of the Thar Coalfield region [modified after (Ahmed et al., 2020)].

of a total of 12 individual blocks surrounded by dune sand
that extend over distances of up to 80 m. Shahani et al. (2019);
Shahani et al. (2020) introduced the application of the mechanized
longwall top coal caving mining (LTCC) method at Block IX
of the Thar Coalfield. Thus, the accurate assessment of rock
mechanical characteristics, with a specific focus on UCS and E,
at Block IX of the Thar Coalfield is of utmost importance for the
pre-mining evaluation of roof and ground stability, and overall
behavior of the mining environment. Furthermore, the application
of ML-based methodologies for predicting UCS and E serves to
address stability challenges duringmining operations and also offers
solutions for water resource management, particularly concerning
aquifers, in the context of Block IX of the Thar Coalfield in
Pakistan. Figure 2 depicts the location map of Block IX of the
Thar Coalfield.

2.1 Dataset

In this study, 122 stratigraphic rock samples including siltstone,
claystone, sandstone, and coal were collected from Block IX of Thar
Coalfield using the borehole coring method. These rock samples
underwent careful preparation and splitting procedures following
the guidelines set forth by the ISRM (International Society for Rock
Mechanics) (Brown, 2007) and the ASTM (American Society for
Testing and Materials) (ASTM Committee D-18 on Soil and Rock,
2013) to keep consistent core dimensions and geometric features.
Subsequent investigational tests were conducted on these rock
samples at the laboratory, to determine their physico-mechanical
properties. Key properties assessed included wet density (WD),
moisture, dry density (DD), Brazilian tensile strength (BTS), shore
hardness (SH), elastic modulus (E), and uniaxial compressive
strength (UCS). Previously (Shahani et al., 2022a), we used 106

TABLE 1 Statistical distribution of the original dataset used in this study.

WD Moisture DD BTS SH E UCS

count 122 122 122 122 122 122 122

mean 1.93 18.29 1.66 0.31 5.25 0.25 1.32

Std 0.37 8.78 0.40 0.13 5.42 0.29 0.95

min 1.01 6.64 0.76 0.02 0.40 0.01 0.27

25% 1.86 12.15 1.56 0.21 2.06 0.06 0.54

50% 2.09 15.52 1.81 0.31 3.30 0.15 0.98

75% 2.16 21.37 1.92 0.41 4.97 0.35 1.99

max 2.39 43.30 2.15 0.63 23.60 1.88 3.62

datasets and 4 input parameters with a single predictive model.
However, this study used more datasets and input parameters and
a hybrid optimization prediction model to improve the accuracy of
the data. Table 1 defines the statistical distribution of the original
dataset used in this study.

The UCS test carried out following ISRM standards,
involved the use of a uniaxial testing machine (UTM) on
standardized core samples with NX dimensions, featuring a
diameter of 54 mm, and applied a loading rate of 0.5 MPa/s.
This test was performed to ascertain the UCS and E of
the rock samples. Additionally, to evaluate the BTS of the
rock samples, Brazilian tests were performed using the same
UTM apparatus.

The Seaborn module in Python was used for visualizing
the original dataset in this study. Specifically, Figure 3
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FIGURE 3
Three-dimensional surface plots of the original dataset: (A) UCS and (B) E.

presents three-dimensional (3D) surface plots illustrating
the relationships between input parameters and the output
variables UCS and E.

Additionally, Figure 4 shows a correlation heatmap for the
complete dataset. In Figure 4, there are positive correlations between
BTS and moisture, as well as SH and E with output UCS, while
WD and DD exhibit negative correlations. Similarly, for output
E, Figure 4 reveals positive correlations with BTS, SH, and UCS,
and negative correlations with WD and DD. The representation of
moisture does not exhibit a correlation with the E. RStudio software
was employed for the formation of Figure 4, and it is important
to note that UCS and E were considered as interrelated input
parameters in the analysis.

