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The calcaneal morphology changed considerably during human evolution to
enable efficient bipedal locomotion. However, little information exists regarding
its adaptation to changes in habitual activities following the transition to a
sedentary lifestyle. We aimed to examine changes in calcaneal morphology
during the Pleistocene-Holocene Levant in light of sexual dimorphism. We
studied three archaic Homo sapiens calcanei dated to the Middle and Upper
Paleolithic, 23 Natufian hunter-gatherers, 12 Pre-Pottery Neolithic early farmers,
and 31 Chalcolithic farmers. The calcanei were scanned via a surface scanner
and measured, and bone proportions were calculated. Measurements included
the height, length, and width of various calcaneal elements. The sex of each
individual was determined using methods based on calcaneal morphology. The
validity of these methods was tested in those individuals who had the pelvis
(92.3% agreement rate). Accordingly, the sample included 59.4% males and
40.6% females. Most calcaneal indices were sex-independent, except for the
relative width, relative anterior length, and the cuboid index. Temporal trends
between the Natufian and Chalcolithic periods were more pronounced among
males than females. While in the proximal calcaneus, the temporal trend was
similar between males and females, it differed in the distal part and articular
facets. The calcanei of archaic H. sapiens exceeded the average of the Natufian
hunter-gatherer for most variables, though the trend varied. To conclude,
males and females were affected differently by the changing environment. The
calcanei of archaic H. sapiens were better adapted for activity involving high
mobility, independent of sex. During the transition to a sedentary way of life,
different factors probably designed the male and female calcaneus. These could
include factors related to the sexual division of labor, adaptation to lengthy
standing, and changes in footwear.
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1 Introduction

The study of skeletal remains enables the reconstruction of
past populations’ daily life and physical loading since bones
respond to mechanical loadings applied to them (Lieberman,
1997; Püschel and Benítez, 2014) and change their morphology
to sustain these loads (Ruff et al., 2006; Macintosh et al., 2014).
Accordingly, cross-sectional geometry analysis of femoral and tibial
midshaft from human skeletal remains is among the most common
methods for reconstructing physical loadings and mobility of
past populations (Holt, 2003; Marchi et al., 2011; Macintosh et al.,
2014; Macintosh et al., 2015; Ruff et al., 2015; May and Ruff, 2016).
These studies suggested that bones’ cortical area and thickness,
strength and rigidity, and shape expressed the temporal changes
in physical loadings and mobility. Consequently, the transition to
a sedentary way of life is considered one of the most significant
socioeconomic revolutions that affected bone morphology due to
major changes in daily life activities (Holt, 2003; Marchi et al.,
2011; Macintosh et al., 2014; Ruff et al., 2015). Previous studies
have suggested that adaptation to a sedentary lifestyle also affected
morphology of the foot bones and their trabecular characteristics
(Saers et al., 2019; Sorrentino et al., 2020; Harper, 2023).

The calcaneus offers a good candidate for studying changes in
physical loading and mobility throughout time due to its major
role in locomotion and weight-bearing, as it carries approximately
60% of body weight in static stance and 80% during the heel
strike phase of normal gait (Donatelli, 1985; Vyce et al., 2010).
Therefore, the adaptations of the calcaneus to the forces applied to
it during human evolution and the transition to bipedal locomotion
and upright stance are well established (Weidenreich, 1923; Aiello
and Dean, 1990; Harcourt-Smith and Aiello, 2004; McNutt et al.,
2018; DeSilva et al., 2019). Furthermore, the human calcaneus had
to adapt to higher ground reaction force applied to it at heel
strike (Latimer and Lovejoy, 1989). These adaptations included
an asymmetric and convex cuboid facet, a broader and shorter
calcaneal tuberosity, and a larger lateral plantar process, which
was more plantarly positioned compared to apes (Bojsen-Møller,
1979; Latimer and Lovejoy, 1989; Boyle et al., 2018; Harper et al.,
2021; Harper et al., 2022a). Furthermore, it has been suggested that
human calcaneal morphology of shorter calcaneal tuber (body)
improves running economy (Raichlen et al., 2011).

