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Understanding the composition, texture, and morphology of volcanic rocks that
have erupted at the surface better constrains the eruption style and is vital
to infer subsurface processes, the development of magma upon ascent, and
the potential for future eruptions. The reflectance and emission spectroscopy
of these rocks, collected from the near-infrared (NIR) through the thermal
infrared (TIR) portion of the electromagnetic (EM) spectrum, provides the
data necessary to retrieve composition, micron-scale surface roughness, and
particle size. Remote imaging systems enable the analyses of active volcanoes
in remote regions, where sample collection for laboratory analysis poses a
significant challenge. Laboratory hyperspectral data of samples acquired at
volcanic deposits are easily resampled to the spectral resolution of any infrared
sensor and provide a means of estimating the composition of volcanoes and
their products worldwide, as well as those on other planetary bodies such
as the Moon and Mars. In this review paper, we provide an overview of the
current use of infrared reflectance and emission spectroscopy as an analysis
tool in volcanology, including ground-based imaging systems that acquire
unprecedented detail and serve as testbeds for new orbital concepts. We also
discuss the potential impact that future satellite missions will have on volcano
science as spectral, spatial, and temporal resolutions improve.
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1 Introduction

Mapping igneous rocks at any volcano is an important endeavor for assessing future
hazards (Finn, et al., 2007; Sieron et al., 2019; Kereszturi et al., 2020). For example, the
combination of different volcanic minerals and glasses provides insight into the lifespan of
magma underneath a volcano from generation through eruption, solidification, transport,
and deposition at the surface (Popa et al., 2021). The changes in reflected and emitted
energy that different surfaces exhibit in different regions of the electromagnetic (EM)
spectrum are governed by physical properties from which we can infer the probable
processes that led to their eruption. In particular, the use of infrared spectroscopy
within the field of volcanology allows us to determine the physiochemical properties
of the products of volcanic eruptions, both recent and ancient, on Earth and other
planetary bodies. By determining the composition of suspected volcanic deposits, we
can then begin to assess the causes and mechanisms behind volcanic eruptions on
these objects in the early history of our solar system (Burns, 1989; Flynn et al., 2000).
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Emission and reflectance spectroscopy can be performed in
several ways, from the assessment of samples in a laboratory setting
that have been collected in the field to the acquisition of per-pixel
spectra in airborne or satellite image data. One of the significant
advantages of infrared spectroscopy is that it can be used at multiple
scales and also enables the easy comparison of spectra between
laboratory and satellitemeasurements (Christensen et al., 2000). For
example, a sample from an individual lava flow can be measured
in a laboratory setting, and the spectrum can subsequently be
compared to that of entire lava flow fields that have been imaged
by satellite sensors. This is particularly beneficial in the field of
planetary science, where for many sites throughout the solar system,
we only have data collected using imaging spectrometers and lack
collected samples that can be analyzed through other geochemical
methods. By comparing infrared spectra obtained by these orbital
sensors to laboratory measurements of analog materials, we infer
the probable processes that lead to their formation without the
need for expensive and logistically difficult sample return missions.
A further advantage of laboratory measurements is that they are
non-destructive, unlike other analytical methods. However, when
coupled with other geochemical analyses, such as x-ray florescence
(XRF), details not possible with spectroscopy alone can be obtained,
such as the wt percentages (%) of different oxides (Baird, 1984).

The field of remote sensing and its use in volcanology is
vast, and this review does not attempt to include all tools and
methods applied within the broad field of spectroscopy. Here, we
focus on the use of surface reflectance and emission spectroscopy,
elucidating how those data help to determine the properties of
volcanoes, their landforms, and their products. Here, we focus
our attention on terrestrial volcanism, although we also highlight
important planetary studies that could aid future spectral studies
on Earth. Furthermore, the planetary volcanism literature is vast
because infrared data are commonly the only data source available.
Therefore, we discuss some of the basic principles, including relevant
examples from the literature, with a focus on recent developments
rather than attempting an exhaustive review of all studies in the
field. We begin by discussing the basic principles of spectroscopy
and how electronic and vibrational processes of important ions
and compounds in volcanic materials result in diagnostic spectral
features. We also provide an overview of the methods used to
collect laboratory infrared reflectance and emissivity spectra and
discuss how these measurements compare to those taken from
field, airborne, and orbital instrumentation. The primary focus is,
therefore, the current state of these spectroscopic studies in volcano
science and where future measurements may improve.

2 Basic principles of spectroscopy

Although this article is not designed to provide a detailed
overview of the theory behind reflectance and emission
spectroscopy, some background is warranted to give those readers
less familiar with these measurements a foundation in the science.
We also discuss the laboratory methods that are used to acquire
reflectance and emission spectra and comment on the best practices
so that the community understands how thesemeasurements should
be acquired, as well as presenting some of the freely available
spectral libraries.

The EM spectrum is divided into regions, the divisions of
which depend on the application and preference of the author. In
this paper, we define the visible-near-infrared (VNIR) as between
0.4 and 1 μm (with visible light defined as 0.4–0.7 μm and NIR
defined as 0.7–1.0 μm), the shortwave infrared (SWIR) as 1–2.5 μm,
and thermal infrared (TIR) as 2.5–14 μm following the work of
Hackwell et al. (1996) andHecker et al. (2010). However, we also use
the terminology VSWIR as a combination of the VNIR and SWIR
regions, as these data are commonly acquired together in remote
sensing of volcanic minerals.

2.1 Basic principles

All objects in our solar system and beyond radiate energy
governed by the temperature of the object as well as its composition.
A “perfect” emitter is termed a blackbody, which emits the
maximum amount of energy possible at a given wavelength as a
function of its temperature. This is determined using the Planck
equation:

B(λ,T) = ελ ·
2hc2

λ5e(hc/λkT) − 1
(1)

where B is the blackbody radiance at wavelength λ and temperature
T in kelvin, ελ is the wavelength-dependent emissivity, h is Planck’s
constant, c is the speed of light in a vacuum, and k is the Boltzmann
constant. The wavelength of the peak energy derived from Eq. 1 can
be approximated using Wien’s Law:

λmax =
b

T(K)
(2)

where λmax is the peak wavelength, b is Wien’s displacement
constant, and T is the temperature in kelvin. If emissivity is
unity at all wavelengths (i.e., a blackbody), then Eq. 1 produces
an ideal Planck curve. The peak of the curve shifts to shorter
wavelengths and increases in magnitude (as does the total radiant
flux of the object) with an increase in temperature. These curves
have implications for determining the wavelength region and
spectroscopic measurements that can be acquired of a particular
body. By looking at the short wavelength cutoff of each of the Planck
curves, for example, any object has a specific wavelength region
from which emitted energy can be detected. Additionally, for colder
objects, the amount of energy emitted decreases with a decrease in
temperature, making them harder to detect. For very cold targets,
instrument design parameters, such as the signal-to-noise (SNR)
ratio, must be considered.

The spectral emissivity of a specific geologic material is
described as the ratio of the energy emitted by the material to the
energy emitted by a blackbody at the same temperature. Although
a blackbody is a perfect emitter at all wavelengths, natural materials
have specific wavelength regions at which energy is absorbed (where
observed in emission) or reflected. The fundamental vibrational
frequency is termed the Reststrahlen band (RB), which occurs
due to the high absorption coefficient of the material. At this
frequency, the material is highly reflective (lower emissivity). The
intensity of this band is related to the mineral composition and its
atomic configuration (Lyon, 1965). Immediately preceding the RB
is the Christiansen frequency (CF), where the material’s index of
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FIGURE 1
TIR emissivity spectra of common volcanic minerals [according to the
work of Christensen et al. (2000)]. The RB for each of the minerals
occurs between ∼7 and 12 μm. Each spectrum has been offset for
clarity, with major Y-axis tick marks representing an emissivity of 0.05.
Quartz and biotite have been scaled to provide easier comparison to
the other spectra.

refraction approaches that of the surroundingmedium, representing
the frequency corresponding to the maximum absorption (i.e.,
where the emissivity approaches 1).

The relationship between emissivity and reflectance can be
approximated through Kirchhoff ’s law, which states that

ελ = 1–rλ (3)

where rλ is hemispherical reflectance. In addition to the CF
and RB, we can also use other diagnostic regions of absorption
or reflectance that, despite being weaker than the RB, are also
indicative of composition. These bands are termed overtones and
combination bands and occur at a series of integer multiples of the
fundamental absorption band. Calculating the ratio of the material’s
measured emission to that of a blackbody allows us to determine the
absorption depth and position independently of the temperature.
This is demonstrated in Figure 1, which shows the emissivity spectra
of common volcanic minerals.

