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Soil degradation in andean
watersheds: a case study using
remote sensing

Fernando Oñate-Valdivieso*, Arianna Oñate-Paladines and
Ricardo Díaz

Hydrology and Climatology Research Group, Department of Civil Engineering, Universidad Técnica
Particular de Loja, Loja, Ecuador

Soil degradation is one of the greatest challenges faced by arid and semi-
arid zones, as it causes a progressive loss of the capacity of soils to sustain
life and human activities. In the present study, five spectral indices, individually
associated with erosion, desertification, salinity, and soil sealing, were evaluated
in a semi-arid region of the Ecuadorian Andes to study of soil degradation.
The results were validated through field observations and samples processed in
the laboratory. The spectral indices presented correlation coefficients between
0.5278 and 0.8809 with field observations. These indices provided useful
information to understand the current state of the soils and their potential
deterioration. The study area showed greater vulnerability to erosion caused
by the combination of scarce vegetation, irregular topography, and significant
seasonal rainfall. The advance of urbanization, mechanized agriculture, and
overgrazing had a high impact by impermeabilizing considerable surfaces, while
the advance of desertification and soil salinization showed little incidence in the
study area. The systematic application of these indices would become a valuable
means for monitoring soil degradation in Andean watersheds.
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1 Introduction

Land degradation is one of the biggest challenges to people’s livelihoods and the
environment all around the world (Dubovyk, 2017). Soil degradation can be defined as the
gradual deterioration of soil quality, which leads to the loss of its ability to support life and
human activities. In the case of agricultural lands or soils subjected to anthropic impact, if
sustainable soil protection andmanagement practices are not implemented, the soil will not
be able to recover its normal ecological functions (Osman, 2018).

Erosion produces land degradation and reduces fertility, leading to eutrophication of
water, blockage of riverbeds, and damage to infrastructure (Borrelli et al., 2017). Bare soil
is considered one of the main causes of erosion (Morgan, 2005). The loss of vegetation
cover is the result of forest clearing, forest fires, agricultural activities, urban growth, among
others. The maintenance of soil cover reduces soil erosion by dissipating the kinetic energy
of raindrops, decreasing the flow velocity (Li et al., 2021) and attenuating soil compaction
(Martíni et al., 2021).

On the other hand, the presence of salts in the soil is considered a limiting factor for
crop yields, especially in arid and semi-arid or near-shore regions (Rodríguez et al., 2016;
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FIGURE 1
Location of study areas.

Ponce et al., 2018). The genesis of natural salinity is primarily based
on the physical and/or chemical weathering of salts and their
migration from parent material, geologic deposits, or groundwater.
Secondary salinization is mainly caused by external factors, such as
irrigation, other agricultural practices, and/or acidic precipitation.
Salinity usually occurs in irrigated soils due to the accumulation of
soluble salts resulting from the continuous use of irrigation water
containing high or medium amounts of soluble salts (Allbed and
Kumar, 2013). Saline soil conditions have resulted in a significant
decrease in the value and productivity of vast land areas worldwide
(Asfaw et al., 2018).

Additionally, soil compaction is the physical form of soil
degradation that changes soil structure and influences soil
productivity. Soil grains are rearranged to decrease void space
and bring them into closer contact with each other, increasing the
bulk density (Nawaz et al., 2013). Compaction can be a natural
phenomenon caused by freezing and drying, precipitation, seasonal
cycles, etc., that affects the superficial layers of the soil or an artificial
phenomenon caused by mechanical operations or animal trampling
that compacts the soil to greater depths or urban growth that creates
impervious surfaces (Oñate-Valdivieso et al., 2022). No matter
its origin, soil compaction influences water dynamics, pesticide
diffusion, soil erosion, carbon and nitrogen cycles, plant growth,
among others (Nawaz et al., 2013).

Finally, desertification is land degradation in arid, semi-
arid, and dry sub-humid areas, where the ratio of annual
precipitation to potential evapotranspiration falls within the range
of 0.05–0.65, resulting from various factors, including climatic
variations and human activities (ICCD, 1994). Desertification has

led to the expansion of desert-like characteristics in non-desert areas
throughout human history and is a major obstacle to sustainable
development (Lyu et al., 2020). The causes and consequences of
land degradation anddesertification concern several interdependent
human activities, directly implicating more than one land resource
(soil, water, and vegetation), and involving diverse economic
sectors, social groups, and institutions, spanning the local to
global spectrum. Its occurrence exposes land resources and human
populations to multiple threats, such as the loss of land productivity,
food insecurity, water shortages and scarcity, economic hardship,
social deprivation, and health risks (Briassoulis et al., 2019). The
texture of topsoil is closely related to land degradation. The more
severe the desertification, the coarser the topsoil grain composition.
Therefore, this may be an indicator that can be monitored by remote
sensing (Xiao et al., 2006).