Previous studies have also demonstrated differences in calcaneal
morphology between populations having different lifestyles.
Accordingly, hunter-gatherers or non-sedentary populations had
taller and wider posterior calcaneus, wider anterior and middle
talar facets, a protuberance on the dorsal aspect of the bone, and
their internal structure included higher bone volume fraction than
sedentary groups (Raichlen et al., 2011; Weiss, 2012; Hoover and
Colette Berbesque, 2018; DeMars et al., 2021; Harper et al., 2022b;
Harper, 2023). Furthermore, it has been suggested that additional
factors affected calcaneal morphology. For example, a decrease in
calcaneal length between Medieval and post-Medieval populations
was related to changes in footwear (Albee, 2022). Nevertheless,
while the impact of human evolution and the transition to bipedal
locomotion is well established (Weidenreich, 1923; Susman, 1983;
Langdon, 1985; Latimer and Lovejoy, 1989; Harcourt-Smith and
Aiello, 2004; Zipfel et al., 2011; Prang, 2015; McNutt et al., 2018;
Oishi et al., 2018; DeSilva et al., 2019), data on modifications

in calcaneal morphology within the Homo sapiens species over
time and with economic behavior changes is scarce (Albee, 2022;
Harper, 2023).

Among the known factors affecting calcaneal morphology
is the sex of the individuals. Males have a significantly larger
calcaneus than females, except for the angle between the anterior
and middle talar articular surfaces (Steele, 1976; Riepert et al.,
1996; Peckmann et al., 2015). These differences enabled the
development of discriminant functions to estimate the sex based
on calcaneal measures. The correct estimation rates achieved based
on these equations varied between 64% and 95.7% (Steele, 1976;
Riepert et al., 1996; Bidmos and Asala, 2003; Bidmos and Asala,
2004; Gualdi-Russo, 2007; DiMichele and Spradley, 2012; Kim et al.,
2013; Alonso-Llamazares and Pablos, 2019). Nevertheless, the
criteria for sex estimation based on calcaneal morphology is
population-specific and should be carried out with caution
(Gualdi-Russo, 2007; Alonso-Llamazares and Pablos, 2019).

The southern Levant is a geographical region rich in human
fossils from the earliest expansion of Homo sapiens out of
Africa (Hershkovitz et al., 2018) until recent times. This enables
studying temporal changes in human skeletal remains within a
well-documented and limited geographical region. It also reduces
confounders related to landscape topography and environment.
In addition, this region was among the first to experience
major socioeconomic transitions that considerably changed the
social organization and behavior of the people inhabiting the
region, such as the “Agricultural (Neolithic) Revolution” (Belfer-
 Cohen and Goring-Morris, 2020; Shavit and Sharon, 2023). This
transition occurred during the terminal Pleistocene-early Holocene
period. Until the terminal Pleistocene, the populations inhabiting
the Levant, i.e., during the Paleolithic period, were hunter-
gatherers (Lieberman et al., 1993). Afterward, the subsistence
strategy changed from relying on hunting and gathering to food
production, facilitating the transition to a sedentary way of life.
Subsequently, this transition resulted in significant changes in
human lifestyle and behavior, which affected their daily physical
activity patterns and loadings (Hershkovitz and Gopher, 1990;
Bar-Yosef and Belfer-Cohen, 1991; May and Ruff, 2016). The
Neolithization process was followed by the “Secondary Products
Revolution” (e.g., exploitation of animals for dairy products,
transportation, and power, i.e., their usage for plowing). While the
exact timing of this revolution is debated (Vigne and Helmer, 2007),
it is agreed that it occurred after the “Agricultural Revolution,”
in the late Pottery Neolithic or Chalcolithic period (Gilead, 1988;
Hershkovitz and Gopher, 1990) and resulted in an intensification of
the sedentary lifestyle.