The compositional makeup of a material exerts significant
control over the amount of energy emitted at any given wavelength.
There are distinct differences in the position and strength of

FIGURE 2
TIR emissivity spectra of common volcanic rocks from the JHU
spectral library (Salisbury et al., 1991). Each spectrum has been offset
for clarity, with major Y-axis tick marks representing an emissivity of
0.05. Spectra were originally collected as hemispherical reflectance
measurements but converted to emissivity using Kirchhoff’s law (Eq. 3)
to provide better comparison to the pure mineral spectra found in
Figure 1. Despite each being mixtures of different minerals, these rocks
demonstrate similar trends to minerals, with the increase in SiO2

content being associated with a shift to shorter wavelengths of the
Reststrahlen band and Christiansen frequency.

these features depending on the composition. For silicate minerals
and glasses that make up the bulk of volcanic materials, these
fundamental features are found in the 8–12 μm region. Specifically,
for silicate minerals, the spectral features are a function of the state
of Si–O bonds, with a shift of the RB and CF to shorter wavelengths
with an increase in the order of the silicate structure [i.e., shift
from isolated (e.g., olivine) to framework (e.g., quartz) silicates].The
same is also true for igneous rocks that shift from low-wt% SiO2 to
high (i.e., mafic to felsic), with basalt and gabbro exhibiting longer-
wavelength RB absorption than rhyolite and granite (Salisbury and
Walter, 1989). This is shown in Figure 2.

When Kirchhoff ’s law is applied, reflectance can be determined
from TIR emissivity spectra and vice versa. However, laboratory
TIR reflectance measurement approaches, such as bi-directional
or biconical, invalidate Kirchhoff ’s law, as do scattering effects
caused by porosity, macro- and microscale roughness, etc. (Hapke,
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1984; Hapke, 2002). However, because the incoming solar radiance
remains strong enough up to SWIR wavelengths, we can also
measure the solar reflectance in these regions. This opens further
possibilities in compositional determination. In the SWIR region,
for example, we also observe vibrational processes; however,
these processes manifest as reflectance rather than emission. Of
particular importance in volcanology is the vibrational mode
found in OH−-bearing minerals at ∼ 2.1 μm. This is vital in the
identification of alteration products such as clay minerals that are
found in hydrothermal deposits (Clark, 1983; Crosta et al., 1998;
Rowan et al., 2000). In the VNIR region, higher-energy photons
interact with specific atoms at an electronic level. We no longer
observe the vibration of atoms but rather changes in the electronic
state associated with specific photon frequencies.This is particularly
useful for detecting the presence of transition metals such as iron,
copper, and sulfur. There are several different effects that are seen
in this wavelength range that are diagnostic of the presence of
specific elements important to volcanic minerals (e.g., electron
transition, conduction band absorption, and the charge transfer
effects). Examples of the position and strength of these bands are
found in Figure 3.

These effects cause the migration of electronics to higher
energy levels in an atom (electron transition and conduction band
absorption) or the migration of electrons to other ions found within
the material lattice (charge transfer effect). This can be used to
identify Fe-rich minerals such as fayalite. Determining its presence
in a deposit can help better constrain the properties of magma such
as density and viscosity (Le losq et al., 2021).

Independent of the processes that cause VSWIR and TIR
spectral features, physical properties of the material such as particle
size can result in a change in the spectral contrast potentially
combined with the development of new spectral features (Figure 4).

In both emissivity and reflectance spectroscopy, incident energy
[E(λ)] interacts with the grain boundary. Depending on the
material’s index of refraction and absorption coefficient, some
fraction of that incident energy is transmitted into the material
[T(λ)] and absorbed, whereas the remainder is reflected as a specular
component [rs(λ)]. As particle size decreases relative to the incident
energy’s wavelength, less of the transmitted component is absorbed,
leading to an increased amount of photon scattering occurring
at grain-to-grain interfaces. This increases the amount of volume
scattering [rv(λ)] for particles that have passed through multiple
grains/grain boundaries. The rv(λ) term received at the sensor is
increased relative to rs(λ), as shown in Figure 4A. A similar process
occurs in larger particles but at wavelengths where the absorption
coefficient is much smaller, thus enabling more rv(λ), as shown in
Figure 4B. It is at these wavelengths where the primary absorption
features are reduced in spectral contrast and the development of new
“transparency” features for particles < ∼ 60 μm (Conel, 1969), as
shown in Figure 5.The emergence of these features can confuse how
spectra are interpreted, and so, measuring the spectra of different
grain sizes of a material is important for remote sensing analysis
of fine-grained volcanic materials. These spectral measurements, as
with the others discussed here, can also be used to process satellite
data so as to determine particle size distributions in image data.

We provided an overview of the effects of mineralogy and
particle size. However, in volcanic rocks, glasses can also make up a
significant portion of the viewable surface, particularly if observing

FIGURE 3
Spectra of volcanic and alteration minerals showing the location of
key vibrational and electronic diagnostic spectral features. Each
spectrum has been offset for clarity, with major Y-axis tick marks
representing an emissivity of 5%. Forsterite is shown here to
demonstrate that the replacement of Mg with Fe in olivine (fayalite)
leads to a featureless spectrum due to a lack of electronic processes.
Many other important silicate minerals, such as quartz and plagioclase
feldspar, appear similarly featureless and so are not easily identified in
VSWIR spectra compared with the TIR.

lava flow crust that has been rapidly quenched, or tephra deposits,
which can be anywhere from ∼20 to 80 wt% glass (Horwell et al.,
2007). Silicate glasses do not have a long-range ordering, which
means that the emission or reflectance of glass tends to occur
at a broader range of wavelengths compared to minerals of the
same chemistry (Byrnes et al., 2007). In the TIR, silicate glasses do,
however, follow similar trends to their mineral counterparts, with
low-SiO2 glasses having their emissivity minima/reflectance peak
at longer wavelengths compared to high-SiO2 glasses. Furthermore,
there is a significant change in spectral shape, also related to wt%
SiO2. This can be seen in Figure 6.

Pisello et al. (2019) demonstrated that the distinction between
glasses of different compositions can be determined from TIR
spectral data. It was noted that the CF shift from basalt to
rhyolite is only ∼0.5 μm, yet the change in overall spectral shape
allows straightforward identification of these glasses, provided that
comparable spectra are obtained from the imaging system used. In
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FIGURE 4
Schematic showing the effects of particle size on incident radiance. (A) Behavior of larger grains, where volume scattering is less; (B) how transmission
and scattering between grains increase at smaller particle sizes is shown.

FIGURE 5
Crushed sample of obsidian from the Mono-Inyo Domes, CA
[according to the work of Williams and Ramsey (2019)]. The decrease
in particle size is associated with an increase in emissivity at the RB.
The transparency feature at ∼ 11.5 μm (∼870 cm−1) deepens as particle
size decreases in the finest grain sizes.

VSWIR reflectance spectra, the petrologic analysis of glasses, as with
minerals, becomes much more challenging, owing to the paucity
of diagnostic spectral features. For example, if a glass contains Fe
in its structure, then an absorption band is present at ∼ 1.0 and
2 μm; however, this is also diagnostic of other Fe-bearing minerals
such as olivine (Dyar and Burns, 1982). However, it has been
shown that VNIR reflectance can instead be used to estimate the
percentage of glass versus crystals due to changes in the reflectance
strength (Cloutis et al., 1990; Minitti et al., 2002; Carli et al., 2016).

FIGURE 6
Comparison of glass spectra taken from the work of both Minitti and
Hamilton (2010) and Williams and Ramsey (2019) demonstrating the
major spectral changes depending on the composition. As glasses
increase in wt% SiO2, the spectrum of glass changes from a broad
bowl shape (basaltic glass) to one that is more defined with a narrower
spectral feature (rhyolite glass), coupled with the development of the
“shoulder” feature at ∼8.6 μm (∼1,163 cm−1).

This is seen in reflectance spectra between 0.3 and 2.5 μm as an
increase in the spectral slope with increased glass content, with
the caveat that this change can be quantified provided that the
chemical composition of the material being observed does not
change significantly.

As described, there are many different spectral effects that are
observed in the emissivity and reflectance data of volcanicmaterials.
By using a combination of different wavelength regions, a much
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FIGURE 7
Comparison of different modes of spectral acquisition for reflectance and emissivity.

more complete picture of how a volcanic system works can be
obtained, which can then be augmented by other datasets such as
heat flux, deformation, and seismicity, to understand and ultimately
predict future activity (Ramsey et al., 2023).