Remote sensing and satellite imagery have been widely utilized
for environmental studies, including urban expansion (Dou et al.,
2017; Chai et al., 2018; Zhang et al., 2020; Oñate-Valdivieso, et al.,
2022), deforestation (Souza et al., 2013; Hamunyela et al.,
2016; Schultz et al., 2016), climate change impacts (Mo et al.,
2019; Zhu et al., 2020), wildfire damage (Meddens et al., 2016;
Hislop et al., 2018) and other natural and anthropogenic dynamics.

Regarding the study of land degradation, remote sensing
has been widely applied with different approaches. Here are
some examples: Multitemporal analysis of Landsat TM/ETM
images has been used to study the presence of salinity and
vegetation degradation in transition zones between grasslands
and crops in China (Chen and Rao, 2008). Visual analysis of
TM/ETM+ andMODIS images, spectral indices, andmultitemporal

Frontiers in Earth Science 02 frontiersin.org

https://doi.org/10.3389/feart.2024.1325189
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Oñate-Valdivieso et al. 10.3389/feart.2024.1325189

TABLE 1 Satellite images from the Landsat OLI-TIRS sensor used in this study.

Satellite Sensor Acquisition date Resolution (m) Wavelength (μm)

Landsat-8 OLI-TIRS
11-08-2020 (Test Site 1)
10-24-2021 (Test Site 2)

30

Band1 (Coastal/Aerosol):
0.435–0.451

Band2 (Blue): 0.452–0.512

Band3 (Green): 0.533–0.590

Band4 (Red): 0.636–0.673

Band5 (NIR): 0.851–0.879

Band6 (SWIR-1): 1.566–1.651

Band7 (SWIR-2): 2.107–2.294

15 Band8 (Pan): 0.503–0.676

30 Band9 (Cirrus): 1.363–1.384

100
Band10 (TIR-1): 10.60–11.19

Band11 (TIR-2): 11.50–12.51

analysis were used to study land degradation processes in Niger
(Fiorillo et al., 2017). The relation between measured Land Surface
Temperature and Normalized Difference Vegetation Index was
used to assess land degradation and desertification in India using
Landsat 8 (Kumar et al., 2022). Spectroscopy technique and RUSLE
model were used to evaluate soil loss by water erosion in a
sugarcane cropland in Brazil (Gallo et al., 2023). Retrospective
monitoring of soil and land cover, deep machine learning using
convolutional neural networks, and cartographic analysis were
used to study eroded areas in Russia (Rukhovich et al., 2023).
Gridded precipitation products, the Revised universal Soil Loss
Equation, and the Revised Wind Erosion Equation (RWEQ)
were applied to the modeling of water and wind erosion in
Australia (Zhang et al., 2022). Sentinel-1 C radar data and Sentinel-
2 optical data acquired simultaneously, along with several machine
learning algorithms, were applied to predict soil salinity in
drylands of Egypt.

There are diverse high-resolution satellites that positively
support environmental studies. Landsat data is commonly used in
numerous studies worldwide since its data cover nearly 50 years
consecutively (Wulder et al., 2019). Landsat imagery provides
moderate spatial resolution, whichmeans it can capture finer details
on the earth’s surface compared to lower resolution sensors. This is
crucial for detecting subtle changes in land cover and identifying
degraded areas. Moreover, Landsat satellites offer a relatively high
revisit frequency. The Landsat satellite constellation has enabled
global coverage every few days, which facilitates regular monitoring
of land changes and assessment of the temporal dynamics
of degradation (Oñate-Valdivieso et al., 2022b). In addition, the
Landsat series has an extensive data history spanning several
decades. This provides the ability to perform time series analysis
to assess long-term trends in land degradation, something that can
be essential for understanding patterns and underlying causes. In
addition, a major advantage is that Landsat data are freely available

through the NASA Landsat Program and the U.S. Geological Survey
(USGS), which facilitates access to the information for researchers
and practitioners without significant financial constraints (Mera-
Parra et al., 2021).

Landsat’s versatility allows for diverse applications, not only
in land degradation detection, but also in land use change
monitoring, water resource studies, vegetation assessment, among
others. Considering these advantages, choosing Landsat imagery for
spectral index analysis in land degradation identification provides a
unique combination of resolution, frequency and data accessibility
that makes it ideal for many environmental studies.