The “Agricultural Revolution” was initiated by the Natufians
(15,000–11,600 cal. BP (Belfer-Cohen and Goring-Morris, 2011).
Thus, the Natufians are considered the last hunter-gatherers of the
Levant, they were nomadic or semi-sedentary, and characterized by
living in small groups (Lieberman, 1991; Belfer-Cohen and Goring-
Morris, 2011). Their hunting methods required high physical
demands and necessitated the occupation of large hunting areas,
similar to Paleolithic populations that preceded them (Bar-Yosef
and Belfer-Cohen, 1989; Trinkaus and Ruff, 1999; Valla et al.,
2002; Yeshurun et al., 2007). However, they were also engaged
in cereal harvesting in the wild, food processing (pounding),
and small-scale construction (e.g., rounded, low-walled structures)
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(Valla et al., 2002; Eshed et al., 2004; Belfer-Cohen and Goring-
Morris, 2011; Yeshurun et al., 2014). A full sedentary lifestyle
was achieved a few thousands of years later during the Pre-
Pottery Neolithic (PPN) B period (10,500–8,250 cal. BP), though
they still continued to hunt (Belfer-Cohen and Goring-Morris,
2011). The transition to a sedentary way of life was evident in
the increased settlements’ size, construction of permanent houses
with plastered floors, and installations for storage (Kuijt and
Goring-Morris, 2002; Belfer-Cohen and Goring-Morris, 2011).
Mortuary practices also changed, reflecting conceptual changes
regarding territoriality and land ownership (Bar-Yosef and Belfer-
Cohen, 1991). By the Chalcolithic period (6,500–5,500 cal. BP), the
lifestyle was fully sedentary (Segal et al., 1998). The innovations in
the early Holocene impacted personal and social life, triggering
rapid population growth, territorial expansion, and the need for
technological developments, most prominently metallurgy (Rowan
and Golden, 2009). The occupation at this time was characterized
by specialization and craftsmanship (e.g., farmers, miners, potters,
and metalworkers) (Rowan and Golden, 2009). Despite the major
cultural transformations during that time, the PPN populations
are considered continuous with the Natufian ones (Lazaridis et al.,
2016). Nevertheless, the late Chalcolithic population was an
admixture of Anatolian Neolithic, Iran Chalcolithic, and Levantine
groups, though theirmajor componentwas Levantine (Harney et al.,
2018). This ensures, to some level, a higher similarity between these
groups compared to individuals originating from distant regions.

The major aim of this study was to reveal changes in calcaneal
morphology in humans throughout time, focusing on the transition
from a subsistence strategy based on hunting and gathering
to farming. Since the morphology of the calcaneus is sexually
dimorphic, we also aimed to reveal the differences between males
and females in response to the changes in lifestyle. We hypothesized
that the morphology of the calcaneus would change throughout
time in both males and females, responding to the decrease in
mobility and changes in the pattern of loadings (Harper, 2023). In
addition, we hypothesized that the variance in morphology between
males and females will decrease over time, i.e., reduced sexual
dimorphism.

2 Materials and methods

2.1 Materials

The study population included 69 calcanei of archaic Homo
sapiens (Middle Pleistocene, MP: Qafzeh H9) and modern humans
from the Early Upper Paleolithic (EUP, Manot Cave), Late Upper
Paleolithic (LUP, Ohalo H2), Natufians hunter-gatherers, PPN early
farmers, and Chalcolithic farmers (Table 1). The study consisted of
only adult calcanei according to the complete fusion of the calcaneal
posterior tuberosity (Scheuer and Black, 2004; Schaefer et al., 2009;
Ekizoglu et al., 2015) with no signs of trauma or pathologies. The
sex of the individuals included in the study was estimated using
previously published methods (see the “Methods” section).

All human skeletal remains included in this study are housed
at the Dan David Center for Human Evolution and Biohistory
Research, Faculty of Medicine, Tel Aviv University (TAU).

2.2 Methods

All calcanei were surface scanned via a Space Spider (Artec
Europe, Luxembourg) high-resolution portable 3D scanner and
aligned using Artec Studio software (v. 15 Professional, Artec
Europe, Luxembourg).

2.2.1 Calcaneus measurements
Linear measurements of the calcaneus were calculated

as the distance between two landmarks placed on the bone
surface (Figure 1; Supplementary Table S1). Definitions of the
measurements appear in Table 2 and visualized in Figure 1.

2.2.2 Calcaneus proportions
To analyze the characteristics of the calcaneus independent

of its size, we calculated ratios between various measurements
(maximum height (MaxH); minimum height (MinH) and breadth
(MinB); load arm length (LAL); and load arm width (LAW)) that
were divided by the maximum length (MaxL) (Table 2). Additional
indices were calculated between the measurements of the articular
facets: dorsal articular facet breadth (DAFB)-to-dorsal articular
facet length (DAFL) and cuboid facet breadth (CFB)-to-cuboid facet
height (CFH), as these ratios are related to functionality in bipedal
walking and running (Raichlen et al., 2011; Nozaki et al., 2020).