2.2 Methods

In developing countries like Pakistan, the use of large-scale
conventional tests to determine rock mechanical characteristics,
namely, UCS and E is often impractical. Consequently, there is
a growing imperative to design intelligent predictive algorithms
using ML techniques to address the challenge of data scarcity,
which is the focus of this study. This study employs hybrid
PSO with tree-based models, including GBR, LightGBM, RF,
and XGBoost. The study aims to forecast the UCS and E of
rock samples collected from Block-IX of the Thar Coalfield
in Pakistan. A concise overview of the developed method
is given below.
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FIGURE 4
Correlation matrix of the original dataset.

2.2.1 Particle swarm optimization
Kennedy and Eberhart in 1995 (Kennedy and Eberhart, 1995)

proposed the particle swarm optimization (PSO) algorithm, which
is considered a new approach to swarm intelligence. The PSO
algorithm is based on the performance of birds in nature and is
considered to be the most prominent metaheuristic algorithm. In
the PSO, individuals, also referred to as particles, are organized into a
group known as a swarm.This swarmoperates as a population-based
search process (Engelbrecht, 2007; Sumathi and Paneerselvam,
2010). Each particle within the swarm denotes a potential solution
for addressing the optimization problem. Particles in the PSO
algorithm are dispersed over a hyper-dimensional search space.
The behavior of particles within the search area is influenced
by the social-psychological tendency of individuals to imitate the
successful actions of others. As a result, each particle in a swarm
is driven by a blend of its individual history and the information it
acquires from its neighboring particles. Figure 5 shows a flowchart
of the optimized models by the PSO framework. PSO has been
successfully used for addressing optimization problems and finding
ideal solutions based on two major factors: location (x) and velocity
(V). Eq. 1 could be used to update the velocity:

Vi(k+ 1) = wVi(k) + r1c1(xpbesti − xi(k) + r2c2(xgbesti − xi(k)) (1)

where pbest is the ith particle’s optimum position and gbest is the
global optimum value achieved by various particles.

The xi(k) represents the particle’s position at time step (k), V i(k)
represents the particle’s velocity at the time (k), w represents the
coefficient of inertia, r1 and r2 represent random coefficients, c1, and
c2 represent acceleration coefficients, and V i(k + 1) represents the
freshly simplified velocity. The value of w can be calculated using
Eq. 2 (Kennedy and Eberhart, 1995).

w = wmax −
wmax −wmin

itermax
.iter (2)

where wmin is the smallest weight and wmax is the largest weight,
iter is the number of iterations, and itermax is the maximum
number of iterations. Eq. 3 is used to transfer the particles into their
new positions:

xi(k+ 1) = xi(k) +Vi(k+ 1) (3)

The 3D benchmark function utilized in model development,
as illustrated in Figure 6, represents a mathematical equation that
results from the sum of the squares of two variables, denoted as
X and Y. This function presents a convex, continuous surface with
a distinctive “bowl“-like shape. PSO optimization algorithms make
use of this particular function to navigate throughmultidimensional
search spaces. It serves as a comprehensible benchmark problem in
this context to demonstrate optimization behaviors. The function
is characterized as a quadratic, multimodal equation, and its
output is contingent on the square values of the input variables.
Figure 7 presents the results of model development using PSO-
optimized GBR, LightGBM, RF, and XGBoost, where the selection
was based on the lowest root mean square error (RMSE) for
predicting UCS and E.

PSO method draws inspiration from natural social behavior,
specifically the coordinated movements observed in bird flocks.
It leverages this inspiration to predict intensity physically. PSO
is employed to emulate the search behavior of particles within a
solution space, aiming to optimize the parameters of a predictive
model in the realm of intensity prediction.