A spectral index is a quantitative value derived from
measurements at different wavelengths of the electromagnetic
spectrum. It is calculated to characterize specific conditions of
vegetation, soil, climate, among others. The Normalized Difference
Vegetation Index (NDVI) has been widely used in environmental
and vegetation studies (Hussain et al., 2022) as it has a great capacity
to identify seasonal changes in vegetation and has been used to
detect crop types and land use change (LULC), as well as to evaluate
crop yield and production (Hussain et al. (2023). The Bare Soil
Index (BSI) allows the identification of areas of bare soil or with
very little vegetation and with some modifications, it has also been
used in the study of land conversion, impervious surface, and its
relation to surface temperature (Nguyen, et al., 2021). The Grain
Size Index (GSI) is appropriated to characterize the texture of the
soil surface depending on the soil reflectance curve (Xiao et al.,
2006;Ngandam et al., 2016).TheNormalizedDifference Impervious
Surface Index (NDISI) allows identifying impervious surfaces
by suppressing background noise, such as sand, soil and water,
delineating the distribution of impervious surfaces and delimiting
their actual surface area. (Xu, 2010; Sun et al., 2017). Finally, the
Salinity Index (SI) is based on the fact that the salt-affected soils had
relatively higher reflectance compared with other land use (Abbas
and Khan, 2007).
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TABLE 2 Values obtained in Test Site 1.

Point Lat Long Soil
texture

Sand
(%)

Silt
(%)

Clay
(%)

Permeability
(cm/h)

Salinity
(dS/m)

Land
use

Vegetation
cover (%)

1 4.057 S 79.367 W Sandy Loam 61.3 23.5 15.2 2.5 <2.0 Natural
forest

70

2 4.045 S 79.361 W Loam 38.4 37.2 24.4 1.3 <2.0 Natural
pasture in
erosion

process area

30

3 4.032 S 79.347 W Sandy Loam 75.6 17.2 7.2 2.2 <2.0 Intervened
forest +
natural
grass

50

4 4.023 S 79.360 W Clay Loam 38.9 19.8 41.3 0.8 <2.0 Crops on
eroded area

40

5 4.009 S 79.342 W Clay 48.0 29.6 22.4 0.05 <2.0 Shrubs on
eroded area

48

6 4.007 S 79.362 W Loam 59.4 31.5 9.1 1.6 <2.0 Shrubs and
crop areas

55

7 4.001 S 79.363 W Sandy Clay
Loam

47.3 25.4 27.3 1.2 <2.0 Sugar cane 45

8 3.997 S 79.395 W Sandy Clay
Loam

41.3 34.1 24.6 1 <2.0 Eroded area 20

9 4.040 S 79.383 W Clay Loam 35.0 30.0 35.0 0.6 <2.0 Sugar cane 95

10 4.031 S 79.369 W Sandy Clay
Loam

35.0 35.0 30.0 1.15 <2.0 Sugar cane 97

TABLE 3 Values of the spectral indices at Test Site 1.

Point Latitude Longitude BSI GSI NDISI SI

1 4.057 S 79.367 W 0.0025 0.0092 0.4944 −0.0138

2 4.045 S 79.361 W 0.0307 0.0119 0.5346 −0.0177

3 4.032 S 79.347 W 0.0289 0.0243 0.5172 −0.0359

4 4.023 S 79.360 W 0.0137 0.0033 0.5889 −0.0050

5 4.009 S 79.342 W 0.0079 0.0123 0.6034 −0.0185

6 4.007 S 79.362 W 0.0459 0.0227 0.5316 −0.0339

7 4.001 S 79.363 W 0.0373 0.0149 0.5426 −0.0222

8 3.997 S 79.395 W 0.0435 0.0040 0.5515 −0.0060

9 4.040 S 79.383 W 0.0071 −0.0112 0.5944 0.0173

10 4.031 S 79.369 W −0.0747 −0.0118 0.5369 0.0182

The literature reports the use of spectral indices to study soil
degradation, studying its components individually. The objective
of this work is to study the possibilities of applying five spectral
indices (NDVI, BSI, GSI, NDISI and SI indices) in a semi-arid

region of the Ecuadorian Andes for the study of soil degradation,
considering four factors related to soil erosion, desertification,
salinity and impermeability, combining the spectral indices in order
to obtain an integral vision of the phenomenon of soil degradation,
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TABLE 4 Values obtained at Test Site 2.

Point Lat Long Soil
texture

Sand
(%)

Silt
(%)

Clay
(%)

Permeability
(cm/h)

Salinity
(dS/m)

Land
use

Vegetation
cover (%)

