
TYPE Original Research
PUBLISHED 24 April 2024
DOI 10.3389/feart.2024.1304593

OPEN ACCESS

EDITED BY

Xintong Dong,
Jilin University, China

REVIEWED BY

Zhi Wei,
Peking University, China
Bouhadad Youcef,
National Earthquake Engineering Center
(CGS), Algeria

*CORRESPONDENCE

Francesca Pace,
francesca.pace@polito.it

RECEIVED 29 September 2023
ACCEPTED 04 April 2024
PUBLISHED 24 April 2024

CITATION

Pace F, Khosro Anjom F, Karimpour M,
Bolève A, Benboudiaf Y, Pournaki H and
Socco LV (2024), Fast and semi-automatic
S-wave and P-wave velocity estimations from
landstreamer data: a field case from the
Middle East.
Front. Earth Sci. 12:1304593.
doi: 10.3389/feart.2024.1304593

COPYRIGHT

© 2024 Pace, Khosro Anjom, Karimpour,
Bolève, Benboudiaf, Pournaki and Socco. This
is an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that
the original publication in this journal is cited,
in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Fast and semi-automatic S-wave
and P-wave velocity estimations
from landstreamer data: a field
case from the Middle East

Francesca Pace1*, Farbod Khosro Anjom1,
Mohammadkarim Karimpour1, Alexandre Bolève2,
Yassine Benboudiaf2, Hamed Pournaki2 and
Laura Valentina Socco1

1Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Turin,
Italy, 2FUGRO, Nootdorp, Netherlands

Seismic surface and body wave analyses are powerful tools for the geotechnical
characterization of sites. The use of landstreamers facilitates the acquisition
of dense data sets over large areas. However, efficient processing workflows
are needed to estimate 3D velocity models from these massive data sets. For
surfacewave analysis, themanual picking of dispersion curves (DCs) of large data
sets is very time-consuming, whereas the accuracy can be biased by operator
choices. We apply a semi-automatic workflow for the analysis, processing, and
interpretation of a large-scale landstreamer data set acquired for engineering
purposes in the Middle East. The workflow involves the application of a validated
automatic DC picking algorithm, and the transformation of the DCs into S- and
P-wave velocity models through the wavelength-depth technique. The method
has a high level of automation, is data driven and does not require extensive
data inversion. Another remarkable benefit is that the auto-picking is more than
1,000 times more efficient than standard manual picking and the estimated
velocities are in good agreement with available geotechnical and geophysical
information. We conclude that the semi-automatic approach may represent
a fast and straightforward method suitable for both research and industrial
projects, thus enhancing further collaborations and developments.

KEYWORDS

MASW, surface waves, wavelength-depth transform, automatic picking, datadriven
processing, landstreamer, seismic, geophysics-applied

1 Introduction

Seismic methods are of pivotal importance in providing the needed geo-data for
near-surface characterization such as lateral variation detection, stratigraphic mapping,
determination of geotechnical properties, and reservoir target location. Multichannel
Analysis of Surface Waves (MASW) is the largely dominant survey method to retrieve
the shear-wave velocity (Vs) model of the subsurface down to some tens of meters. The
most established approach to process and interpret MASW data encompasses survey
design, acquisition, processing to retrieve the experimental dispersion curves (DC) and
inversion to obtain Vs profiles via local or global search methods (Foti et al., 2018). In
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FIGURE 1
Workflow of the complete procedure of auto-picking and W/D transform. After the automatic DC extraction (1), the auto-picked DCs are grouped into
clusters (2A). Then, for each cluster, the W/D method is applied (2B). Finally, (2C) the models of interval velocity Vs and Vp are estimated (modified from
Khosro Anjom et al. (2019)).

recent years (Van Der Veen et al., 2001; Malehmir et al., 2017) the
use of landstreamers has made the acquisition of dense and large
data sets very efficient, with an acquisition rate of around 1 km

of line per day (Hjelm et al., 2023). The cost-effective availability
of large data sets opens the possibility of extensive, dense and
high-resolution velocity model estimations. The bottleneck of the
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FIGURE 2
Overview of survey area: the 45 seismic landstreamer lines, the 8 CPTs and 16 boreholes. The acquisition direction was from east (first geophone) to
west (last geophone) and from south (L0) to north (L220). The geographical coordinates are omitted on purpose as confidential.

exploration workflow lies then in the estimation of the large number
of DCs and in their inversion.