The ability of PSO to efficiently explore the solution space and
converge towards optimal parameter values makes it a preferred
choice over alternative approaches. PSO proves particularly valuable
in optimizing the parameters of models employed for predicting
intensity, showcasing proficiency in solving complex, non-linear
optimization problems. When compared to specific alternative
optimization techniques, its simplicity, ease of implementation,
and effectiveness in identifying global optima contribute to its
appeal. Nevertheless, the nature of the problem at hand and the
characteristics of the data may influence the selection of the
optimization method.

2.2.2 Gradient boosting regressor
The gradient boosting regressor (GBR) combines weak learners

(i.e., algorithms that perform moderately compared to random
algorithms) into strong learners within the ensemble technique
(Freund et al., 1999). In comparison to bagging, boosting algorithms
iteratively generate base frameworks. By concentrating priority
on assessing intricate learning information, they create multiple
frameworks, thereby enhancing the robustness of the predictive
model. In boosting algorithms, basic frameworks are often
developed in the training dataset that was previously unsuitable
for estimation compared to those models that undergo precise
evaluation. Each auxiliary base framework is used to correct errors
produced by its previous base framework. The existence of boosting
algorithms stems from Schapire’s response to Kearns’ inquiry
(Kearns, 1988; Schapire, 1990): is the combination of weak learners
a substitute to differentiate strong learners? Algorithms that exhibit
strong performance when compared to random approximations are
commonly termed weak learners, while more practical classification
or regression algorithms that effectively align with the problem’s
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FIGURE 5
Optimized models by PSO framework.

FIGURE 6
3D benchmark function plot by PSO optimization.

inherent challenges are known as strong base frameworks. The
response to this investigation is highly significant. Evaluation of
weak frameworks is usually unchallenging compared to strong
frameworks. Schapire argued that Kearns’ query can be responded
affirmatively, indicating that numerous weak frameworks can be
merged to create a unified, robust framework.

2.2.3 Light gradient boosting machine
Light gradient boosting machine or LightGBM is a free and

open-source distributed gradient boosting framework used for ML,
initially developed by Microsoft. It is based on the decision tree
algorithm and is used for ranking, classification, and regression
ML tasks (Ke et al., 2017). LightGBM places continuous feature
values into separate buckets, offering higher agility and faster
training speed. LightGBM utilizes the histogram-based approach
(Zeng et al., 2019; Liang et al., 2020) to optimize the learning phase,
reduce memory usage, and integrate modified communication
networks to enhance training efficiency.This algorithm is commonly
referred to as the parallel voting decision tree ML algorithm. To
select the top-k elements and derive global voting strategies, the
approach involves partitioning the learning data into multiple trees
and applying local voting techniques in each iteration. LightGBM
employs a leaf-wise technique to determine the leaf with the highest
splitter gain. By utilizing the leaf-wise distribution method, which is
considered a primary andmore effective component of the execution
algorithm, it constructs a more intricate tree compared to the level-
wise distribution approach. While this complexity can potentially
result in overfitting, LightGBM mitigates this risk by implementing
a maximum depth parameter.

2.2.4 Random forest
1n 2001, random forest (RF) was initially originated by Breiman,

which falls under the category of ELM algorithm (Breiman,
2001), and has broad applications in both regression analysis and
classification tasks. RF is an advanced method of ensemble or
bagging. In the realm of other recognized artificial intelligence
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FIGURE 7
PSO-based optimized GBR, LightGBM, RF, and XGBoost model development results for (A) UCS and (B) E.

computations, RF has recognized a unique relationship between
model representation and predictive accuracy (Yang et al., 2010).

In this study, an RF model with 100 trees and a set of default
parameters was employed to evaluate the model’s performance.