1 4.394 S 80.383 W Sandy Loam 75.6 17.2 7.2 2.6 <2.0 Deciduous
forest

52

2 4.405 S 80.372 W Sandy Loam 78.3 12.4 9.3 2.3 <2.0 Dry scrub 38

3 4.395 S 80.346 W Loam 58.1 32.0 9.9 1.3 <2.0 Dry scrub 57

4 4.391 S 80.363 W Sandy Clay
Loam

49.5 28.4 22.1 1.0 <2.0 Dry scrub 70

5 4.394 S 80.357 W Sandy Loam 73.5 21.2 5.3 2.5 <2.0 Fallow 40

6 4.441 S 80.371 W Loam 42.5 29.1 28.4 1.8 <2.0 Dry scrub 76

7 4.422 S 80.346 W Sandy Clay
Loam

48.7 28.3 23.0 0.9 <2.0 Dry scrub 45

8 4.397 S 80.315 W Sandy Clay
Loam

65.7 28.2 6.1 1.2 <2.0 Dry scrub 50

9 4.450 S 80.351 W Loam 38.9 19.8 41.3 1.6 <2.0 Dry scrub 83

10 4.436 S 80.323 W Sandy Loam 71.6 22.4 6.0 2.2 <2.0 Dry scrub 75

TABLE 5 Values of the spectral indices at Test Site 2.

Point Latitude Longitude BSI GSI NDISI SI

1 4.394 S 80.383 W 0.05243 0.01911 0.45534 −0.02844

2 4.405 S 80.372 W 0.07467 0.02778 0.43720 −0.04127

3 4.395 S 80.346 W 0.05237 0.02284 0.48921 −0.03413

4 4.391 S 80.363 W 0.03123 0.00825 0.56784 −0.01246

5 4.394 S 80.357 W 0.06222 0.01100 0.39932 −0.01626

6 4.441 S 80.371 W −0.07500 −0.00585 0.49401 0.00893

7 4.422 S 80.346 W 0.05746 0.01047 0.50497 −0.01597

8 4.397 S 80.315 W 0.05698 0.01297 0.49626 −0.01984

9 4.450 S 80.351 W −0.17367 −0.04616 0.48397 0.07216

10 4.436 S 80.323 W 0.00275 0.01336 0.42990 −0.01987

and validating the results obtained through field observations and
samples processed in the laboratory.

2 Materials and methods

2.1 Study area

Two test sites were selected, both located in the province of Loja,
Ecuador, near the border between Ecuador and Peru.

Test Site 1 (7181.955 ha) is in the Catamayo Valley between
coordinates 79.402ºW, 3.989ºS and 79.320ºW, 4.062ºS. It has a
hot and dry climate with annual rainfall that fluctuates between
500 and 700 mm and an average temperature of 21°C. It has
areas with bushes, native forest, and sugarcane crops, which
are the main economic activity of the canton. The soils are
Aridic Lithic Ustorthents, Fluventic Haplustepts, Haplic Ustarents,
Lithic Torriorthents, Typic Dystrudepts, Typic Haplocambids, Typic
Haplustalfs, Typic Ustifluvents, Typic Ustipsamments and Typic
Ustorthents (SNI, 2023). The natural vegetation of Catamayo Valley

Frontiers in Earth Science 05 frontiersin.org

https://doi.org/10.3389/feart.2024.1325189
https://https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Oñate-Valdivieso et al. 10.3389/feart.2024.1325189

is part of the Andean dry forest and is considered one of the most
important centers of endemism in the Northern Andes. In addition,
Test Site 1 includes part of the city of Catamayo, which has a
population of 35,000 inhabitants and large agricultural areas of sugar
cane; this, in combination with its hot-dry climate, makes it an
interesting case study of soil degradation, since several factors that
influence soil degradation can be studied in a single place.

Test Site 2 (7208.955 ha) is in the Zapotillo canton between
coordinates 80.386ºW, 4.391ºS and 80.304ºW, 4.463ºS. It has an
average rainfall of 500 mm per year with an average annual
temperature of 24°C and has areas of dry forest, pasture, and
irrigated crops (Oñate-Valdivieso and Bosque, 2014). The soils are
Aridic Ustifluvents, Lithic Torriorthents, Torrifluventic Haplustepts,
Typic Torriorthents (SNI, 2023). At the two test sites, precipitation
varies throughout the year with two seasons: a rainy season between
December and May and a dry season between June and November.
Precipitation intensities can be considered high at the two test
sites since for a return period of 2 years and duration of 30 min,
the intensity reaches maximum values of 37.96 mm/h at Test Site
1 and 61.89 mm/h at Test Site 2. (Oñate-Valdivieso et al., 2020).
Zapotillo has several interesting characteristics for the study of soil
degradation since it has a semi-arid climate and is geographically
located near the Sechura desert in northern Peru, so the advance of
desertification has a high influence on the test site 2. The location of
the test sites is presented in Figure 1.

2.2 Data collection

A Landsat 8 Operational Land Imager (OLI)-Thermal Infrared
Sensor (TIRS) dataset was collected in the study area. The
acquisition dates, spectral bands, and spatial resolutions are
summarized in Table 1. Atmospheric correction was performed
on each image using the Atmospheric/Topographic Correction for
Mountainous Terrain (ATCOR) software developed by the German
Aerospace Center, Wessling, Germany (Richter et al., 2015). The
Landsat images archived in theU.S. Geological Survey (USGS, 2021)
data clearinghouse have been georeferenced (USGS, 2022).