Although several attempts of making the DC picking fully
automatic using either knowledge based (Zhu and Beroza, 2018)
or machine learning (Cano et al., 2021; Wang et al., 2021) methods,
the picking is standardly carried out with a software-aided
“manual” approach that requires an expert operator to decide
what should be picked over the spectral images. A recent work
has introduced a new method of automatic DC extraction or
auto-picking of the DCs (Papadopoulou, 2021; Papadopoulou et al.,
2021). This auto-picking method does not require any data
preconditioning or operator intervention, also avoiding subjective
decision of the user (Zargar et al., 2023). The algorithm has
been applied to some case studies, but never to large-scale
landstreamer data sets.

As far as inversion is concerned, researchers have proposed
a number of methods to directly transform the DCs into local
Vs models (McMechan and Yedlin, 1981; Bergamo et al., 2012).
One example is the wavelength-depth transform (from now on,
W/D transform) (Socco and Comina, 2017; Socco et al., 2017;
Khosro Anjom, 2021). This data driven method relies on the
knowledge of a limited number of reference models within the
data set and uses them to estimate a rescaling function that
represents the surface wave (SW) skin depth and that allows

to directly transform the DCs into Vs models. The method is
computationally fast and retrieves Vs and P-wave velocity (Vp)
models thanks to the sensitivity of the W/D relationship to
Poisson’s ratio (Socco and Comina, 2017). The estimation of
Vp in addition to Vs models provides a more comprehensive
description of the mechanical properties of the near surface without
the need of associating P-wave tomography to MASW and thus
saving the time required for first-break picking and refraction
inversion. So far, there have been few applications of the W/D
transform to the estimation of Vp models from surface waves
(Wang et al., 2024). This indicates there is a need to unveil the
benefits of this innovative methodology to both industrial and
academic applications.

This study presents the first application of the auto-picking
and W/D transform methods to a large-scale landstreamer data
set which is suitable for 3D interpretation. The auto-picking and
W/D transformmethods are illustrated and condensed in theirmain
tenets taken from the original published works. The objective of
this field case is to show the feasibility and effectiveness of the
combination of two recent methods that provide a cost effective and
robust characterization of the shallow subsurface with a high level
of automation. The results of the proposed workflow are compared
with those of standard MASW and P-wave tomography methods.
The benefits of the workflow proposed are outlined in terms of
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FIGURE 3
The data set. An example of recordings from line L55, shot 4.

FIGURE 4
An example of DC extraction and the computed spectrum for line L55 from (A) the auto-picking code at the midpoint of around 30 m and from (B) the
manual picking (shot 19, whose midpoint is 25.5 m). The red in the velocity spectrum means high amplitude, the blue means low amplitude.

validity of the results and competitiveness of the time required for
data processing.

The data set was acquired in the Middle East for land site
characterization of an engineering project. Several examples of

near surface characterization using SW have been provided for
deep exploration projects in the Middle East (e.g., Colombo et al.,
2017; Alyousuf et al., 2018). In our case, the geophysical acquisition
was performed on purpose for near surface characterization for
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FIGURE 5
Pseudo-3D volume of the dispersion curves extracted with the auto-picking code.

infrastructure development. The seismic landstreamer data used in
this study are complemented by electrical resistivity tomography
(ERT) data.

The ensuing sections are organized as follows. The second
section will describe the methodology adopted in this study, in
particular, the auto-picking and the W/D procedures. The third
section will give an overview of the case study, i.e., the large
seismic landstreamer data set. The fourth section is concerned
with the results and the comparison between auto- and manual
picking. Finally, the discussion arising from the research findings
is presented.

2 Methods

The method we applied can be graphically described with the
workflow of Figure 1 and is composed of the following steps:

1. Automatic DC extraction or auto-picking,
2. Velocity estimation:

A. DCs clustering,
B. W/D transform,
C. Final estimation of the interval velocities.

Details are given below.