2.2.5 Extreme gradient boosting
Extreme gradient boosting or XGBoost is a well-known

ensemble learning algorithm in the field of ML. It combines
advanced boosting techniques with traditional regression and
classification trees (Meng et al., 2016). Boosting works by
constructing multiple trees instead of relying on a single tree,
and then combining them to develop a consistent predictive
model to enhance the accuracy estimation of the system (Ranka
and Singh, 1998). XGBoost follows the general concept of
gradient boosting, where weak learners are combined with strong
learners. Nevertheless, XGBoost demonstrates improved predictive
capabilities by introducing additional regularization terms into
the objective function. These regularization terms help mitigate
overfitting and control the complexity of the model. The objective
function is defined as follows in Eqs (4) and (5).

obj =∑iL(ŷi,yi) +∑kω( fk) (4)

ω( fk) = γN+
1
2
λ‖w‖2 (5)

where, L(y) represents the loss function and ω( fk) represents the
regularization term.The loss function, L(y), quantifies the difference
between the predicted value (ŷi) and the actual target label (yi)
for a specific training sample. N denotes the number of leaves in
a decision tree, while γ and λ are uniformity characteristics used
to ensure consistency in the structure of the model and prevent
overfitting. Lastly, w denotes the weight assigned to each leaf.
Chen and Guestrin (Chen and Guestrin, 2016) utilized a derivation
process involving a second-order Taylor series expansion of the

loss function. This approach aimed to enhance the efficiency of
minimizing the loss function.

XGBoost is a popular ML algorithm that combines the powerful
capabilities of the gradient boosting technique. It achieves a
robust and coherent performance in various regression prediction
tasks, providing numerical outputs. Moreover, it can be readily
applied to probabilistic regression frameworks. Ensembles are
established using decision tree models, which are interconnected
to refine the accuracy of forecasting models. This ensemble
ML approach is commonly referred to as boosting. These
frameworks are constructed by employing various gradient descent
optimization techniques and different loss functions. During model
implementation, the gradient loss function is minimized, giving rise
to the term “gradient boosting” for this mechanism.

3 Hyperparameter tuning and model
evaluation

3.1 Hyperparameter tuning

Grid Search Cross-Validation is a method used for tuning
hyperparameters (Bergstra and Bengio, 2012). This method allows
for a search within a specified range of hyperparameters and
identifies the expected hyperparameter combinations that yield the
best results in terms of evaluation metrics such as R2, MAE, and
RMSE. In the Python programming language, the GridSearchCV()
function is typically used to implement this strategy, and it is
readily available in the scikit-learn library. This method essentially
computes Cross-Validation scores for all possible combinations
within a specific range of hyperparameters.

This study, as shown in Figure 8, conducted 10-fold Cross-
Validation to comprehensively assess the performance of
hyperparameter combinations. GridSearchCV() not only allows
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FIGURE 8
A 10-fold Cross-Validation diagram.

FIGURE 9
Visualization plot for hyperparameter optimization: (A) UCS and (B) E.

us to discover the optimal hyperparameter combinations but also
provides performance metrics for these combinations.

The optimal selection of hyperparameters, specifically max_
depth and n_estimators, plays a crucial role in constructing a
robust model for predicting UCS and E. max_depth determines the
maximum depth of the decision tree, while n_estimators signifies
the total number of trees in the forest. Given the computational cost
associatedwith hyperparameter tuning, we employed Python’s range
function to efficiently explore the parameter space. For max_depth,
values between 4 and 10 are considered, taking into account the
computational resources required for selection. Similarly, a range of
10 for n_estimators is utilized, spanning from10 to 300.The learning
rate was kept at its default value. Figure 9; Table 2 illustrate the
visualization plot for hyperparameter optimization of the developed
models: (a) UCS and (b) E.

3.2 Model evaluation

Different performance matrices such as R2 (Shahani et al.,
2022b; Wei et al., 2023), MAE (Willmott, 1982), and RMSE
(Shahani et al., 2022c) have been used by different scholars to
evaluate high-accuracyMLmodels.This suggests that the higher the
R2 value and the smaller the MAE and RMSE, the more the model
is considered the best predictive model when predicting UCS and
E from their original values. In this study, R2, MAE, and RMSE are
utilized to assess the relationship between the original and predicted
values of UCS and E.