2.2.3 Sex estimation
Sex determination was carried out using four discriminant

functions (Supplementary Table S2) (Gualdi-Russo, 2007;
Zakaria et al., 2010; Spradley and Jantz, 2011; Alonso-Llamazares
and Pablos, 2019), which are based on linear measurements of the
calcaneus (Table 2). The final sex determination for each individual
was based on the most frequent sex estimated per individual.

The four sex estimation functions included in our sample (out
of 11 functions) had a high success estimation rate in the original
study (>75%) and a high validity (>80%) in our sample. The latter
was tested in a subsample of individuals having both the pelvis
and the calcaneus (N=13). Hence, we examined the agreement
rate of sex estimation between methods based on the pelvis and
the calcaneus [(number of compatible results/total number of
cases)*100] (Supplementary Table S2).

2.2.4 Statistical analysis
Statistical analyses were carried out via IBM SPSS (v. 22),

Past software (V. 4.03), and R (v. 4.2.1). Significance level was
determined at p<0.05. Reliability analyses were carried out to
examine the reproducibility of the measurements by the same
researcher as well as by a different one. Therefore, for intra-
observer variation, the same researcher measured 14 calcanei twice
with a week-long interval between measuring sessions. For inter-
observer variation, an additional researcher measured the bones.
Then, Intraclass correlation coefficient (ICC) analyses were carried
out. The level of agreement was categorized according to Cicchetti
(1994). Independent sample t-test orMann-Whitney test (according
to parameter distribution) were carried out to examine differences
between males and females, and Kruskal-Wallis tests with multiple
comparisons using Bonferroni correction to reveal differences
between groups (only when N≥5).
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TABLE 1 Populations included in the study by period.

Period Date range (cal. BP) Subsistence strategy N

Middle Paleolithic (MP) ∼92,000 Schwarcz et al. (1988) Hunter-gatherers 1

Early Upper Paleolithic (EUP) ∼55,000 Borgel et al. (2021) Hunter-gatherers 1

Late Upper Paleolithic (LUP) ∼19,000 Hershkovitz et al. (1995) Hunter-gatherers 1

Natufian 15,000–11,600 Belfer-Cohen and Goring-Morris, (2011) Hunter-gatherers 23

Pre-Pottery Neolithic (PPN) 11,600–8,400 Belfer-Cohen and Goring-Morris, (2011) Early farmers 12

Chalcolithic 6,500–5,500 Segal et al. (1998) Farmers/herders 31

Total 69

FIGURE 1
Measurements obtained from the calcaneus (definition of measurements are provided in Table 2): (A) Dorsal (superior) view; (B) Medial view; (C)
Superoanterior view; and (D) Anterior view. MaxL, Maximum length; LAW, Load arm width; LAL, Load arm length; MinB, Minimum breadth; MaxH,
Maximum height; MinH, Minimum height; DAFB, Dorsal articular facet breadth; DAFL, Dorsal articular facet length; CFB, Cuboid facet breadth; CFH,
Cuboid facet height. For detailed landmarks’ position, refer to Supplementary Table S1.

3 Results

3.1 Reliability

Intra- and inter-observer variation of the measurements yielded
excellent results (0.879≤ICC≤0.999) (Supplementary Table S3).
Accordingly, data reproducibility is reliable either by the same
researcher or by a different one.

3.2 Demography

The agreement rate of sex estimation using calcaneal
morphometry yielded an excellent result of 92.3%. Accordingly,
the study included 59.4% males and 40.6% females, with a varying
male-to-female ratio between the periods (Table 3). The Natufian
and PPN periods demonstrated a higher ratio of males to females (2
males: 1 female), whereas, in the Chalcolithic period, the ratio was

approximately 1:1. Furthermore, Qafzeh H9 and Ohalo H2 were
identified as males and Manot as female.