2.1 Automatic DC extraction

The auto-picking method used is based on the seminal work
of Papadopoulou et al. (2021) with further developments aimed at
improving the robustness and broadening the bandwidth of the
extracted DCs (Zargar et al., 2023). The processing code is fully
automatic and virtually applicable directly in the field.

The processing scheme is based on the definition of an
appropriate spatial moving window that spans the seismic lines and
computes the dispersion images based on the phase shift method
(Park et al., 1998) at each position of the moving window and for
several shot gathers in the same window (Papadopoulou et al., 2021;
Zargar et al., 2023). The dispersion images of the different shots
are stacked to improve S/N ratio and the DCs are automatically
picked on each stacked spectrum. The auto-picking itself is based
on the method developed by Papadopoulou (2021), which, after
a preliminary picking, automatically selects the reliable branch of
DCs on the basis of The DC is then automatically extended by
picking additional points outside the main branch thanks to a
series of quality controls (QCs). The required inputs beside the
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FIGURE 6
Pseudo-section of DCs obtained from auto-picking (A) and manual picking (B) for line L55.

seismic records are the length of the moving window, the minimum
and maximum source-receiver offset, and the shift of the moving
window along the line. In the present processing scheme, a specific
frequency band for the initial search of the maxima has to be set up
by the operator.

2.2 Velocity estimation

We used the W/D method to directly transform the DCs into
Vs and Vp models (Socco and Comina, 2017; Socco et al., 2017;
Khosro Anjom et al., 2019; Khosro Anjom, 2021). The method is
based on the strong correlation between DC in wavelength domain
and time-average Vs (Vs,z) (Socco et al., 2017). The Vs,z at a certain
depth z is the weighted average velocity of themedia from this depth
up to the surface, which can be computed from the parameters of a
layered Vs model using:

Vs,z(z) =
∑
n
hi

∑
n

hi
VSi

(1)

where VSi and hi are the velocity and thickness of the i th layer,
respectively. The W/D relationship is based on the search for the
wavelength at which the SW phase velocity is equal to the time-
average velocity (Vs,z) at a certain depth. The W/D pairs define
a relationship that represents the SW skin depth and that can be
directly used to transform the DCs into Vs,z models. Since the
skin depth of SW depends on the Poisson’s ratio (Pelekis and
Athanasopoulos, 2011), Socco and Comina (2017) developed a
method based on the sensitivity of theW/D relationship to estimate
the time-average Vp (Vp,z) in addition to Vs,z. Based on the W/D
data transform, Khosro Anjom et al. (2019) created a workflow to
estimate interval Vs and Vp models that can be applied to laterally
varying sites. The workflow for the estimation of Vs and Vp can be
divided into three main steps (see Figure 1, blocks 2A, 2B, and 2C,
respectively):

A. DCs clustering: the DCs of the seismic data set are grouped
into clusters of homogenous sets by means of a hierarchical
agglomerative clustering algorithm. The Euclidean distance
is used as the metric to measure the dissimilarity of
each two DCs, and average distance linkage criterion
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FIGURE 7
Distribution of the misfit between the DCs data points obtained from
automatic and manual picking for line L55. The average of this
distribution (µ) is −0.5% and the standard deviation (σ) is 5.3%. The red
curve represents the gaussian that fits the bar chart of the data.

is considered to compute the distance between clusters
(Khosro Anjom et al., 2019). Hierarchical clustering does not
require information regarding lateral variation. The clusters
can be obtained from the dendrogram plot or a distance
threshold. The W/D transform is carried out separately
for each cluster.