2.3 Field work and laboratory analysis

The field survey was conducted from August 16th to 20 August
2022. Ten sampling points were selected randomly in each of the test
sites, and in situ measurements were taken, including infiltration,
vegetation cover, and topsoil sampling. At each sample site, two
to three duplicate points were measured and averaged for analysis.
Infiltration was measured using a minidisk infiltrometer (METER
Group, Inc. United States) (Báťková et al., 2022). Vegetation cover
was coarsely estimated by experience using a tape measure, and the
type of existing vegetation was also recorded. Simultaneously, soil
samples from the top 1–2 cm were randomly collected from four
holes of 20 cm by 20 cm from each observation point and mixed for
laboratory salinity and grain size analysis. A portable GPS was used
to record the geo-positions of each sampling site.

Soil salinity was measured in the laboratory as electrical
conductivity (EC) of a 1:5 soil: distilled water suspension, following
1 h of end-over-end mixing, applying the procedure described by

(Hardie et al., 2012) Grain size distribution/composition analyses
of topsoil samples were carried out using Bouyoucos method in
the laboratory (Mwendwa, 2022). Each topsoil sample was divided
into three classes: clay (<0.002 mm), silt (0.002–0.05 mm), and sand
(0.05–2 mm), obtaining the textural classes of each sample.

2.4 Spectral indices

Five spectral indices were applied to study four factors with
a high influence on soil degradation: cover loss, surface sealing,
salinity, and surface texture change.

2.4.1 Normalized difference vegetation index
(NDVI)

The NDVI index uses reflected light in the visible and near-
infrared bands to detect and quantify the presence of live green
plants. Simply put, NDVI is a metric that measures the greenness
and health of vegetation in each pixel in a satellite image. The
NDVI value varies from +1 to −1. Positive values help to distinguish
between vegetated and non-vegetated areas, whereas negative values
suggest non-vegetated areas (Zhou et al., 2019; Kumar et al., 2022).
The NDVI is computed using:

NDVI = NIR−R
NIR+R

(1)

where R and NIR stand for the spectral reflectance measurements
acquired in the red (visible) and near-infrared regions, respectively.

2.4.2 Bare soil index (BSI)
The Bare Soil Index (BSI) (Chen et al., 2004; Nguyen, et al.,

2021) is a quantitative indicator that allows observation of changes in
areas with bare soil or little vegetation, which are vulnerable to water
and wind erosion, resulting in the loss of soil. Low BSI values are
present in soils with vegetation or water, while high values indicate
bare soil. The BSI is determined by applying the following equation:

BSI =
((SWIR1+R) − (NIR+B))
((SWIR1+R) + (NIR+B))

(2)

where BSI is the bare soil index, SWIR1 shortwave infrared band 5
(Landsat TM/ETM) and band 6 (Landsat 8), R is the reflectivity in
the red band, NIR is the near-infrared, and B is the reflectivity in the
blue band.

2.4.3 Grain size index (GSI)
The texture of topsoil is closely related to land degradation. The

sand content in severely eroded farmland is significantly higher than
in good soil, so surface soil particle size can be used as an indicator of
soil degradation. The Grain Size Index (GSI) (Xiao et al., 2006) can
detect the abundance of fine sand areas well and shows potential for
monitoring the desertification process in arid regions.

GSI = R−B
B+G+R

(3)

Where R, B, and G are the reflectance of the red, blue, and green
bands of the Landsat 8 OLI-TIRS sensors.

The GSI value is close to 0 in vegetated and water areas, and
sometimes it can even be negative. High GSI values are associated
with ground surfaces fully covered by fine sand (Xiao et al., 2006).
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FIGURE 2
Correlation between the indices applied and the values obtained in the field and labor-atory

2.4.4 Normalized difference impervious surface
index (NDISI)

Soil impermeabilization has a direct impact on the hydrological
cycle of a watershed because it reduces infiltration and
evapotranspiration rates, decreases the hydrological response time
of a watershed, and makes it sensitive to extreme precipitation
events. On the other hand, impermeabilized soils lose all their
capacity as a fundamental element of the ecosystem of which they
are a part. The Normalized Difference Impervious Surface Index
(NDISI) (Xu, 2010; Hamunyela et al., 2016) is used to enhance
impervious surfaces and suppress land covers such as soil, sand,
and water bodies.

NDISI =
Tb − (MNDWI+NIR+ SWIR1)/3
Tb + (MNDWI+NIR+ SWIR1)/3

(4)

Tb refers to the brightness temperature of the TIRS1 thermal
band. MNDWI represents the Modified Normalized Difference
Water Index (Eq. (5)), NIR refers to the pixel values extracted
from the near-infrared band, and SWIR1 refers to the pixel values
extracted from the first shortwave infrared band.