3.3 Sexual dimorphism in calcaneal
morphology

Sex was estimated based on the sexual dimorphism of the
calcaneus. Therefore, significant differences in calcaneal size existed
for all measurements between males and females, with males having
larger values than females (Table 4). However, for the indices,
only several variables yielded significant results, with females
manifesting larger values (Figure 2; Supplementary Table S4).
Accordingly, the relative width (LAW/MaxL) and relative
anterior length (LAL/MaxL) were larger in females than
in males. The cuboid facet index (CFB/CFH) indicated
that it was wider than taller in females and the opposite
in males.
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TABLE 2 Definition of calcaneal measurements following Murphy (2002), and Kim et al. (2013), which are adapted from Martin and Saller (1957) and
Bräuer (1988).

Variable Abb. Definition

Maximum Length MaxL The linear distance between the most anterior point of the calcaneal body and the most posterior point on the calcaneal
tuberosity

Maximum Height MaxH The linear distance between the most superior and inferior points on the most posterior part of the calcaneus body
(calcaneal tuberosity)

Minimum Height MinH The linear distance between the most concave points on the dorsal and plantar surfaces of the calcaneal body

Minimum Breadth MinB The linear distance between the lateral and medial surfaces of the body of the calcaneus

Load Arm Width LAW The linear distance between the most medial point on the sustentaculum tali and the most lateral point on the dorsal
articular surface

Load Arm Length LAL The linear distance between the most anterior point on the calcaneus and the most posterior point on the dorsal talar
articular surface

Cuboidal Facet Height CFH The linear distance between the most dorsal and plantar points on the cuboid articular surface

Cuboidal Facet Breadth CFB The linear distance between the most medial and lateral points on the cuboid articular surface

Dorsal Articular Facet
Breadth

DAFB The linear distance between the most medial and lateral points on the dorsal talar articular surface

Dorsal Articular Facet
Length

DAFL The linear distance between the most posterior and anterior points on the dorsal talar articular surface

TABLE 3 Sex estimation based on calcaneal characteristics by period. See
Supplementary Table S2 for discriminant functions used.

Period Male Female Sum

MP (Qafzeh) 1 1

EUP (Manot) 1 1

LUP (Ohalo) 1 1

Natufian N 15 8 23

% 65.2 34.8

PPN N 8 4 12

% 66.7 33.3

Chalcolithic N 16 15 31

% 51.6 48.4

Sum all N 41 28 69

% 59.4 40.6

3.4 Changes in calcaneal size throughout
time

Among males, no significant differences were found between
the populations of the terminal Pleistocene-early Holocene

(Table 5). However, on average, a tendency of increase was
observed for most variables, including the MaxH and MinH,
MinB, and LAW. However, at that time span, the LAL was
reduced (Figure 3).

Generally, the values obtained for the calcanei of Paleolithic H.
sapiens were at the edges of the variance of the later samples. While
Qafzeh H9 and Ohalo H2 were aligned with the temporal trend
observed for theMinH,minB, andMaxL variables (i.e., smaller than
the average value of the Natufians), they deviated from it for the
LAW and LAL variables. Although theirMaxHwas not aligned with
the trend observed between the later periods, it fell at the upper
edge of the Natufian variance (Figure 3; Table 5). Accordingly, the
Qafzeh calcaneus was shorter in total length, calcaneal body height
(MinB), and LAL. Yet, its LAW was larger. The Ohalo H2 calcaneus
for most variables demonstrated the same characteristics as those
observed for Qafzeh H9, though for MaxL and MinB, it fell closer to
the Natufian’s mean (Figure 3).

For most variables, except calcaneal MaxL, females
demonstrated less clear trends from the terminal Pleistocene to
the early Holocene, with no significant differences between the
groups (except for CFH) (Figure 3; Table 5). The MaxL reduced
throughout time, with the Manot calcaneus having the longest
calcaneal body and the Chalcolithic females the shortest on
average (Figure 3). Furthermore, Manot calcaneus exceeded the
values of the later samples for most variables, demonstrating a
calcaneus with a taller (MaxH and MinH) and narrower body
(MinB) and longer LAL (Figure 3; Table 5). Notably, the sexual
dimorphism of calcaneal size measures increased throughout
time, especially between the Natufian and the two later groups
(Figure 4; Table 4).
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TABLE 4 Descriptive statistics and Mann-Whitney test to examine differences between males and females in calcaneal measurements. Sexual
dimorphism ratea (%) was calculated for the entire sample and by period.