R2 =
∑n

i=1
(So − So)(Sp − Sp)

√∑n
i=1
(So − So)

2((Sp − Sp)
2 (6)
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TABLE 2 Hyperparameters and tuning range.

Parameter Model Hyperparameters Parameter range Interval Best value

UCS

PSO-GBR

max_depth n_estimators (4, 10) (10, 300, 10) 10

5.73

300

PSO-LightGBM
4

300

PSO-RF
10

252

PSO-XGBoost
10

124

E

PSO-LightGBM

max_depth n_estimators (4, 10) (10, 300, 10) 10

4.68

300

PSO-GBR
10

300

PSO-RF
10

258

PSO-XGBoost
10

250

MAE = 1
N
∑n

i=1
|S0 − Sp| (7)

RMSE = √
∑n

i=1
(So − Sp)

2

n
(8)

where, So and Sp represents are the mean values of original and
predicted UCS and E, So and Sp are the original and predicted values
of UCS and E, respectively.

4 Results and discussion

Hybrid PSO with other ML techniques, plays a vital role in data
forecasting. This study introduces a nature-inspired population-
based PSO with tree-based models, such as GBR, LightGBM,
RF, and XGBoost. These algorithms are utilized to predict the
mechanical characteristics of rock samples, specifically UCS and
E, utilizing input features like wet density, moisture, dry density,
BTS, and SH. The dataset employed in this research was sourced
from Block-IX of the Thar Coalfield in Pakistan. The PSO model
development involved the use of a 3D benchmark function,
characterized by a convex, continuous surface with a distinctive
“bowl“-like shape. The integration of PSO with GBR, LightGBM,
RF, and XGBoost development was evaluated based on RMSE.
A 10-fold Cross-Validation technique was applied, and optimal

hyperparameters were determined to enhance the predictive
capabilities of these models. The dataset was divided into two
splits, with 80% (97 samples) allocated for training and 20% (25
samples) for testing each developed model. The performance of
the models was evaluated using key metrics, including R2, MAE,
and RMSE, to identify the most suitable model for UCS and
E prediction. Additionally, SHAP ML analysis was conducted to
investigate the influence of each input variable on the predicted
values of UCS and E.

The evaluation of predictive accuracy for the models under
development was conducted on the train and test datasets.
Figure 10A depicts the performance for UCS, while Figure 10B
presents the results for E. The models were organized in increasing
order, ranging from lower to higher performance levels. The
performance metrics for UCS, including R2, MAE and RMSE
for the models PSO-GBR, PSO-LightGBM, PSO-RF and PSO-
XGBoost are as 0.988, 0.0238 and 0.0307 and 0.492, 0.4752 and
0.7632, 0.81, 0.2826 and 0.4035 and 0.54, 0.4656 and 0.7051,
0.758, 0.3521 and 0.4842 and 0.755, 0.2826 and 0.4018, 0.999,
0.0042 and 1.7883 and 0.999, 0.0032 and 1.3482, respectively.
Similarly, the performance metrics for E, including R2, MAE,
and RMSE of model PSO-LightGBM, PSO-GBR, PSO-RF, and
PSO-XGBoost are 0.907, 0.0499 and 0.0823 and 0.692, 0.1380
and 0.2694, 0.997, 0.0103 and 0.0137 and 0.725, 0.1271 and
0.2365, 0. 816, 0.0492 and 0.0.1118 and 0.814, 0.1047 and
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FIGURE 10
Scatter plots of PSO-optimized models: (A) UCS (MPa) and (B) E (GPa).

0.1865, 0.999, 0.0011 and 2.3160 and 0.999, 0.0006 and 2.9249,
respectively.

Figures 11A, B depict density line plots illustrating the predicted
data for UCS and E at both the train and test datasets. These plots

provide valuable insights into themodel’s performance in predicting
the data at each data point.