3 Laboratory measurements

Infrared spectroscopy is fundamentally based on the interaction
of photons of different wavelengths with the medium that is present.
This interaction is dependent on the energy of the photon, with
shorter wavelengths (<∼ 2 μm) related to the electronic processes in
an atom or compound and longer wavelengths (>∼ 2 μm) related to
vibrational processes in a specific atomic group. Each analysis has its
benefits depending on the goals of the study.High-fidelity laboratory
measurements are a key component of infrared spectroscopy.
They can precisely identify the composition of volcanic materials
collected in the field. However, two additional advantages over other
analytical laboratory methods are as follows: (1) spectroscopy is
non-destructive, and (2) the spectra can be resampled to the spectral
resolution of other ground, airborne, and satellite instruments. This
directly enables comparisons from the laboratory sample to the
areal distribution in the image. Laboratory measurements can also
provide analog spectra for volcanicmaterials in studies of theMoon,
Mercury, andMars.The different types of measurements that can be
acquired are shown below in Figure 7.

We next provide an overview of how these laboratory
measurements are acquired, including the information extracted
from volcanic samples and surfaces, both active and inactive.

3.1 Reflectance

Field, airborne, and satellite measurements of reflectance tend
to focus on the VNIR/SWIR range because of solar input, which
decreases markedly after 3 μm. However, the laboratory provides
a setting where TIR reflectance can also be measured, provided
that the appropriate combination of light source, beam splitter,
and detector is utilized. The style of reflectance measurement can
vary depending on the needs of the user. For example, reflectance
spectra are sensitive to the incidence angle of incoming energy,

influenced by factors such as the position of the light source, the
detector, and the roughness of the surface (Figure 7). The chosen
style of measurement also influences the spectral morphology in a
distinct way.

Hemispherical reflectance spectra, which are most similar to the
data acquired in remote sensing data as well as most comparable
to TIR emission spectra, are obtained using a spectrometer with
an attached integrating sphere. Energy from a light source is
directed onto the sample, and the reflected energy (at all angles
from the surface) is reflected (and integrated) by the sphere before
eventually arriving at the detector. These spectra can be directly
compared to emissivity spectra through Kirchhoff ’s law, as no
information is lost due to scattering effects that can occur in bi-
directional measurements (Hapke, 1981). In these measurements,
the percentage of reflected light per wavelength is compared to a
high-reflectancematerial standard.The coating of both the standard
and interior of the sphere is dependent on the wavelength range that
is to be measured. For example, coatings such as Spectralon™ have
high reflectivity at shorter wavelengths in the VSWIR portion of the
EM spectrum, whereas gold is favored for the TIR where it has a
consistently high reflectance.

Several reflectance spectral libraries have compiled information
on a range of different Earth materials. These resources have
developed from some of the earliest works investigating the spectral
features of different rocks and minerals. There are many volumes
covering different mineral and rock groups of interest. Several
of these studies would be of interest to volcanologists, as they
cover important groups, specifically silicate minerals (Adams and
Filice, 1967; Hunt and Salisbury, 1970), oxides and hydroxides, and
sulfides and sulfates (Hunt et al., 1971a; Hunt et al., 1971b), and
mafic, intermediate, and felsic igneous rocks (Hunt et al., 1973a;
Hunt et al., 1973b; Hunt et al., 1974). Many of these papers focused
exclusively on the VNIR region of the EM spectrum. Further
work by Clark and Roush (1983), Clark et al. (1993), Salisbury
and D’Aria (1992a), and Salisbury et al. (1994) expanded these
measurements into the SWIR and TIR spectral ranges, collecting
spectra of not just minerals but also bulk igneous rocks, which
would later be used to create the Johns Hopkins University
(JHU) spectral library (Salisbury et al., 1991). Furthermore, much
of this work would eventually lead to the development of a new
reflectance spectral library by the National Aeronautics and Space
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Administration (NASA) Jet Propulsion Laboratory (JPL) library
(Grove et al., 1992). This originally contained mineral spectra of
160 specimens from 0.4 to 2.5 μm. Later, the JPL and JHU
libraries’ measurements were gathered together and resampled to
the resolution of the Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER; Baldrige et al., 2009) and the
ECOsystem SpaceborneThermal Radiometer Experiment on Space
Station (ECOSTRESS; Meerdink et al., 2019).

One of themost comprehensive resources for reflectance spectra
in the VSWIR region is the United States Geological Survey (USGS)
Spectral Library (Speclib; Clark et al., 1993).This library is currently
in its seventh version and is described in depth by Kokaly et al.
(2017). The library has extended its range of both samples and
wavelengths well beyond its initial scope. Speclib version 7 now
covers reflectance spectra of several different subdivisions of
materials, from minerals and soils through organic and human-
made materials over a spectral range of 0.2–216 μm. The library
is freely available (https://www.usgs.gov/labs/spectroscopy-lab) and
also provides software such as the Processing Routines in IDL
for Spectroscopic Measurements (PRISM), a package that runs in
Interactive Data Language (IDL) to process spectra from a variety of
sources as well as using library spectra to identify those of unknown
composition (Kokaly, 2011).

There are other important VSWIR and TIR reflectance spectral
libraries, specifically from JohnHopkins University (Salisbury et al.,
1991) and Brown University’s Relab experiment (Pieters, 1983).
These libraries contain some of the same silicate minerals that are in
the JPL and USGS libraries; however, they are of particular interest
to planetary scientists as they also contain spectra of lunar soils and
meteorite surfaces.

3.2 Emissivity

Laboratorymeasurements of emissivity are primarily focused on
the TIR region of the EM spectrum. The fundamental absorption
frequencies of silicate minerals and glasses associated with volcanic
activity are found here. Instruments that measure energy in the
TIR region collect the surface emitted energy rather than using
solar reflected energy. Therefore, quantifying the emission spectra
of different minerals in the laboratory is essential for understanding
the measurements acquired remotely. Below, we describe how these
measurements are obtained in the laboratory, and we also present
some of the spectral library resources that are available.

3.2.1 Low-temperature emission spectroscopy
Direct laboratory emission spectroscopy (as opposed to

reflectance spectroscopy converted to emissivity using Eq. 3)
has been well constrained as a technique over the past 25 years
(Ruff et al., 1997). We refer to this as “low-temperature emission
spectroscopy” here to distinguish it from newer approaches
designed to measure samples well above the liquidus temperature.
With the low-temperature approach, the samples are heated to
temperatures <373 K to elevate their emission above that of the
laboratory environment and not cause any fundamental change
to the sample. Currently, the methods to obtain these spectra
are primarily based on the two-temperature method of Ruff et al.
(1997). The FTIR spectrometer first measures two standards that

closely represent blackbodies. These temperatures set the bounds
for the heated sample and are used to calculate the instrument
response function. Following the measurement of the blackbodies,
each sample is then measured. The samples are first heated prior
to spectral acquisition in a drying oven. Powdered samples, such
as tephra, are placed in metal sample cups that are actively heated
to keep them in thermal equilibrium during spectral acquisition.
Bulk rock samples, however, must be measured more rapidly
to limit the effects of cooling during the measurement, which
can take several minutes. Cooling during sample measurement
imparts the complicating effect of averaging multiple Planck
curves at multiple temperatures that result in an inaccurate sample
spectrum. Both blackbodies and samples are measured from inside
an environmental chamber that is kept at a constant temperature
of 298 K. The chamber is used to limit stray photons from other
energy sources in the room from entering the spectrometer. A
hole at the top of this chamber allows the emitted sample and
blackbody emission to reflect off of a collimatingmirror and onto the
spectrometer’s detector. Both liquid nitrogen-cooled and uncooled
detectors have been used to collect these measurements. Cooled
detectors do not have to be monitored as closely for drifts in the
internal temperature of the instrument, which can cause calibration
errors over time (Ruff et al., 1997). The two-temperature method
is a major improvement over previously developed methods and is
still the standard practice for acquiring accurate emissivity spectral
measurements.