Sample Linear
measurement

Male Female p Sexual
dimorphism (%)

N Mean SD N Mean SD

All

MAXL 41 82.94 2.905 28 73.69 2.648 <0.01 12.6

MAXH 41 45.66 3.136 28 41.29 2.744 <0.01 10.6

MINH 40 37.09 1.833 28 33.82 2.153 <0.01 9.7

MINB 41 28.43 2.318 28 25.27 2.009 <0.01 12.5

LAW 40 43.30 2.418 27 39.41 1.989 <0.01 9.9

LAL 41 50.14 2.531 28 45.73 2.256 <0.01 9.6

CFH 36 24.77 1.683 28 21.25 2.271 <0.01 16.5

CFB 41 23.91 3.198 28 22.12 1.781 <0.01 8.1

DAFB 40 30.65 2.573 28 27.96 2.488 <0.01 9.6

DAFL 41 29.76 1.990 28 27.06 2.205 <0.01 10.0

Natufian

MAXL 15 82.71 2.365 8 75.08 2.278 <0.01 10.2

MAXH 15 43.94 3.137 8 41.79 3.046 0.294 5.1

MINH 14 36.40 1.787 8 34.11 1.442 <0.01 6.7

MINB 15 27.83 1.477 8 25.41 2.073 <0.01 9.5

LAW 15 42.53 1.601 7 39.94 2.342 <0.01 6.5

LAL 15 50.61 2.107 8 45.78 1.844 <0.01 10.5

CFH 11 24.95 1.221 8 22.67 1.839 <0.01 10.1

CFB 15 23.95 1.642 8 22.52 1.869 0.087 6.3

DAFB 14 30.81 1.958 8 28.27 1.723 <0.01 9.0

DAFL 15 30.56 1.922 8 27.01 1.037 <0.01 13.2

PPN

MAXL 8 84.55 4.091 4 73.25 3.227 <0.01 15.4

MAXH 8 46.23 3.660 4 39.95 3.069 0.016 15.7

MINH 8 37.30 2.287 4 33.60 3.794 0.154 11.0

MINB 8 28.40 3.432 4 25.33 2.452 0.214 12.1

LAW 7 43.61 2.059 4 40.07 1.547 0.024 8.8

LAL 8 50.79 4.404 4 44.59 3.107 0.073 13.9

CFH 7 23.77 1.901 4 18.77 2.366 0.012 26.6

CFB 8 24.29 6.127 4 21.04 1.624 0.073 15.4

DAFB 8 29.78 2.652 4 28.46 3.404 0.461 4.7

DAFL 8 28.80 2.818 4 26.10 1.078 0.073 10.4

(Continued on the following page)
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TABLE 4 (Continued) Descriptive statistics and Mann-Whitney test to examine differences between males and females in calcaneal measurements.
Sexual dimorphism ratea (%) was calculated for the entire sample and by period.

Sample Linear
measurement

Male Female p Sexual
dimorphism (%)

N Mean SD N Mean SD

Chalcolithic

MAXL 16 82.61 2.637 15 72.81 2.381 <0.01 13.5

MAXH 16 46.96 2.402 15 41.19 2.568 <0.01 14.0

MINH 16 37.82 1.438 15 33.46 1.848 <0.01 13.0

MINB 16 29.29 2.213 15 25.33 1.989 <0.01 15.7

LAW 16 43.47 2.998 15 38.92 1.970 <0.01 11.7

LAL 16 49.53 1.684 15 45.79 2.221 <0.01 8.2

CFH 16 24.72 1.605 15 21.35 1.891 <0.01 15.8

CFB 16 23.79 2.466 15 22.10 1.804 0.015 7.6

DAFB 16 31.15 3.089 15 27.73 2.776 <0.01 12.3

DAFL 16 29.72 1.271 15 27.12 2.737 <0.01 9.6

p < 0.05 marked in bold.

FIGURE 2
Boxplot of calcaneal indices in males (M) and females (F): (A) Maximum height divided by maximum length (MaxH/MaxL); (B) Minimum height divided
by maximum length (MinH/MaxL); (C) Load arm width divided by maximum length (LAW/MaxL); (D) Minimum breadth divided by maximum length
(MinB/MaxL); (E) Load arm length divided by maximum length (LAL/MaxL); (F) Dorsal articular facet breadth divided by Dorsal articular facet length
(DAFB/DAFL); and (G) Cuboid facet breadth divided by cuboid facet height (CFB/CFH).*, Mean value; #, p < 0.05.
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TABLE 5 Descriptive Statistics and Kruskal-Wallis test for examining differences in calcaneal size between periods by sex.