Furthermore, this study has endeavored an access the predictive
accuracy of UCS and E to gain a deeper insight into the
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FIGURE 11
Kernel density plots for PSO-optimized models: (A) UCS (MPa) and (B)
E (GPa).

predictive capabilities of the models created. This evaluation is
especially important given the wide range of values for UCS
and E present within the dataset under consideration. The
residuals from the developed models were utilized to assess
the accuracy of the UCS and E predictions. These residuals
provide a measure of the variation between the original dataset
values and the corresponding predicted values for UCS and E at
each data point.

As depicted in Figure 12, the residuals exhibit a direct
relationship with the original values of (a) UCS and (b) E in both

the train and test data as predicted by the developed models.
However, important to highlight that the PSO-XGBoost model
defines residual values that are consistently near zero due to its high
predictive accuracy when predicting UCS and E. This suggests that
as the residual values increase, both UCS and E tend to increase,
and vice versa. The study reveals that when the original values
of UCS and E are low, these models tend to predict UCS and E
values that are higher than the original UCS and E values, whereas
when the original UCS and E values are high, their predicted
UCS and E values appear to be lower than the original UCS
and E values.

Table 3 illustrates hybrid PSO with GBR, LightGBM, RF,
and XGBoost, for predicting UCS and E. We evaluated the
performance of these models using a range of performance
metrics determined by Eqs 6–8. Notably, the PSO-XGBoost model
demonstrated outstanding predictive performance, achieving R2

values of 0.999 and 0.999, MAE values of 0.00325 and 0.00064, and
RMSE values of 0.0312 and 2.92491 for UCS and E, respectively,
on the test dataset. These results establish the superiority of
the PSO-XGBoost model, indicating its status as the optimal
model in this study due to its exceptional accuracy, as shown
in Figure 13.

The Taylor diagram provides a concise quantitative summary
of the accuracy of a model in terms of standard deviations and
correlations. In this study, Figure 14, depicts a Taylor diagram
analysis comparing the predicted and original values of UCS and
E for four models: PSO-GBR, PSO-LightGBM, PSO-RF, and PSO-
XGBoost. The analysis considers key metrics such as standard
deviation (STD), RMSE, and R2 for both the training and test
datasets. Thus, PSO-XGBoost exhibits a notably strong correlation
with the original UCS and E values, distinguishing it from the other
models examined in this study.

In Figure 14, the analysis indicates that the STD of the
PSO-XGBoost model is closest to its corresponding original
STD, suggesting that it provides a reliable prediction. Drawing
from a comprehensive review of publicly available literature
(Ghose and Chakraborti, 1986; Katz et al., 2000; Tiryaki, 2008;
Jahed Armaghani et al., 2015b; Guha Roy and Singh, 2018;
Umrao et al., 2018; Davarpanah et al., 2020; Shahani et al., 2021;
Zhong et al., 2021; Shahani et al., 2022a), this study has identified
the optimal model, which consistently delivers highly accurate
predictions for both UCS and E. While the STD values of other
models also approach their original counterparts, they exhibit
comparatively lower R2 values.

SHAP is derived from game theory, and it is a multivariate
method used to compute the importance values of each feature,
helping to understand the influence of each feature on model
predictions. Figures 15A, B use SHAP values for each data point
in the train and test dataset for UCS and E to illustrate the
importance of assessment of various variable features. This intuitive
representation develops an association between each feature value
and its corresponding SHAP value. Specifically, taking the key
feature ‘E' in UCS and “UCS” in E as an example, higher feature
values are associated with higher SHAP values, and vice versa.
This observation indicates that an increase in feature values leads
to an increase in the output value. So, when SHAP values are
higher, it signifies a tendency to enhance the output probability or
output value.
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FIGURE 12
Residuals plots of PSO-optimized models: (A) UCS (MPa) and (B) E (GPa).

In Figures 15A, B, the SHAP value exemplifies the extent to
which each original value impacts the prediction value, either
positively or negatively. Higher original values are represented by
brighter colors, while darker colors represent lower original values.