As with reflectance, there are several laboratory spectral libraries
containing pure minerals, minerals, and volcanic glass mixtures, as
well as bulk volcanic rocks. Emissivity measurements of volcanic
rocks have been collected for several decades (Lyon, 1965; Walter
and Salisbury, 1989; Salisbury and D’Aria, 1992b). However, one
of the most comprehensive resources for TIR emissivity spectra
is found in Arizona State University’s Thermal Emission Spectral
(TES) Library (Christensen et al., 2000), which has spectra of
different materials for use in both terrestrial and planetary studies.
This library contains the solid solution series of the most important
silicate mineral groups found in volcanic rocks, such as plagioclase
and potassium feldspars, pyroxene, and olivine. This resource is
freely available (https://speclib.asu.edu/) and is regularly updated
to include new spectra, including the emissivity spectra of pure
volcanic glasses (Minitti and Hamilton, 2010), something that is
commonly overlooked in spectral studies despite their importance
in both terrestrial and planetary volcanic studies. Other libraries
are more narrowly tailored. For example, the ASTER Volcanic
Ash Library (AVAL; Williams and Ramsey, 2019) focuses on
the emissivity spectra of volcanic ash, given its complex spectral
signature due to the varying proportions of minerals and glass.
Additionally, this library also contains spectra of multiple size
fractions of ash, including fine ash (<64 μm). Given the importance
of this fraction in volcanic plumes and clouds coupled with the
complicating spectral effects due to fine particle sizes, future
development is essential. Other libraries have focused on the
availability of data for specific missions. For example, the Berlin
Emissivity Database (BED; Maturilli et al., 2008) was designed as
a complimentary library to the ASU TES library, which focused
on analog emissivity spectra to those that would be collected by
the Planetary Fourier Spectrometer (PFS) on MarsExpress and
the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS)
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on Venus Express and MERTIS on BepiColombo. Alemanno et al.
(2021) developed a new emissivity library focusing on planetary
applications specific to the interpretation of spectra obtained
fromMars.

3.2.2 High-temperature experiments
In the past decade, interest has grown in understanding the

spectral changes that result from a material cooling through its
glass transition from a molten to a solid state. Given that TIR
spectroscopymeasures specific vibrational frequencies to determine
the composition, the spectrum should change with state. This is
particularly relevant for basaltic lava flows with higher eruptive
temperatures (1,373–1523 K), meaning that a significant portion
of the material is molten on eruption. Furthermore, emissivity is
an important property in determining the rate of cooling of a
material (Pieri et al., 1990; Flynn et al., 1993; Pinkerton et al., 2002;
Thompson and Ramsey, 2020). A lower emissivity in the liquid state
means less-efficient cooling over time, which will affect properties
such as its viscosity (affected not only by the overall composition
but also by the proportion of liquid and crystals) and, ultimately, the
overall runout distance of a lava flow (Thompson andRamsey, 2021).
Additionally, there are potential planetary applications, particularly
to understanding potential active lava flows on the surface of Venus,
where it has been suggested that activity has persisted to the present
day (Herrick and Hensley, 2023), but where the thick atmosphere
precludes observations of their thermal signatures. Over the course
of a lava flow cooling, minerals that have already crystallized in a
magma chamber may be carried along with the liquid that begins
to form a crust soon after it has erupted. A molten lava flow will
not have the same repeating atomic chains seen in the minerals
formed from them; therefore, the spectral signature will bemarkedly
different. This information is, therefore, critical in assessing the
hazard state of lava producing eruption, as well as the potential
eruptive processes that may have formed lava flows on the surfaces
of the terrestrial planets. However, there are significant challenges in
developing high-quality, properly calibrated laboratory experiments
at these high temperatures.

Several studies have attempted to overcome the challenge
of measuring such high temperatures in the laboratory using
the general outline of Ruff et al. (1997). Blackbody measurements
must be taken at bounding temperatures to understand the
response of the detector. However, producing a furnace that
allows temperature-stabilized spectra to be obtained is challenging.
Lee et al. (2013) initially developed an apparatus usingmolybdenum
disilicide electric heating elements, allowing the apparatus to
reach temperatures up to 1673 K at Earth’s atmospheric pressures
in the same purged air environment that is used to collect
low-temperature emissivity spectra. The samples in this system
were placed in platinum crucibles and then in a cavity directly
underneath the mirror, with the furnace insert being made of
alumina. This experiment produced “relative spectra” due to the
lack of a repeatable calibration procedure. The approach underwent
a redesign and the methods for acquiring spectra were further
developed by Thompson et al. (2021). A more robust error analysis
has also allowed quantitative emissivity spectra to be derived from
this system that accounts for the downwelling radiance emitted
by the insulating material. Emissivity measurements in this setup

are taken from 2.5 to 25 μm. Biren et al. (2022) collected high-
temperature measurements (first described byMeneses et al., 2015);
however, they used a 500 W CO2 laser to heat the sample. This
systemutilizes two spectrometers to increase the spectral range from
1.25 to 28.5 μm. One spectrometer measured direct emission from
the sample at temperatures exceeding 500 K, whereas below this
temperature, a separate spectrometer measured the reflected energy
of the surface.A third systemwas developed byMaturili et al. (2019),
which has applications to planetary science. This system is capable
of a much wider spectral range, from 0.7 to 200 μm, but measures
samples at a lower maximum temperature (∼900 K). However, this
spectrometer configuration allows measurements under vacuum
pressures if desired.Themajor difference here compared to Lee et al.
(2013) and Thompson et al.’s (2019) furnace setup is that both
hemispheric and bi-directional reflectances are acquired as opposed
to emissivity.

There are differences between the two major high-temperature
laboratories (Thompson et al., 2019; Biren et al., 2022) in the
resulting emissivity features at higher temperatures. Both reach
comparatively high temperatures, with Thompson et al. (2019)
recording 1573 K and Biren et al. (2022) recording in the range of
1,640–1654 K. For these measurements, both laboratories witnessed
a change in the position of the CF with an increase in temperature,
with its movement from shorter to longer wavelengths (decreasing
wavenumber) being attributed to the change in silicate bonds as
the amount of melt within the sample increases. However, there
is disagreement in the basaltic sample results with an increase
in temperature. Thompson et al. (2019) showed a decrease in
emissivity with an increase in temperature, whereas Biren et al.
(2022) observed the inverse. This discrepancy is important, as
both laboratories have demonstrated that emissivity changes
significantly with temperature, which can then, in turn, alter
the results of lava flow modeling where changes in emissivity
are considered (Ramsey et al., 2019). These measurements are
indisputably complicated owing to the high temperatures of both the
samples and the other laboratory components (i.e., the sample cavity
walls). These can contribute downwelling energy that reflects off the
sample or backscattered energy from the surface of the sample by the
heating source itself (i.e., where a laser is utilized to heat the sample).
Therefore, precise calibration is critical. For example, depending
on the laser frequency, scattered reflected energy would increase
the measured incident photons in that wavelength region and,
therefore, result in shallower spectral features. The results obtained
by Thompson and Ramsey (2020) using a field-based system, the
miniature multispectral thermal camera (MMT-Cam), have also
shown that the emissivity of molten materials decreases at the RB,
and this was observed while studying higher-temperature basaltic
lava from Kilauea volcano, Hawaii. The comparison of different
data sources collected with different instruments to determine the
accuracy of thesemeasurements is, therefore, essential in adequately
quantifying this behavior.

The need for high-fidelity laboratorymeasurements is becoming
clear in volcanology, especially given computer modeling efforts to
understand the influence that emissivity has on the runout distance
of both recent volcanism on Earth and ancient volcanism on Mars
and Venus. Ramsey et al. (2019) andThompson and Ramsey (2021)
adapted the FLOWGO model of Harris and Rowland (2001) to
include emissivity variability with temperature, which has led to
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increased modeled flow runout distances and lower overall heat
flux. Although Ramsey et al. (2019) attempted to account for liquid
vs. crust coverage by using a different emissivity value for each
(i.e., the two-component emissivity model),Thompson and Ramsey
(2021) utilized high-spatial resolution multispectral TIR camera
data to link changes in the emissivity directly to the temperature (i.e.,
the variable emissivity model). A later study by Rogic et al. (2022)
also demonstrated this trend using the GPUFLOW (Capello et al.,
2022) model, with their results showing changes in both the runout
distance as well as the width of the lava flow compared to the
results obtained by using a constant emissivity value. These are
important considerations for hazard planning and risk mitigation,
and so, the accurate retrieval of accurate emissivity for different
lithologies at varying temperatures is essential.This has already been
performed at Piton de la Fournaise Volcano, Réunion (Harris et al.,
2019; Chevrel et al., 2022), and it is hoped that these models will be
adopted by the network of volcano observatories to better predict
lava flow hazards.