B. W/D transform: for each cluster, a reference DC based on the
QC of Karimpour (2018) is selected. The reference DCs (one
per cluster) are inverted using aMonte Carlo algorithm (Socco
and Boiero, 2008) to estimate the reference Vs,z model (one
per cluster).The reference Vs,z model and the reference DC are
used to retrieve the reference experimental W/D relationship,
which is used to transform the other DCs belonging to the
same cluster. Then, from the W/D relationship of each cluster,
a reference apparent Poisson’s ratio ν(z) is deduced (one per
cluster). An apparent Poisson’s ratio is a property that relates
theVs,z andVp,zmodels according to the followingEq. 2 (Socco
and Comina, 2017):

ν (z) = 1
2
[[[

[

(
Vp,z(z)
V s,z(z)
)
2
− 2

(
Vp,z(z)
V s,z(z)
)
2
− 1

]]]

]

(2)

The reference W/D relationship is applied to all DCs of the
clusters to estimate the corresponding Vs,z models. Then, the
estimated Vs,z models are transformed into Vp,z models thanks to
the reference apparent Poisson’s ratio of the cluster.

C. Estimation of the interval velocities: the estimated Vs,z and
Vp,z are transformed into interval Vs and Vp models using
a DIX-type formula [i.e., inverse of Eq. (1)] (Dix, 1955).
The DIX-type equation is sensitive to noise. To reduce the
impact of the noise in the estimated Vs and Vp models,
we impose the total variation regularization in the DIX-type
equation (Khosro Anjom et al., 2019).

FIGURE 8
Map view of the spatial distribution of the auto-picked DCs and their
clustering into three groups. The seismic lines are oriented N80°W.

3 The case study

The investigated area is located in the Middle East, United Arab
Emirates. The survey area is 300 m west away from the coastline,
but the exact location of the survey area is kept confidential as
requested by the data owner. On a geological standpoint, the survey
area lies on the Cretaceous unit, as reported in the USGS geologic
map (Pollastro et al., 1999). The geologic USGS province is called
“Oman mountains”. The topography of the area is quite flat, and the
ground surface is characterized by sand and gravel.

The data acquisition was carried out in 2020 for infrastructure
development. The geophysical data set is composed of 5 m-spaced
45 parallel lines of seismic landstreamer and ERT data.The ERT data
are not considered in this work.

The landstreamer data were acquired with a sledgehammer and
plate as the source. The receiver was a 48-channel streamer with
1 m geophone spacing and a geophone frequency of 4.5 Hz. Each
line was composed of 24 shot gathers (except for few lines with 22
shot gathers). The offset between the source and the 1st geophone
was 5 m and the streamer was shifted 5 m at every shot (between
2 and 5 stacks). The total length of the seismic line was 162 m for
a total of 7.29 km for all 45 lines. The seismic acquisition layout
is illustrated in Figure 2. The acquisition direction was from east
(first geophone) to west (last geophone) and from south (first line
L0) to north (last line L220). The profiles are oriented N80°W with
respect to the geographical north.The areawas also investigatedwith
8 cone penetration tests (CPTs) and 16 boreholes, whose locations
are plotted in Figure 2.
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FIGURE 9
Results from MCI for the three reference DCs: (A) the reference dispersion curve for cluster 1, (B) the accepted Vs model for cluster 1, (C) time
average Vs for cluster 1, (D) the reference dispersion curve for cluster 2, (E) the accepted Vs model for cluster 2, (F) time average Vs for cluster 2, (G) the
reference dispersion curve for cluster 3, (H) the accepted Vs model for cluster 3, (I) time average Vs for cluster 3. The misfit value is dimensionless.

The analysis of the 16 boreholes reveals the main geologic units
of the area.The upper units are represented by gravelly, silty or shelly
sand, while the deepest layers of the boreholes include breccia or
gabbro, and sometimes calcarenite or sandstone. It is worth noting
that below the geologic formation of (gravelly/silty/shelly) sand, the

units of gabbro or breccia represent the outcropping bedrock. This
clear discontinuity appears at a mean depth of 15 m from the top of
the borehole, with a minimum depth of 8 m and a maximum depth
of 23.5 m. Five out of 16 boreholes do not find the gabbro or breccia
units, even though their well bottom is at a depth of around 20 m.
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FIGURE 10
(A) The estimated W/D relationships for cluster 1 (red curve), cluster 2 (blue curve) and cluster 3 (green curve), (B) apparent Poisson’s ratio (ν) for the
three clusters.

A representative example of the data set is shown in Figure 3,
which represents a record for line L55, shot 4. This line was chosen
as representative for the whole site and is shown later as it is close to
CPT-02 and borehole TBH-02.