Natufian PPN Chalcolithic

Measurement N Mean SD N Mean SD N Mean SD p

Male

MaxL 15 82.71 2.365 8 84.55 4.091 16 82.61 2.637 0.532

MaxH 15 43.94 3.137 8 46.23 3.660 16 46.96 2.402 0.142

MinH 14 36.40 1.787 8 37.30 2.287 16 37.82 1.438 0.072

MinB 15 27.83 1.477 8 28.40 3.432 16 29.29 2.213 0.125

LAW 15 42.53 1.601 7 43.61 2.059 16 43.47 2.998 0.175

LAL 15 50.61 2.107 8 50.79 4.404 16 49.53 1.684 0.637

CFH 11 24.95 1.221 7 23.77 1.901 16 24.72 1.605 0.186

CFB 15 23.95 1.642 8 24.29 6.127 16 23.79 2.466 0.425

DAFB 14 30.81 1.958 8 29.78 2.652 16 31.15 3.089 0.596

DAFL 15 30.56 1.922 8 28.80 2.818 16 29.72 1.271 0.265

Female

MaxL 8 75.08 2.278 4 73.25 3.227 15 72.81 2.381 0.130

MaxH 8 41.79 3.046 4 39.95 3.069 15 41.19 2.568 0.407

MinH 8 34.11 1.442 4 33.60 3.794 15 33.46 1.848 0.348

MinB 8 25.41 2.073 4 25.33 2.452 15 25.33 1.989 0.565

LAW 7 39.94 2.342 4 40.07 1.547 15 38.92 1.970 0.644

LAL 8 45.78 1.844 4 44.59 3.107 15 45.79 2.221 0.458

CFH 8 22.67 1.839 4 18.77 2.366 15 21.35 1.891 0.044

CFB 8 22.52 1.869 4 21.04 1.624 15 22.10 1.804 0.490

DAFB 8 28.27 1.723 4 28.46 3.404 15 27.73 2.776 0.859

DAFL 8 27.01 1.037 4 26.10 1.078 15 27.12 2.737 0.215

p < 0.05 marked in bold.

In both sexes, no clear trend occurred throughout time in the
size variables of the calcaneal articular surfaces (talar and cuboid
facets). Nevertheless, the calcanei of Paleolithic H. sapiens fell
outside the variation of Natufians. Their dorsal articular facet was
narrower, yet while the DAFL of Qafzeh H9 and Ohalo H2 was
shorter (29.1 mmand 26.7 mm, respectively), inManot it was longer
(30.5 mm) (Figure 5). The cuboid facet height, on the contrary,
was longer in Qafzeh H9 and Ohalo H2 (27.2 mm and 28.1 mm,
respectively) than that of the later samples, whereas the Manot
one was shorter (18.4 mm), similar to the PPN average (Figure 5;
Table 5).Moreover, relative to the later samples’ variation, the cuboid
facetwas narrower in theQafzeh fossil yetwider in theOhaloH2 and
Manot specimens (20.3 mm, 25.6 mm, and 23.4 mm, respectively)
(Figure 5; Table 5).

3.5 Changes in calcaneal proportions
throughout time

Throughout the terminal Pleistocene-early Holocene, a
temporal increase in calcaneal proportions was observed in males,
specifically in the proportions of MaxH, MinH, and MinB of the
calcaneus. However, the LAL-to-MaxL ratio was reduced during
this period (Figure 6). This implies that the calcaneal body became
relatively taller, wider, and longer over time with a relatively taller
calcaneal tuber.