More recent work has taken the updated FLOWGO model
(pyFLOWGO; Chevrel et al., 2018) and applied it to define the
emplacement conditions for lava flows on the surface of both Mars
(Flynn et al., 2022) andVenus (Flynn et al., 2023).This work ismade
difficult given the limited compositional and elevation knowledge
(particularly for Venus). Furthermore, both planets have significant
differences in their atmospheric pressure and surface temperatures,
which makes understanding the flow emplacement processes more
challenging. Modeling the conditions required to reproduce the
mapped flows is important in understanding the different ways
in which volcanism evolved on these planets. A more accurate
emissivity results in amore accurate estimate of the composition and
the cooling and viscosity of these flows. Studies such as these help
lay the groundwork for future flow modeling, given the possibility
of active eruptions on Venus in recent years (Herrick and Hensley,
2023) and the recorded silicate volcanism on Jupiter’s moon Io
(Davies et al., 2023). DAVINCI+ (Garvin et al., 2020), VERITAS
(Smrekar et al., 2022), and EnVision (Helbert et al., 2019) are three
missions planned to explore the surface of Venus in the next decade
with similar goals of detecting and measuring active volcanism.

4 Volcano spectroscopy from the
ground, air, and space

We showed how laboratory measurements are used to directly
determine composition and particle size and indirectly used for
improved lava flow propagation modeling through temperature-
dependent emissivity, for example. In the study of volcanoes, remote
sensing also provides the advantage of safety, imaging eruptive
processes without the need for detailed in situ sampling, as well as
providing a much greater synoptic coverage at different temporal
scales. Figure 8 shows an example of the 2018 eruption of Kilauea
volcano, Hawaii, at three different spatial scales from airborne and
orbital instruments.

To date, there has never been an airborne or satellite
sensor designed specifically for terrestrial volcano science.
Although many of the instruments that are discussed here can
be used to quantify volcanic deposits and activity, the data
are not always routinely acquired or acquired at the necessary

spatial/spectral scales required. By contrast, the literature for
planetary science using these same techniques, particularly for
Mars, is much more robust, with IR measurements being some
of the only examples that provide physiochemical maps of
Martian volcanoes.

The limitations of IR sensors from the Earth orbit can result
in data that may not be useful or timely particularly if a volcano’s
state becomes hazardous. In volcano monitoring using IR data,
the primary focus has been on detecting thermally elevated pixels
(Figure 8). However, these data can also be compared to other
geophysical measurements such as seismic (Thompson et al., 2022)
or geodetic techniques (Alvarado et al., 2018) to understand both
the subsurface processes occurring alongside the development of
volcanic flows (Patrick et al., 2017). In this section, we first present
the methods with which we determine composition from the IR
spectra. Following this, we discuss the different sensor types that
can be used to obtain spectroscopic information about volcanoes
and what process information has been derived. Where possible,
we utilize the most recent literature to demonstrate the current
research using these sensors and also comment on some of the future
directions for volcanic studies.

4.1 Spectral modeling

A key component of the analyses discussed here is the ability to
derive the physical properties (e.g., composition and temperature)
of volcanic materials directly from their spectra. In situ spectra
acquired by different sensors are nearly always comprised ofmultiple
materials mixed below the scale of the image pixel. Determining this
sub-pixel composition and endmember percentage is commonly
classified as linear spectral deconvolution or spectral mixture
analysis (SMA, Ramsey and Christensen, 1998). Using a library
of mineral spectra as endmembers paired with a spectral fitting
model (either linear or non-linear), the identity and amount of each
endmember in each pixel can be extracted. Sub-pixel thermalmixing
can also occur, and a two- or three-endmember thermal model
(depending on the number of wavelength bands of the instrument)
is used to extract the area and temperature of those thermal
endmembers (Dozier, 1981; Rothery et al., 1988; Harris et al., 1999;
Rose et al., 2014).

As described earlier, one of the distinct advantages of reflectance
and emission laboratory spectroscopy is the ability to compare
these data to those taken from field, airborne, and satellite
instruments, providing proper calibration for the atmosphere.
Without comparative laboratory spectra, it would be very difficult
to determine the materials present in a given scene. Therefore,
we require methods that can provide a statistical spectral match
allowing us to determine the composition. Overall, unmixing of
spectra is linear (i.e., for a given pixel, the contribution of each
component to its spectrum is proportional to the endmember’s
areal abundance in that pixel) in the SWIR and TIR regions. These
methods are computationally simple, with models developed for
emission, such as spectral deconvolution or SMA (Ramsey and
Christensen, 1998), or reflectance, such as the multiple endmember
spectral mixture analysis (MESMA; Roberts et al., 1998). Despite
their developments for a range of applications (e.g., MESMA has
been used extensively tomodel hyperspectral data from urban areas;
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FIGURE 8
Radiance data of eruption processes observed by using different instruments during the 2018 Lower East Rift Zone eruption. (A) the MASTER, spatial
resolution = 50 m; (B) the ASTER, spatial resolution = 90 m; and (C) the MODIS, spatial resolution = 1.0 km. All images were acquired on 8 February
2018 with an interval of 5 min (MASTER, 0839 UTC; MODIS, 0840 UTC; and ASTER, 0842 UTC).

Franke et al., 2009), all linear unmixing approaches are applicable
to spectra acquired from volcanic environments. These algorithms
follow the principle of finding the best endmember solution through
the best spectral fit (i.e., the lowest root-mean-square (RMS) error
for each modeled spectrum compared to that from the actual pixel).

However, for VNIR spectra in particular, the linear assumption
is no longer valid due to the increased amount of photon
transmission through particles (Hapke, 1981). In the non-linear
mixing model described, photons experience a significant amount
of volume scattering due to the lower absorption coefficients. This
leads to photons interacting with more than one surface, causing
a greater number of reflections, which can then be exacerbated
by dark or highly absorbing minerals (Clark, 1983). Given the
relative simplicity of linear unmixing methods, the non-linear
spectral modeling algorithms are by comparison still considered
immature and much more complex (Celik, 2023). However, other
approaches to spectral analysis have been developed and work
well on hyperspectral data by determining statistical metrics of
diagnostic spectral feature [e.g., the USGS Tetracorder (formerly
Tricorder) algorithm (Clarke and Swayze, 1995; Clark et al., 2003)].
The most dominant spectral feature present in a pixel is assumed to
be the primary constituent and that pixel is mapped as that spectral
endmember. In the simplest terms, mixing is not considered here,
whereas it is with SMA approaches.

Furthermore, linear methods are widely available in different
software packages. For example, QGIS, an open-source GIS
and remote sensing software package that is maintained by the
user community, has modules that can be installed to provide
MESMA or the QGIS Linear Spectral Unmixing (QLSU) plugin
(Celik, 2023). Tetracorder is directly available from the USGS
(https://www.usgs.gov/labs/spectroscopy-lab), and commercial
software packages such as ENVI (Environment for Visualizing
Images) also contain SMA-based algorithms. Coupled with the
spectral libraries described in Section 3, these algorithms allow
the rapid analysis of remote sensing data from both terrestrial and
planetary missions.

The future of spectral modeling lies in machine learning (ML),
which can greatly improve the ability to deconstruct the spectral
signal from any given pixel in an image. ML has already vastly

improved the concept of image classification at the pixel scale.
By training an ML model on well-calibrated laboratory spectra
for example, it should be possible to identify mineral/rock suites
present at the sub-pixel scale as well. Additionally, by informing an
ML model of where specific bending/stretching modes of different
molecular groups (e.g., Si–O and OH) exist in wavelength space,
minerals could be assessed for their chemical composition. This
would be especially advantageous for hyperspectral measurements,
data with higher levels of noise, and/or data from multi-component
temperature mixing. For planetary applications, there may be
surface compositions not represented by current spectral libraries;
therefore, ML could be used to identify those spectral components
more efficiently and with greater accuracy.

4.2 Ground-based data collection

Ground-based remote sensing continues to be a vital part
of volcanic system monitoring because of the high-temporal
frequency and near-real-time measurements that are possible.
Further advantages include higher-spatial resolution data compared
to airborne and satellite sensors and the different viewing angles
possible (i.e., the ability to collect data from the rising plume
column vs. the cloud top seen from space). The use of ground-
based remote imagers covers a range of different applications
from thermal anomaly detection and temperature measurements
(Spampinato et al., 2011) to quantification of volcanic degassing
(Realmuto et al., 1997) and detection of drifting, optically
transmissive volcanic ash clouds (Prata and Bernardo, 2009). There
are also many systems that use other variations on spectroscopy
such as correlation spectroscopy (COSPEC; Millán et al., 1985) in
the ultraviolet (UV) range as well as cameras in the TIR that use the
same methods as those applied to satellite data to obtain the mass of
ash and SO2 plumes (Prata and Bernardo, 2014). However, the use of
reflectance or emission spectrometers/imagers for the quantification
of volcanic deposits and flows is not as common (Thompson and
Ramsey, 2020).