4 Results

4.1 Auto-picking and comparison with
manual picking

While the manual picking of landstreamer data is standardly
carried out using the whole streamer (48 receivers and 47 m) and
single source, for the auto-picking it is possible to select a smaller
window, thus increasing the lateral resolution, and exploit several
shots, thus increasing the S/N ratio. Moreover, the manual picking
retrieves a DC every 5 m (which is the shift between neighboring
positions of the shots), while for the auto-picking, thanks to its
efficiency, a smaller shift of the window can be selected, down to the
receiver spacing (1 m in this case). This provides a much denser DC
data set. For the processing of the data, we chose a moving window
of 24 receivers with a shift of 1 receiver (1 m) and stacking of 10 shots
(offset from 5 to 50 m).

The manual and the auto-picking were carried out in Matlab
proprietary codes using the phase shift method to compute the
velocity spectra.

An example of the computed dispersion images for line L55 is
depicted in Figures 4A, Bwith the pickedDCs from the auto-picking
code and manual approaches, respectively. Even though the general

trends of the picked DCs are in good agreement, there are some
differences. For instance, there are somediscontinuities in the picked
curve from the manual picking at around 40 Hz (Figure 4B) that
are not present in the auto-picking method (Figure 4A). A possible
reason for this slight discrepancy is that the dispersion images result
from a different amount of input traces due to themovingwindow of
the auto-picking method, which considered the traces coming from
different shots.

The auto-picking method was applied to all 45 lines and more
than 5,700DCswere obtained, as shown in the pseudo-3Dvolume in
Figure 5. The highest values of the phase velocity can be observed at
large wavelength in the northwestern sector of the investigated area.
The automatic DC extraction lasted less than 15 min with no need
for any kind of user intervention. Figure 6 displays the extracted
DCs from both auto-picking and manual picking as a function of
wavelength for a representative line, L55. The data are represented
with the horizontal axis of the receiver positions in descending
order, while the direction of the acquisition goes from geographical
southeast to northwest, as indicated in Figure 2. The extracted DCs
from the auto-picking (Figure 6A) are denser in space since the
spatial window moved every 1 m (i.e., the receiver spacing), while
the DCs from the manual picking (Figure 6B) were estimated every
5 m (i.e., the shot spacing). Furthermore, the investigation depth
of the DCs from the auto-picking (Figure 6A) is often higher than
that from manual picking (Figure 6B), as can be observed from the
wavelengths larger than 20 m.

Themisfit between theDCs data points obtained from automatic
and manual picking was calculated for all the lines. Given that the
auto-picked DCs were more numerous than the manually picked
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FIGURE 11
Pseudo-3D volume estimated using the W/D method: (A) Vs, (B) Vp, (C) Poisson’s ratio (ν).

DCs, the misfit was calculated for only the common frequency band
of the DCs that had the same position. The average misfit for all the
lines was −0.18%. The misfit distribution for line L55 is shown in

Figure 7 as a bar chart.The averagemisfit is almost zero (−0.5%) and
the standard deviation is 5.3%.The red curve represents the gaussian
curve that fits the data.
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FIGURE 12
(A) Estimated interval Vs model (interpolated) for line L55 superimposed on the calculated Vs from CPT-02 (position ≈ 72 m); (B) comparison between
the calculated Vs from CPT-02 (dashed black line) and the interval Vs extracted from the shot at the correspondence of CPT-02 (solid black line). On
the right, the stratigraphy from borehole TBH-02.