5 Engineering applications

Machine learning or ML is the study of the application of
computer programs that allow robust intelligent models without

Frontiers in Earth Science 14 frontiersin.org

https://doi.org/10.3389/feart.2024.1337823
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Shahani et al. 10.3389/feart.2024.1337823

TABLE 3 Performance metrics of the hybrid PSO with tree-based models for UCS and E.

Model UCS E UCS E

Training Training Testing Testing

R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE

PSO-GBR 0.81 0.02381 0.03077 0.997 0.01032 0.01378 0.492 0.47524 0.76347 0.725 0.12718 0.23656

PSO-LightGBM 0.998 0.28289 0.40355 0.907 0.04997 0.08232 0.54 0.46564 0.70518 0.725 0.12718 0.23656

PSO-RF 0.758 0.35219 0.48423 0.816 0.04925 0.11180 0.755 0.28269 0.40180 0.814 0.10471 0.18655

PSO-XGBoost 0.999 0.00424 1.78836 0.999 0.00118 2.31605 0.999 0.00325 1.34825 0.999 0.00064 2.92491

FIGURE 13
Predictive performance metrics of the PSO-optimized models on the train and test dataset: (A) UCS (MPa) and (B) E (GPa).
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FIGURE 14
Taylor diagram representation of (A) UCS and (B) E.

being explicitly programmed. Over the past decade, the use of ML
has experienced significant application in a wide range of industries.
The recent advances in smart mining technology have made it
possible to make use of limited data in real-time scenarios. Proper
estimation of correlations between pertinent rock parameters like
UCS and E is integral to reliable rock and mining engineering
design and analysis. Thus, research employing ML that utilizes
data should be actively conducted in the mining industry. In
mining applications, where uncertainty is an intrinsic part, ML
can be effectively used to develop robust prediction models for
rock engineering characteristics or behavior. Furthermore, mining
design parameters are frequently approximated using empirical or
numerical correlations that are developed by regression fitting to
a dataset rather than being explicitly measured from laboratory
and in situ experiments. These empirical correlations usually use

linear regression approaches. A major limitation of this approach
is that the rock parameters are rarely addressed by analytical and
empirical approaches because of underlying non-linearity. However,
hybrid PSO with tree-based prediction models developed in this
study can improve the estimation of these parameters significantly.
For a more in-depth comprehension, the following explanation can
provide additional clarity:

5.1 Basic engineering applications

In conventional rock and mining engineering, accurate
estimation of essential parameters such as UCS and E is critical
for reliable design and analysis. However, conventional methods,
often based on linear regression approaches, face limitations due

Frontiers in Earth Science 16 frontiersin.org

https://doi.org/10.3389/feart.2024.1337823
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Shahani et al. 10.3389/feart.2024.1337823

FIGURE 15
SHAP summary plots of the developed optimized models at the train
and test datasets: (A) UCS and (B) E.

to the inherent non-linearity of rock parameters. The hybrid PSO
with tree-based prediction models proposed in this study offers
significant improvements in parameter estimation.

For instance, in the context of Block IX of the Thar Coalfield
in Pakistan, where the application of the longwall top coal
caving (LTCC) method has been proposed (Shahani et al., 2019;
Shahani et al., 2020), real-time estimation of UCS and E can play a
crucial role. This estimation directly influences the customization
and modification of LTCC design and operations, ensuring safe
and cost-effective mining practices. The accurate determination of
rock mechanical parameters, particularly UCS and E, is essential
for designing mining structures and earth surface profiles, thereby
contributing to the safety, economic viability, and sustainability of
mining operations.