The use of VNIR and SWIR reflectance spectroscopy is
particularly useful in detecting the alteration of volcanic rocks
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from hydrothermal activity, for example. In Section 2, we discussed
the importance of quantifying the OH− bands in reflectance
spectra that are indicative of different types of clay minerals, as
well as the electronic processes detectable in oxide and sulfate
minerals. For example, the process of palgonitization in tephra
resulting from hydrothermal activity creates a suite of minerals
at grain boundaries. Minerals such as kaolinite, illite, nontronite,
and gypsum can be found in these environments depending on
the composition of original minerals and the dissolved ions in
the hydrothermal fluids (Jakobsson and Moore, 1986; Thollot
et al., 2012; Rodriguez and van Bergen, 2017). VSWIR reflectance
spectroscopy has been utilized in these settings previously to identify
hydrothermal alteration minerals to better understand rock–fluid
interactions (Yang et al., 2000; 2005) and volcanic hazard assessment
(Crowley and Zimbelman, 1997), with others (Deon et al., 2022;
Abdale et al., 2023) combining the field spectroscopy with other
laboratory methods (XRD) in order to better interpret clay
mineralization.

Because several of the reflectance features can overlap, the
spectra can be difficult to interpret. Combining field and laboratory
studies can providemuch greater detail by simultaneously leveraging
the robust nature of XRD for microanalysis with the broad field
of view and multiple location analysis of reflectance spectroscopy.
The presence of these alteration minerals is important in mapping
as they indicate active (or past) geothermal systems and also play
an important role in slope failure hazards at volcanoes (Lopez and
Williams, 1993; John et al., 2008; Heap et al., 2021).This approach of
alternation mineral detection has been used to look for evidence of
past sector collapse anddebris avalanche events fromvolcanoes (e.g.,
Askja, Iceland;Marzban et al., 2023).The search for possible ancient
hydrothermal systems on Mars is also important for the search for
evidence of life. Instruments such as the SuperCam onboard NASA’s
Perseverance rover, which landed in the Jezero Crater, which is
foundwithin the Isidis Planitia region ofMars (Fouchet et al., 2022),
could be used to examine alterationmineralogy to understand these
processes if evidence of these systems exist.

We have previously discussed how changes in the spectral slope
in the VSWIR region can be correlated with a change in the
percentage of glass versus crystals. By using anASDTerraSpec®Halo
field spectrometer coupled with laboratory petrographic analysis,
Rader et al. (2022) were able to use reflectance in 0.5–1.0 μm
to examine whether the trend of decreasing reflectance with
increasing glass content in basaltic rocks could be quantified. This
approach is only possible in this region of the VNIR because of
the reflectance features that appear in basaltic rocks, namely, the
mineral assemblages such as olivine, clinopyroxene, plagioclase
feldspars, and Fe oxides. The reflective behavior of glass versus
minerals in the VNIR has also been used by Sinha and Horgan
(2022) to suggest the identification of volcanic ash layers within
the North Polar layered deposits (NPLDs) on Mars, using data
from the Compact Reconnaissance Imaging Spectrometer for Mars
(CRISM) instrument (Murchie et al., 2007). Although these VNIR
reflectance spectra cannot explicitly determine the exact silicate
mineral composition, as can be achieved through the TIR, they do
provide measurements of crystal content that could be coupled with
other methods to better constrain the processes that formed them.

The strength of the TIR silicate spectral features allows for their
rapid quantification if coupled with one of the spectral libraries

described in Sections 3.1 and 3.2.1. However, although there have
been many previous studies conducted using VNIR and SWIR field
reflectance spectrometers, the use of multi- to hyperspectral TIR
instrumentation for ground-based studies is not as well developed.
Transmission spectroscopy from the UV through TIR from ground-
based systems is used to quantify ash and SO2 emissions from
volcanoes; however, it is not used for determining the composition
of volcanic deposits and rocks. Commercial systems do exist
that are capable of collecting multi- to hyperspectral TIR image
data, such as the HyperCam developed Telops, which has been
tested in volcanic environments (Smekens and Gouhier, 2018).
These systems, however, do have a significant cost, limiting their
widespread availability.

Researchers have also developed their own TIR imaging
solutions. In these cases, bandpass filters or interferometers are
used to split the incoming energy prior to the detectors to
provide multispectral image data in a similar way to satellite
imaging systems. These designs use a wheel to move the bandpass
filters into and out of the camera’s field of view to build a
multispectral image dataset. Some, such as the Cyclops camera
(Prata and Bernardo, 2009), which was followed by nicAIR (Prata
and Bernardo, 2014), contain up to four spectral bands that were
designed specifically to detect atmospheric phenomena, such as
distinguishing meteorological clouds from volcanic ash and SO2
(Lopez et al., 2015). However, anothermore recent system called the
MMT-Cam (Thompson et al., 2019) was designed for multispectral
imaging of active volcanic surfaces. This system is unique as it
collects images at six different wavelength bands in the TIR, chosen
to best discriminate volcanic rocks and minerals. Furthermore, it is
also complimentary to laboratory high-temperature measurements,
as it theoretically can obtain emissivity spectra of surfaces up to
2060 K (although the maximum temperature recorded in practice
was 1550 K; Thompson and Ramsey, 2021). MMT-Cam data
acquired on lava flows at Kilauea volcano in 2017 and 2018 imaged
the variability of crust coverage on active lava surfaces and correlated
the surface temperature to emissivity variations (Thompson and
Ramsey, 2020). Relatively low-cost camera systems such as these that
combine commercial, off-the-shelf technologies have the potential
to better assess silicate mineralogy and glass composition of hot
surfaces in ultra-high-spatial resolution that allows smaller features
to be imaged and quantified.

Despite these types of ground-based TIR imaging systems
not being common, their efficacy at acquiring comparable
measurements to those taken in the laboratorymeans that important
model parameters can be easily acquired in situ, as well as providing
sub-pixel information for data acquired from orbit. In contrast,
however, collecting these data requires the researcher to get much
closer to potentially dangerous volcanic activity, thus increasing the
risk. Additionally, to obtain quantifiable information, instruments
with a high SNR and an appropriate number of wavelength bands
in the correct position for diagnostic feature determination are
required. However, it is expected that new systems will be developed
in the future that utilize additional spectral bands with better
spatial and temporal resolution that will link the thermal/spectral
information to other geophysical monitoring techniques acquired
at the same cadence.

Multi- to hyper- spectral camera systems mounted on
autonomous landers and rovers have quantified the constituents
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of volcanic rocks on Mars. The Miniature Thermal Emission
Spectrometer (Mini-TES; Christensen et al., 2004) found on both
the Spirit and Opportunity Mars Exploration Rovers provided
these data at both Gusev Crater and the Meridiani Planum,
respectively. The detailed observations of the mineralogy of the
basaltic rocks found at the Gusev site (McSween et al., 2004;
Ruff et al., 2006; Hamilton and Ruff, 2012) led to the identification
of different classes of Martian basalt, the Adirondack Class (olivine
rich) and Wishbone Class (plagioclase rich), with bound water
molecules and basaltic glass found in very specific locations.
Future rover or lander missions to other volcanic worlds would
greatly benefit from including these spectral systems, as the
physiochemical characteristics of an active or ancient lava flow could
be derived at a much higher spatial and spectral resolution than is
possible from orbit.

4.3 Airborne campaigns

Aerial studies of volcanoes provide synoptic coverage over a
much larger area than localized field studies, and although there
is a loss of spatial resolution, these systems still provide data at a
higher resolution than satellites. Airborne data are also acquired
at a comparable viewing geometry to orbital sensors, an important
aspect where feature geometry such as lava flow channel dimensions
are important, for example. However, aerial data can be limited
by the narrow swath width, and more importantly, flights must be
requested and arranged commonly at a high cost. These logistical
and cost limitations are being reduced with the use of uncrewed
aerial systems (UASs). Regardless of the platform, the frequency
of repeat measurements for studies using aerial systems tends to
be less than with those using satellite sensors, meaning that active
volcanism is measured less recurrently.