4.2 The final velocity models

The clustering of the estimated DCs through the auto-picking
algorithm revealed three clusters (Figure 8). For each cluster, a
reference DC was selected based on the QC and then inverted
using the Monte Carlo algorithm to obtain the reference Vs,z model
required for the W/D relationship. In Figure 9, we show the results
of the Monte Carlo inversion, in which the three rows of plots
refer to clusters 1, 2 and 3, respectively. The Vs and Vs,z models
plotted in Figures 9B, C, E, F, H and I are depicted depending on
the final misfit value, which is dimensionless: from the lowest misfit
(purple lines) to the highest misfit (green lines). The reference DC
of cluster 3 (Figure 9G) lacks low frequency data compared to the
reference DC of clusters 1 and 2 (Figures 9A,D). As a result, the
estimated W/D relationship and apparent Poisson’s ratio of cluster
1 and 2 cover more depth from the subsurface than cluster 3, as
presented in Figure 10. The main reason behind this contrast in the
investigation depth is the known outcropping hard rock formation
in the western region of the site (cluster 3 in Figure 8). This outcrop
formation guides the SWs to the shallow near-surface and prevents
deep propagation, at least with the current acquisition settings.

The estimated 1D Vs and Vp models from the W/D transform
for all the DCs were merged and interpolated. In Figures 11A–C
we show, respectively, a pseudo-3D volume of Vs, Vp, and Poisson’s
ratio computed from the estimatedmodels.ThePoisson’s ratio shows
high values above 0.4 at shallow depth in the northwestern region,
in agreement with the known shallowwater table at the site.The null
Poisson’s ratios in Figure 11C are outliers, that are quite common in
data transform and can be removed in a post-processing step.

5 Discussion

As regards the automatic extraction of the DCs, the results
provide compelling evidence that the proposed method is valid and
competitive. It is valid because the automatically picked DCs are

highly comparable with the manually picked ones (see Figure 6),
while it is competitive due to the exceptional time saving. In fact, the
manual picking of the DCs would approximately require 2 h per line
for a total of 90 h to retrieve around 1,000 DCs. This means around
5 min per DC, which can vary depending on the expertise level of
the user. The auto-picking required 15 min to retrieve around 5,700
DCs, which means around 0.2 s per DC. This achievement may
represent a major asset for both research and industrial projects
dealing with large data sets and/or tight deadlines.

Thanks to the availability of CPTs and boreholes it was possible
to assess the W/D method results.

The eight CPT soundings (see Figure 2) were used as
benchmarks for the Vs models. As an example, we selected line L55
and CPT-02, which lies at around 72 m on the horizontal distance.
Figure 12A shows the 2D section of the interval Vs superimposed on
1D Vs calculated from CPT data using the geotechnical parameters
of the CPT (Robertson, 2009): Vs = [αVs(qt − σV)/pa]

0.5, where αVs
is the Vs cone factor (dimensionless), qt is the total cone resistance
(MPa), σV is the in situ total vertical stress (MPa), pa is atmospheric
pressure (MPa). In Figure 12, we compare the estimated Vs models
from the W/D method and CPT. In Figure 12B, the solid black line
is the interval Vs extracted at the correspondence of the location of
CPT-02, while the dashed black line is the calculated Vs from CPT-
02, that is, the same 1D Vs superimposed on the pseudo-section in
Figure 12A. As a further validation, we compared the Vs trend with
the available geological information from borehole TBH-02, which
lies on line L55, only 22 m from CPT-02 (see Figure 2). We found
that there is a geological discontinuity at a depth of 17.36 m (from
ground surface), as can be seen from the stratigraphy depicted on
the right of Figure 12B. The analysis of the lithology from TBH-
02 revealed the presence of “medium dense, brown, silty, fine to
medium sand” above the discontinuity. At depth 17.36–18 m there
is “weak, grey to dark grey, thickly bedded, partially weathered
gabbro”. At depth 18–19.4 m there is “light yellowish brown, matrix
supported breccia”. Up to the borehole bottom of 20 m, there
is “weak grey, weathered gabbro”. The depth of this geological
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FIGURE 13
(A) Final interval Vp for one representative line (L55) after W/D method and (B) the Vp tomography after 2D travel time refraction inversion performed
in pyGIML.i.

discontinuity (17.36 m) approximately occurs in the depth range
where the Vs approaches 1,500 m/s. This velocity value is in line
with typical values of Vs for gabbro (Kearey et al., 2009). The lateral
variation ofVs that can be observed fromFigures 11A, 12Amayhave
a major impact on the design of any engineering infrastructures,
such as foundations.