5.2 ML-based engineering applications

Although numerous basic studies have been conducted to
determine the mechanical properties of rocks at Thar Coalfield, the
requirement for more robust models and more diverse datasets is
crucial to developing reliable information on the impacts of the
consideration of mechanical characteristics of rock, which will be
very useful for mine planning and design. ML-based prediction
targets making models that after learning from specific training
datasets can make accurate predictions on concealed data that has
never been introduced to the model, i.e., a model that can be
generalized by Chollet in 2018 (Chollet, 2021). Therefore, the main
ML-based engineering applications of this study are outlined below:

(1) ML Indirect Techniques for Designing and Excavating
Underground Structures: The study introduces ML as a
tool for designing and excavating underground structures,
leveraging limited data for cost-effective and stable mining
structure development. This has technical, economic, and
social implications, aligning with sustainability objectives.

(2) Implication of ML for Deep Excavations and Rock Behavior
Prediction: ML’s application for predicting UCS and E
enhances stability considerations, particularly in deep
excavations. The study emphasizes the advantages of
ML algorithms over empirical and analytical methods,
highlighting their accuracy, robustness, and reliability. The
hybrid PSO with tree-based models is positioned as a valuable
tool for addressing challenges in mining engineering, where
acquiring data is difficult due to safety concerns, time
constraints, and associated costs.

(3) Addressing Variability in Rock Attributes with ML: ML
is recognized as a solution to manage variability in rock
attributes, particularly where analytical solutions are lacking,
and existing models have simplifying assumptions. The hybrid
PSO with tree-based models is positioned to contribute to
the development of generalized models, applicable to domains
with similar attributes.

The prediction of UCS and E using hybrid PSO with tree-
based models not only contributes to the stability of underground
mine roadway excavation but also addresses uncertainties associated
with sparse datasets. This approach empowers mining and rock
engineers to assess the level of uncertainty surrounding predictions,
ensuring a more informed decision-making process for the safe
and continuous operation of mining activities at Block IX of the
Thar Coalfield.

6 Conclusion

This study explores the effectiveness of hybrid PSO with tree-
based models, such as GBR, LightGBM, RF, and XGBoost, for
estimating the UCS and E of rocks from Block-IX of the Thar
Coalfield in Pakistan. A dataset of 122 samples is split with 80%
for training and 20% for testing each model. To improve the
performance of the constructed model, a 10-fold cross-validation
iteration technique is employed. This study seeks to establish a
fundamental framework for assessing the stability of surrounding
rock to prevent situations detrimental to environmental protection,
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such as unstable surrounding rock leading to damage to overlying
aquifers and severe surface subsidence.

The PSO-XGBoost model exhibits superior predictive
performance on both the train and test dataset, with an R2 of 0.999,
MAE of 0.00424 and RMSE of 1.78836 and R2 of 0.999, MAE of
0.00325 and RMSE of 1.34825 for UCS and an R2 of 0.999, MAE
of 0.00118 and RMSE of 2.31605 and R2 of 0.999, MAE of 0.00064
and RMSE of 2.92491 for E. In contrast, PSO-RF also displays a
strong accuracy in predicting UCS and E, although it is not without
notable limitations. Meanwhile, PSO-GBR and PSO-LightGBM
exhibit limited predictive performance.

Furthermore, Based on the Taylor diagram analysis, it can be
observed that the PSO-XGBoostmodel exhibits a standard deviation
that is in close agreement with the original standard deviation value.
A comprehensive SHAP analysis was also conducted to gain deeper
insights into the significant impact of each input feature on the
final output.

In this study, the application of a hybrid PSO with tree-based
models has demonstrated the feasibility of forming underground
engineering construction plans with limited data. This approach
not only enhances construction safety but also yields cost reduction
and accelerated progress. The findings of this study make valuable
contributions to sustainable mining development. The utilization
of the hybrid model has facilitated the construction of optimized
models, thereby providing accurate predictive models for UCS and
E at Block IX of the Thar Coalfield.

Effective fieldwork is needed for informed decision-making in
future engineering projects. The use of innovative methods, like the
PSO-XGBoostmodel, shows outstanding performance in predicting
UCS and E. Thus, it is highly recommended for inclusion in
future study endeavors and holds significant potential for extensive
application in the engineering field, particularly when dealing with
large datasets to overcome existing limitations.
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