There are numerous commercial, private, and NASA-
sponsored instruments that are designed for airborne platforms
and cover the range of infrared measurements discussed here.
Commercially available instruments that span the infrared
range include the AISAFenix VSWIR hyperspectral imaging
system (Kereszturi et al., 2020) and the Telops airborne Hyper-
Cam mini (Turcotte et al., 2023). These have the capability
to be used for volcanology and the additional advantage of
being multipurpose: they can be used as both ground-based
or airborne sensors. These types of adaptable systems enable
identical data to be collected from multiple view angles allowing
more detailed analysis to be performed. NASA sensors include
the airborne visible/infrared imaging spectrometer (AVIRIS;
Green et al., 1998), which has been improved to the AVIRIS-NG
(next-generation) instrument, HyMAP (Rejas et al., 2012), the
MODIS/ASTER airborne simulator (MASTER; Hook et al., 2001),
and the Hyperspectral Thermal Emission Spectrometer (HyTES;
Hook et al., 2013). These are flown on both low- and high-altitude
aircraft, producing awide range of potential swathwidths and spatial
resolutions. Coverage maps for AVIRIS and MASTER for the past
20 years can be seen in Figure 9.

Despite the infrequent volcano observations by these sensors,
the increased spectral and spatial resolution provides improved
accuracy in measuring volcanic processes. For example, AVIRIS
VSWIR data have been used to detect and map clay mineralization

FIGURE 9
Coverage of the NASA AVIRIS and MASTER sensors from 2012 to 2022
compared with the location of volcanic complexes in the United States
active within the past 2000 years. No campaigns were made in Alaska.

related to hydrothermal processes on stratovolcanoes in the Pacific
Northwest of the United States. The clay mineralogy mapping
coupled with topographic analysis can better help map zones of
potential sector collapse or debris flow events in areas of potential
high risk from volcanic landslides (Crowley and Zimbelman, 1997).
A similar analysis has been performed recently by Schaefer et al.
(2023) on Mt. Ruapehu, New Zealand, where hyperspectral data
collected by the AisaFENIX system were used to inform sample
collection and reflectance spectral laboratory analysis. In contrast,
the MASTER sensor has the advantage of simultaneous spectral
coverage in the VNIR to the TIR, allowing concurrent VSWIR
reflectance and TIR emission measurements to be made, albeit at
a lower spectral resolution than AVIRIS or HyTES. For example,
MASTER data were used to map hydrothermal alteration using the
VSWIR data (Bragado-Massa et al., 2014) and monitor the renewed
activity at Mt. St. Helens in 2004 (Vaughan et al., 2005). Both VNIR
and TIR systems have been used simultaneously to collect spectral
data and map the properties of the Mauna Ulu flow field (Byrnes
et al., 2004) and, more recently, over active lava flows from Kilauea,
which was performed in conjunction with hyperspectral TIR data
from HyTES (Thompson and Ramsey, 2020).

Airborne campaigns are now being carried out with sensors
deployed on UAS platforms. There are many different UAS options
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capable of different payloads, which allow the acquisition of
data at similar viewing geometries to other airborne and satellite
missions, but at a higher spatial resolution. However, due to
battery limitations, these flights commonly image much smaller
areas and are ideal for focused high-resolution studies. In addition,
these systems operate much closer to the ground, therefore
requiring less-complicated atmospheric corrections. Multi- and
hyperspectral remote sensing from these types of platforms is
particularly beneficial during active volcanic crises with highly
dynamic processes (e.g., the eruption of lava flows over the surface
or the explosive eruption and deposition of tephra). However, more
critical is the ability to rapidly acquire and process these data to
produce information such as the composition, temperature, and/or
particle size of eruptedmaterial that are important to themonitoring
agency for predictive modeling (James et al., 2020). Remote sensing
from a UAS has also successfully occurred on another planet. The
ingenuity UAS traveled onboard the Mars 2020 rover Perseverance
and has flown numerous times demonstrating that autonomous
flight is possible (Balaram et al., 2021). Future UASs can be designed
to carrymore complex instrumentation, such as the types of imaging
spectrometers discussed here, and reach regions not accessible by
traditional landers/rovers. For example, the pervasive dust cover
on Mars makes it difficult to study most of the larger volcanic
regions (Heavens et al., 2015) from orbit. The fine spatial resolution
UAS data could identify gaps in the dust coverage (including from
the sides of rocks/outcrops) from which mineralogy and petrology
can be determined for the first time. Because of their potential,
it is likely that remote sensing from UAS platforms will continue
to expand and address the fundamental questions of volcanism in
the solar system.

4.4 Orbital instrument imaging

Orbital data collection used for volcanology is, unsurprisingly,
the most common form because of the data quantity and coverage
over the past ∼50 years. Orbital studies are arguably the most
convenient as data can be collected without the need for field
deployments or flight scheduling. This is a significant advantage for
remote and hazardous locations. Additionally, these data provide
repeat and regular acquisition of a volcano over long time periods
(e.g., sensors on the Landsat and Terra satellites have been
operational for decades). Although aerial and ground-based studies
provide higher spatial and spectral detail of specific regions, satellite
data are capable of imaging an entire volcanic field enabling views of
multiple lava flows or large plumes. However, not all these systems
were designed for solid Earth science in general and volcanology
in particular.

Earth’s atmosphere further restricts the placement of spectral
bands for a given instrument, making them less capable than air-
or ground-based systems. Beyond the effects of phenomena such as
clouds, which completely obscure the ground, in the TIR region,
there is also significant absorption by O3 at ∼ 9–10 μm and nearly
complete absorption by H2O and CO2 from ∼5–8 μm and longward
of 13 μm, respectively. These obscure direct observations of Earth’s
surface and are too strong to be removed by atmospheric correction
algorithms.Therefore, the lack of a complete spectrum (as compared
to laboratory data) means certain important diagnostic regions are

inaccessible. For example, the strongest SO2 absorption occurs in the
7–8 μm regionwhere it is obscured byH2Ovapor in the troposphere.

Throughout most of the satellite era, orbital instruments have
hadmultispectral capability in the VSWIR and/or TIRmaking them
useful in spectral studies of volcanoes. Only more recently have
hyperspectral VSWIR systems been deployed on both satellites and
the International Space Station (ISS). However, numerous studies
using orbital remote sensing demonstrate that the bulk composition
of materials can be derived even with a limited number of bands
(i.e., such as the five TIR bands on the ASTER sensor onboard
Terra). These instruments are used across the infrared region of the
EM spectrum to detect important compositional details as well as
changes at volcanic systems on Earth and other silicate worlds in
our solar system.

There are dozens of multi- and hyperspectral satellite sensors
used in the study of volcanoes; however, of those, only a limited
number are well suited for surface processes and deposits. For
these studies, sensors with a higher spatial resolution (∼100 m
or less) are preferred for a greater level of detail over the entire
volcanic system. Many of the methods and spectral characteristics
described in the previous sections are also used with satellite data to
acquire information about the state of the volcano. However, novel
developments have been made in the use of orbital data to map and
interpret volcanic deposits.

The greater swath width of individual images from satellite
sensors such as Landsat (180 km) and ASTER (60 km) allows for
more complete observations of the formation and development
of lava flow fields over time. For example, Ramsey et al. (2019)
used numerous ASTER, Landsat, and other imaging systems to
track and model the complex lava flow field at Tolbachik volcano,
Russia. Although the high temperatures of lava flows can commonly
saturate orbital sensors that were designed for more common
surface temperatures, the data can still be useful in time series
studies of flow progression. In addition, identifying individual
flows in a complex flow field is difficult and requires high spatial
resolution data. Furthermore, over time, older flows can become
quickly vegetated, meaning that they are difficult to discern using
spectral ratio methods such as the normalized difference vegetation
index (NDVI). Li et al. (2015) demonstrated that lava flows on
Nyamuragira volcano in the Democratic Republic of the Congo can
become over 50% covered by vegetation within 40 years of their
emplacement.