The Vp obtained with the W/D method at line L55 was
compared with the Vp model obtained through P-wave travel
time tomography (Figure 13). Travel time data were inverted using
the open-source Python package pyGIMLi (Rücker et al., 2017;
Doyoro et al., 2022). The 2D refraction inversion is based on the
shortest path method (Moser, 1991), includes topography and
triangular mesh. The inversion of L55 ended after 8 iterations
(around 10 min of total computation time). The initial chi-squared
was 649, then it decreased to 10.4 after 8 iterations.The final relative
root-mean-square errorwas 9.7%between the observed data and the
calculated response.

Figure 13A shows, for line L55, the 2D section of the interval
Vp after W/D transform (interpolated), while Figure 13B plots the
2D model of Vp as computed in pyGIMLi. The models are not
exactly compatible because pyGIMLi considers the true elevation
of the receivers and the totality of the first breaks, while the W/D
method considers themidpoints of the DCs, with topography added
after the data transform to ease the comparison. However, both
models show a significant increase in velocity (up to 5,000 m/s)
at a distance between 70 and 100 m and at a depth from top of
around 25 m (which is around −20 m of elevation in Figure 13).
Moreover, at a distance of 80 m, the models show the same shape
of the highest velocity deep interface related to the outcropping
hard rock formation towards the northwest (right side of the graph).
Finally, the Vp model obtained from the W/D method presents an
investigation depth larger than that from travel time tomography.

We have demonstrated that the velocity models estimated with
theW/Dmethod are largely in agreementwith available benchmarks
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from other methods, i.e., geotechnical data for the validation of Vs
and geophysical inversion for the validation of Vp.

Regarding the time spent for the estimation of velocity models,
this large data set required 1 workday for the estimation of reference
W/D relationships and apparent Poisson’s ratios (steps 2A and 2B of
theworkflow in Figure 1) and around 30 min for the final estimation
of Vs and Vp models (step 2C of Figure 1). A traditional DC
inversion, for example, the laterally constrained inversion, would
have required several days (up to a couple of weeks) to handle all the
5,700 DCs of our data set with powerful computational resources
(Khosro Anjom et al., 2024) to produce Vs models. The first-break
picking and the inversion in pyGIMLi (including topography and
data formatting) to obtain Vp models took approximately half a
workday per line, meaning around three working weeks for the
whole data set.

6 Conclusion

We have presented a novel application of a semiautomatic
approach to the analysis and processing of a large-scale landstreamer
data set. The proposed workflow enables a fast estimation of the
interval velocities Vs and Vp by means of automatic DC extraction
(auto-picking), DCs clustering and W/D transform. It has been
demonstrated that the combination of the auto-picking and W/D
methods can be applied to fast seismic data processing and velocity
estimation without the need for time-consuming data processing
and inversion. What is further relevant is that the W/D transform
allows the estimation of Vp models from surface waves with no
need for first break picking and refraction inversion. We have
demonstrated that the outcome from the proposed workflow is
highly comparable with that from standard P-wave travel time
tomography.

A crucial achievement was that the auto-picking of the DCs was
more than 1,000 times faster than the standard manual picking.
Moreover, the obtained models were supported by a dense data
coverage and showed deeper investigation depth with respect to Vs
obtained by manual DC picking and Vp obtained by travel time
tomography.

This study represents the first application of such methodology
to a data set which is composed of landstreamer data suitable for 3D
interpretation. Automation and no need for inversion are the main
benefitsoftheproposedworkflowandtrulyrepresentacompetitiveasset
in academic and company projects dealing with rapid deliverables of
largeamountofdata.Besides, theshort timerequiredfordataprocessing
contributes to the added value of the work.

One possible limitation of the method adopted is that as W/D
is a data transformation, the results are fully dependent on the data.
The investigation depth depends on the retrieved wavelength of SW
data and Poisson’s ratio.

The codes of the workflow are not available at this stage owing to
further ongoing developments, but theworkflow is clearly illustrated
so that any researchers may have the opportunity code it.

Future work will consider further developments of the auto-
picking method to enhance the level of automation and accuracy
in the data processing. We expect the proposed method to open up
research collaborations between academia and industry focusing on
the robust and cost-effective processing of large seismic data sets.
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