MNDWI = G− SWIR1
G+ SWIR1

(5)

G represents the pixel values extracted from the green band.

2.4.5 Salinity index (SI)
Soil salinity is a prevalent environmental hazard in arid and

semiarid regions around the world. Soil salinity adversely affects
plant growth, crop production, soil and water quality, and eventually
results in soil erosion and land degradation. To highlight the saline
zones and suppress those with vigorous vegetation, the salinity index
was proposed (Abbas and Khan, 2007; Allbed and Kumar, 2013).

SI = B−R
B+R

(6)

Where: SI is the salinity index, B is the reflectivity in the blue band,
and R is the reflectivity in the red band.

Eqs 1–6 were applied to generate images for each index based
on the collected data (Table 1). The NDVI was reclassified into five
categories to differentiate existing covers and their vegetative state.
A manually adjusted threshold was used to extract critical areas for
the BSI, GSI, NDISI, and SI images. Pixels with values greater than
the threshold were considered critical areas and assigned a value of
1, while pixels with values equal to or less than the threshold were
considered non-critical areas and assigned a value of 0.The resulting
image is a binary image that only displays the extracted critical areas.

3 Results

Table 2 present the data collected at Test Site 1. It can be observed
that the texture is variable, with soils ranging from sandy clay
loam, sandy loam, clay loam, clay, and loam, with sand content
varying between 35.0% and 75.6%, and significant amounts of
silt (between 17% and 37.2%) and clay (7.2% and 41.3%). The
permeability of these soils’ ranges from 0.05 cm/h (very slow) to
2.5 cm/h (moderately slow). The salinity analysis shows electrical
conductivities less than 2 dS/m in all cases, which corresponds to
non-saline soils. The observed vegetation is mainly composed of
natural dry deciduous forest, shrubs, sugarcane crops, grasslands,
and heavily eroded areas. The estimated coverage percentage ranges
from 20% in eroded areas to 97% in sugarcane crops. Table 3 shows
the values obtained for the different spectral indices at Test Site 1,
where the BSI values fluctuate between −0.0747 and 0.0459. The SI
values fluctuate between −0.0359 and 0.0182. The NDISI presents
values that fluctuate between 0.4944 and 0.6034. Finally, the GSI
presents values that fluctuate between −0.0118 and 0.0243.

Table 4 show the data collected at Test Site 2. The soil texture
is variable, with sandy loam, sandy clay, and loam having sand
percentages ranging between 38.9% and 78.3%, silt percentages
between 12.4% and 32.0%, and clay between 5.3% and 41.3%. The
permeability of the soils ranges from 0.9 cm/h (moderately slow)
to 2.6 cm/h (moderate). The salinity analysis shows in all cases
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TABLE 6 Thresholds adopted for each index and corresponding areas with values exceeding the thresholds.

BSI GSI NDISI SI

Test Site 1
Threshold 0.01 0.02 0.60 0.08

Area above threshold (%) 37.90 5.14 19.53 0.20

Test Site 2
Threshold 0.06 0.03 0.55 0.07

Area above threshold (%) 35.39 9.21 4.71 0.06

electrical conductivities of less than 2 dS/m, corresponding to non-
saline soils.The vegetation corresponds mostly to natural deciduous
forest, dry scrub, fallow, and crop areas, the percentage of ground
cover at the sampling points ranges between 38% and 83%. Table 5
shows the values obtained for the different spectral indices at Test
Site 2. The BSI values fluctuate between −0.17367 and 0.07467.
The SI values fluctuated between −0.04127 and 0.07216. The NDISI
presents values that fluctuate between 0.43993 and 0.5678. Finally,
the GSI presents values that fluctuate between −0.0462 and 0.0278.

4 Discussion

In both study sites, BSI and GSI values were lower than
those reported in the literature (Xiao et al., 2006; Zhou et al., 2019;
Mzid et al., 2021).The differences can be attributed to the conditions
of the surfaces analyzed, since vegetation is present at both sites,
although with low levels of cover; and the surface soils are of
the loam and clay type without a marked predominance of sand.
Since the percentages of sand were lower than those reported, the
GSI presented lower values. On the other hand, the SI and NDISI
values are like those reported (Xu, 2010; Hamunyela et al., 2016;
Golabkesh et al., 2021). Although the soil salinity conditions are in
the lower part of the ranges presented in the literature, the conditions
of imperviousness are considered similar.