Many remote studies of lava flows utilize VNIR to SWIR
observations to characterize recent volcanic surfaces. However,
without TIR data, mapping the distribution of silicate minerals
becomes much more difficult if not impossible. TIR data are
routinely collected from the Mars orbit, in the past from the
Thermal Emission Spectrometer (TES; Christensen et al., 1992)
and later from the Thermal Emission Imaging System (THEMIS;
Christensen et al., 2004). The TES acquired hyperspectral TIR data
of the planet’s surface for over 20 years, developing compositional
analyses forMartian basalts inmultiple locations, includingNoachis
Terra (Rogers and Nekvasil, 2015) and Arsia Mons (Crown and
Ramsey, 2017). Analysis of THEMIS data over the Syrtis Major
caldera has offered evidence through TIR spectra that magmas
on Mars may be more evolved in some locations than others,
through the discovery of what is assumed to be a low-silica dacite
(Christensen et al., 2005).
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FIGURE 10
(A) ASTER TIR radiance data of Glass Mountain, California (acquired 5 September 2021). (B) Mean, minimum, and maximum spectra obtained using a
region of interest (ROI) shown in red in (A) compared to a laboratory spectrum of obsidian glass collected from this flow. The main diagnostic spectral
features are evident in these spectra, even with the five spectral bands of the ASTER TIR sensor. (C) Furthermore, by utilizing the methods of Ramsey
and Fink (1999), micron-scale roughness associated with the percentage of vesicles can be derived using a linear deconvolution approach of glass plus
a featureless blackbody spectrum. (D) RMS errors are low overall, indicating a good spectral fit.

These same data analysis techniques are applicable to Earth-
based volcanoes and are complimentary to VSWIR reflectance
studies that have already been performed. Older, weathered
flows experience change in their surface mineralogy, and VSWIR
reflectance data help to characterize this change. Head et al. (2013)
used unsupervised classification methods to map individual flow
units on Nyamuragira using Landsat data. This was then further
augmented by Li et al. (2015), who took the approach of using
linear spectral unmixing to identify age relationships and identify
vegetation coverage over time. This information can help us
understand the evolution of a volcanic complex and its changes.
Adding TIR data analysis improves the ability to detect rock
compositional change over time that could indicate differences
in magma composition, which in turn helps determine the
future hazard potential (e.g., as was observed during the 2010
Eyjafjallajökull eruption, Iceland; Sigmarsson et al., 2011).

Surface unit morphology can also be derived from TIR
spectroscopy and can be a way to quantify smaller-scale roughness
features, such asmicron-scale vesicularity in away that compliments
the larger-scale flow surface roughness derived from radar remote
sensing (Campbell and Blackwell, 1996). An increase in the
vesicularity of a sample causes an increase in the emissivity at the
Reststrahlen band absorption feature, essentially muting it. This
is related to multiple internal reflections of photons that occur
in the small exterior vesicle cavities (Figure 10; Ramsey and Fink,
1998). This effect has also been shown to be linear, and therefore,
if the spectrum of a vesicle free material is acquired, then a
blackbody spectrum can be used as the proxy for the vesicularity
and the areal percentage of vesicles in a rock established using a
simple two-endmember model. This is particularly applicable to
pyroclastic rocks (Carter and Ramsey, 2009) as well as viscous
lava domes (Ramsey et al., 2012). Vesicularity in lava domes can
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FIGURE 11
Physiochemical analysis of volcanic ash erupted from Sakurajima volcano, Japan, using an ASTER image acquired on 29 April 2010 [according to the
work of Williams and Ramsey (2019)]. Only those pixels where the plume is opaque are used in this analysis (where the optical depth OD is >4) so that
only emissivity from the ash cloud is modeled (Williams and Ramsey, 2022). Linear deconvolution model results for particle size (A) and the RMS error
(B) are draped over an ASTER VNIR image for clarity. A sample of volcanic ash collected from Sakurajima provided the best overall fit to the
modeled data.

fluctuate over time related to high-volatile contents within magma
(Ramsey et al., 2012; Fink and Anderson, 2023). This information
is particularly vital at high-temporal revisits (>1 image per day if
possible) during an ongoing dome emplacement, and combining
this with atmospheric degassing measurements of volatiles, such as
SO2, helps better constrain potential future activity. These processes
can be understood even better through a combination of other
datasets, such as those acquired from synthetic aperture radar
(SAR). Provided that the radar sensor coverage over a particular
volcano exists, SAR data provide information on macroscale
roughness features on a lava flow (e.g., the distribution of blocks
and boulders, a’a versus pahoehoe textures; Tolometi et al., 2020).
Furthermore, repeated SAR measurements can provide the volume
of lava to be determined using interferometric synthetic aperture
radar (InSAR). Given that InSAR is sensitive to ground changes on
the order of millimeters to centimeters, then syn- and post-eruption
volume changes can be calculated over the time period between
the data collections (Kubanek et al., 2015). The combination of
these methods can, therefore, be a powerful tool for understanding
the mechanisms behind the eruption of lava and provide better
constraints for flow modeling (Harris et al., 2019).

Tephra can also be an important indicator of the state of a
volcano. The size and shape of volcanic ash particles can illuminate
eruption mechanics (Heiken, 1972), and their composition is
evidence of the composition of the magma. Tephra has a range
of different particle sizes, with a significant very fine portion
(<63 μm). As described, fine particle sizes can affect spectra through
the development of new spectral features (transparency features)
that must be considered, along with the varying proportions
of glass versus crystals found in different ash samples. The
AVAL library (Williams and Ramsey, 2019) was developed in
response to the lack of tephra and ash spectral data in existing
spectral libraries. This spectral information is also useful for

the analysis of the proximal regions of ash-rich plumes. For
example, Williams and Ramsey (2022) studied Vulcanian-style
eruptions from Nishinoshima volcano, Japan, and used AVAL
to derive the composition and distribution of particle sizes in
ASTER TIR emissivity data. Another example of mapping ash-rich
plumes using a linear deconvolution approach and ASTER TIR
is shown below for Sakurajima volcano, Japan (Figure 11). Using
spectroscopy to assess the composition of volcanic ash in proximal
plumes can also provide data for radiative transfer models needed
to analyze the more distal drifting volcanic ash (Grainger et al.,
2013). Together, these measurements of the entire plume plus
the deposited tephra enable a complete view of the ongoing
eruption processes.

There are currently a limited number of instruments capable
of making TIR measurements at the appropriate spatial/spectral
resolution to discern volcanic features. ASTER was the first and
has been in orbit since December 1999, followed much later
by the ECOSTRESS instrument on the ISS (Hulley et al., 2017).
VSWIR data are much more common and include the ASTER
VNIR subsystem, the suite of Operational Land Imagers (OLIs) on
Landsat, and theMultispectral Instrument (MSI) on board Sentinel-
2, which provides multispectral measurements. Newer instruments
such as the Earth Surface Mineral Dust Source Investigation
(EMIT) on the ISS, the Copernicus Hyperspectral Imaging Mission
for the Environment (CHIME), and the Precursore Iperspettrale
della Missione Applicativa (PRISMA) now provide hyperspectral
VSWIR reflectance data at spatial resolutions between 20 and 60 m.
The future Surface Biology and Geology (SBG) VSWIR and TIR
instruments, however, will eventually replace ASTER and augment
the Landsat and Sentinel missions. These systems will provide the
first global hyperspectral VSWIR data combined with much high-
temporal resolution (∼3 days) multispectral TIR for the first time.
Such data will be critical to better discern and map volcanic features
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and their changes with time. SBG TIR is the only planned polar-
orbiting instrument thatwill be capable of providing emissivitymaps
at the appropriate resolution to quantify volcanic rocks through
spectral mapping.

5 Summary and future directions

This article provides information on the literature resources
needed to understand volcanic rocks using infrared spectroscopy in
all its forms (from the laboratory to orbital data). Using reflectance
and emissivity over this wavelength range, various properties of
volcanic rocks can be derived. When performing future studies, it is
important to understand both the advantages and limitations of each
wavelength region and instrument to determine the appropriate use
for the type of analysis desired. We provided an overview of the
types of instruments currently available to perform this research,
including the satellite data that are appropriate for each different
application. The resolution of the instrument, whether it is spatial,
spectral, or radiometric, will greatly influence both the accuracy and
precision of a given study.

This also leads us as a community to consider what types of
remote sensing data will be needed in the future. As mentioned,
there are several current and future missions that can provide
VSWIR reflectance data. For the TIR, the current ECOSTRESS
and future SBG missions can provide data comparable to (and
in some ways better than) the ASTER sensor. Looking further,
toward the end of the 2020 decade, the planned Landsat-Next
mission will also be able to provide multispectral TIR data over
∼5 bands plus >20 bands in the VSWIR region. However, none
of these sensors are dedicated to volcanology missions. The next
step in orbital volcano science will come from such a mission
that acquires multi- to hyper- spectral image data on a scale of
minutes to hours to capture dynamic volcanic processes. This
kind of information is essential in the volcanology community
moving forward.
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