Figure 2 shows the degree of correlation between the calculated
indexes and the parameters obtained in the field and laboratory.
When relating permeability with NDISI, significant correlation
values of the order of 0.8809 (Test Site 1) and 0.7925 (Test Site 2)
were obtained, which shows an inversely proportional correlation.
Similarly, the percentage of sand on the soil surface has a direct
relationship with the GSI, reaching determination coefficients
of the order of 0.6781 (Test Site 1) and 0.5278 (Test Site 2),
considered moderate. Finally, the percentage of ground cover has an
inverse relationship with the BSI, reaching moderate determination
coefficient values of the order of 0.5384 (Test Site 1) and 0.6751
(Test Site 2). In the case of the SI it was not possible to perform
any correlation analysis since the laboratory results showed very low
conductivities corresponding to non-saline soils. If the values of the
correlation coefficients obtained for all the variables are averaged, a
value of 0.6991 is obtained for Test Site 1, and 0.6651 is obtained
for Test Site 2. On average, these values indicate an acceptable
correlation between the spectral indices and the data obtained in
the field.

The areas with the highest degree of soil degradation due
to erosion, desertification, salinity, and soil imperviousness were

identified by manually adjusting thresholds for each calculated
index. The adopted thresholds and the corresponding areas with
values above the thresholds forNDISI, GSI, BSI, and SI are presented
in Table 6. Figures 3, 4 showing for Test Site 1 and Test Site 2:
(a) Natural color composition, (b) spatial variation of each of the
calculated indices and (c) areas with values above the adopted
thresholds.

When observing the NDVI values included in Figure 3, a
marked difference can be seen between the areas destined for
sugarcane crops (NDVI >0.27) and the areas in which deciduous
forests, shrubs, and bare soil predominate.

By defining a threshold for the BSI of 0.01 (Table 6), an
area equivalent to 37.90% is obtained that exceeds said threshold
(Figure 3), which would be occupied by little or no vegetation
cover. This result is similar to that obtained by NDVI and
the observations in the field that allowed us to verify that the
cultivation areas were surrounded by wide spaces with low levels of
vegetation cover.

In the case of the GSI, the adopted threshold is 0.02, which
allows for the identification of 5.14% of the surface with the highest
concentration of sand in the upper layer of the soil (Figure 3). The
greatest presence of sand on the surface was observed in areas that
were subjected to water erosion, resulting in a significant removal of
fine particles.This area is relatively small and corresponds to sectors
with low vegetation cover that were previously identified by NDVI
and BSI.

To analyse the NDISI, a threshold of 0.60 was established
(Table 6), which allows the identification of impervious zones in
the study area, equivalent to 19.53% of the total area (Figure 3B).
Most of the impervious zones are located (a) in the upper part of the
mountainous areas, where there are clayey soils and shallow, (b) in
some of the agricultural plots that were possibly made impermeable
due to mechanical action during harvest tasks, and (c) in the city
of Catamayo, located to the north of Test Site 1. It should also be
noted that the areas identified as having a high percentage of sand
on the surface do not overlap with the impervious areas determined
using NDISI.

On the other hand, since no saline soils have been identified
in the sampling points of Test Site 1, the application of SI is done
to evaluate in a very preliminary way its potential application.
By establishing the threshold of 0.08 (Table 6), soils that could
become saline can be identified, and these would occupy 0.20% of
the entire surface. In Figure 3, potentially saline soils are found in
agricultural areas, observed in the plots that have been harvested. If
salinity comes from agricultural tasks, in the case of saline soils, the
application of IS could be efficient.
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FIGURE 3
Spectral indices calculated for Test Site 1. (A) Natural color composition, (B) spatial variation of each of the calculated indices and (C) areas with values
above the adopted thresholds.

FIGURE 4
Spectral indices calculated for Test Site 2. (A) Natural color composition, (B) spatial variation of each of the calculated indices and (C) areas with values
above the adopted thresholds.

The NDVI values determined for Test Site 2 (Figure 4) reveal
that most of the study area is covered by dry deciduous forest
and shrubs (NDVI <0.2), which is part of the equatorial dry
forest. This forest type is known to lose its leaves during the dry
season. Additionally, small portions of the area are allocated for
crop cultivation (NDVI >0.2) areas without coverage and riverbeds
(NDVI> 0) are also observed.

By adopting a threshold of 0.06 for the BSI (Table 6), it identifies
an area equivalent to 35.39% of the total area, whichwould have little
or no vegetation cover. The areas with high BSI values correspond
to the areas with minimal vegetation cover identified by NDVI, and
they are part of the equatorial dry forest.

Using a threshold of 0.03 for the GSI (refer to Table 6), it delimits
an area equivalent to 9.21% with higher concentrations of fine sand
on the surface soil. The highest concentrations of GSI (shown in
Figure 4) are found in relatively flat areas at the foot of the small
elevations within Test Site 2, which may be due to the deposit of
material caused by wind and water erosion.The areas with high GSI
values correspond to areas with little vegetation cover identified by
the NDVI and BSI.

The impervious zones occupy a surface area of 4.71% (Figure 4)
of Test Site 2, considering a threshold for theNDISI of 0.55 (Table 6),
and correspond to shallow loam, sandy clay, or sandy loam soils that
are possibly compacted by grazing activities of goats. Additionally,
several dirt roads that are compacted by the flow of vehicles or
paved roads are also identified. As observed in Test Site 1, the areas
identified as having a higher percentage of sand on the surface do
not overlap with the impervious areas determined with the NDISI.

At test site 2, no saline soils were identified at the sampling
points. Thus, the SI results were used to evaluate their application
very preliminarily. By setting a threshold of 0.07 (Table 6), the
soils which could become saline can be identified, which would
occupy 0.06% of the entire surface. Figure 4 shows that these
potentially saline soils are found in agricultural areas, particularly
in plots that have already been harvested. Since salinity comes from
agricultural activities, The application of SI could be useful in soils
with significant salt concentrations.

The applied indices realistically reflect the situation of the study
area. The NDVI satisfactorily characterizes the vegetation, which
corresponds to the equatorial dry forest and dry shrubs, while
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keeping correspondencewith the BSI.TheGSI successfully identifies
areas with a higher presence of sand on the surface, which also
correspond to the BSI and theNDVI.TheNDISI efficiently identifies
the existing urban area in Test Site 1, road axes in Test Site 2, and
areas with better impermeability conditions. Although no saline
soils were identified in the study area, the SI presented higher
values in agricultural areas, where salinity can become a serious
soil degradation problem. The five indices analysed complement
each other and offer useful information to understand the state of
the soil and its possible degradation. Applying them periodically
could become a valuable means of monitoring soil degradation in
Andean basins.

Among the five factors related to soil degradation in the
study area, the lack of vegetation cover has the most significant
impact, affecting 35% of the studied area. Although there are
no areas without coverage, the equatorial dry forest is a delicate
ecosystem that human activities can further reduce, making the
soil vulnerable to erosion due to the loss of vegetation, pronounced
relief, and significant seasonal rainfall. The presence of sand, related
to desertification processes, is relatively low, with no sandstorms
in the study area, but erosion processes are appreciable. Soil
impermeabilization occurs in almost 20% of Test Site 1, with
higher clay content, agricultural areas, parturition areas, shallow
soils, urban areas, and road axes being affected. The growth of
the city of Catamayo in Test Site 1 could increase the area of
impervious surfaces, and its impact in the medium and long term
should be evaluated. Salinity has the least impact in the study area,
with large areas of sugar cane cultivation in Test Site 1 properly
managed to reduce salinity presence, and the effects of possible
salinization are low in Test Site 2, where areas dedicated to crops are
relatively small.

5 Conclusion

Five spectral indices were applied to study of soil degradation in
an Andean semi-arid zone. The values obtained through the indices
were correlated with observations made in the field and laboratory
to assess their application capabilities.

The calculated indices efficiently reflected the conditions of
the study area. The NDVI adequately discriminated the different
existing coverages, while the BSI allowed the identification of
areas with little or no vegetation, corresponding with what was
shown by the NDVI. The GSI successfully identified the areas
with higher presence of sand, correlating with the orography of
the study area. The NDISI efficiently discriminated impervious
zones originating from urbanization, road axes, mechanical and
animal com-paction. Even though saline soils were not identified
at the sampling points, the SI allowed the identification of small
sectors in the cultivation areas that could present this type
of degradation.

The combination of the five examined indices provided useful
information to understand the current state of the soils and
their potential deterioration. If used regularly, these indices could
become a valuable tool for monitoring land degradation in the
Andean basins.

The greatest threat in the study area is the loss of vegetation
cover, which is part of a fragile ecosystem such as the equatorial dry

forest. Human actions can considerably affect it. Erosion is observed
in the study area caused by the lack of cover, pronounced relief,
and considerable seasonal rainfall.The impermeabilization of soils is
significant, with urban growth, the increase in agricultural activities,
and intensive grazing being factors that could increase its incidence.
The presence of sand, as an indication of desertification, is not
significant in the study area. Salinity also has the lowest incidence
among the studied factors.

In areas subject to degradation, it is necessary to implement
mitigation measures that are adjusted to the conditions specific
to each one of them, and sustainable soil management practices
can be implemented, such as crop rotation and agroforestry,
the promotion of sustainable agricultural practices that avoid
overexploitation of the soil, encouraging direct sowing to avoid soil
compaction, as well as the controlled and efficient use of fertilizers,
implementing reforestation and habitat restoration programs to
recover the vegetation cover, and controlling the disorderly growth
of urban areas, all of this supported by extensive environmental
education campaigns.

In future studies, the temporal variation of soil degradation
could be analysed and evaluated using spectral indices. It is also
recommended to consider larger areas with greater variability in
their characteristics.
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