The MP calcaneus (Qafzeh H9) was aligned with these
tendencies only for the MinB-to-MaxL and LAL-to-MaxL ratios
(Figure 6), meaning that from a dorsal view, Qafzeh H9 calcaneal
body was relatively narrower and shorter. Nevertheless, for the
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FIGURE 3
Boxplot of calcaneal linear measurements in males and females, by periods: Middle Paleolithic (MP); Early Upper Paleolithic (EUP); Late Upper
Paleolithic (LUP); Natufian (Natuf); Pre-Pottery Neolithic (PPN) and Chalcolithic (Chalc). (A) Maximum length (MaxL); (B) Maximum height (MaxH); (C)
Load arm width (LAW); (D) Minimum height (MinH); (E) Minimum breadth (MinB); and (F) Load arm length (LAL).*, Mean value.

other measures, it exceeded the noted tendencies (Figure 6). Hence,
the calcaneal body and tuber were relatively taller, and the distal
calcaneus was relatively wider. However, the dorsal subtalar articular
surface had proportions close to the Natufian’s mean. The cuboid
articular facet exceeded later calcanei variance, demonstrating a

vertical rectangular shape, while the Natufians and later calcanei
were more quadrangular (Figure 5).

The LUP calcaneus was aligned with the observed tendencies
for the MinH-to-MaxL and MinB-to-MaxL (Figure 6). Hence, the
Ohalo H2 calcaneal body was relatively shorter and narrower
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FIGURE 4
Sexual dimorphism (%) by calcaneal measurement and period. MaxL, Maximum length; MaxH, Maximum height; MinH, Minimum height; MinB,
Minimum breadth; LAW, Load arm width; LAL, Load arm length.

than the average Natufian one. However, the other measurements
exceeded these tendencies, suggesting a relatively wider distal
calcaneus, a relatively taller calcaneal tuber, and relatively longer
body (Figure 6). The dorsal subtalar articular surface was relatively
wide (Figure 5). Nevertheless, the cuboid articular surface fell
within the later periods’ variation, demonstrating an almost perfect
quadrangular proportion (CFB/CFH=0.91) (Figure 5).

In females, trends in calcaneal proportions were more subtle
from the terminal Pleistocene to the Holocene (Figure 6). These
included a slight increase in the relative calcaneal body height and
width and the relative distal calcaneal width. A more pronounced
tendency was observed for the increase in the LAL-to-MaxL ratio
(i.e., implying a decrease in calcaneal body length) (Figure 6;
Supplementary Table S5). Manot calcaneus fell at the edge of the
Natufian variance in most measurements, except for the relative
MinB, which was smaller (Figure 6). However, the articular facets
deviated from later periods variance, with the Manot DAFB being
narrower relative to its length and the cuboid articular facets
rectangular horizontally (Figure 5).

4 Discussion

This study followed temporal changes in calcaneal morphology
during the terminal Pleistocene-early Holocene Levant. It also
examined the morphology of earlier Paleolithic calcanei relative to
the variation in these later populations. These analyses were carried
out in light of changes in calcaneal sexual dimorphism. Notably, the
sex of the Paleolithic specimens (i.e., Qafzeh H9 and Ohalo H2)
was in accordance with some previous studies (Hershkovitz et al.,
1995; Coutinho-Nogueira et al., 2021). While there is a consensus
regarding themale sex of OhaloH2, the sex of QafzehH9 is debated.
We identified it as a male like many others (Rosenberg et al., 1988;
Rak, 1990; Coqueugniot et al., 2000; Coutinho-Nogueira et al.,
2021). However, few researchers suggested Qafzeh H9 was a

female or probably female based on several specific characteristics
of the pelvis and skull (Vandermeersch, 1981; Trinkaus, 1984).
Following our results and others (Rosenberg et al., 1988; Rak, 1990;
Coqueugniot et al., 2000; Coutinho-Nogueira et al., 2021), we relate
to QafzehH9 as amale as his calcaneus fell within themale variance,
similar to OhaloH2, outside the female variation, and different from
the Manot female calcaneus.

While a clear tendency was observed in calcaneal morphology
throughout the terminal Pleistotcene-early Holocene among males,
the modifications in females were more subtle. Nevertheless, the
calcanei of Paleolithic H. sapiens for most measures did not follow
the trend observed between the Natufian and Chalcolithic periods.
The Paleolithic H. sapiens males had extreme values for most
measures, yet they fell within the male variations (except for
LAW/MaxL and cuboid facet measures and index). The Paleolithic
H. sapiens female calcaneus from Manot fell outside the female
variation in size. However, its proportions fell within their variation
(except for the MinB/MaxL and the indices of the articular facets).
For most measurements, Manot calcaneus was larger (e.g., MaxL,
MaxH, MinH, and LAL) than later females, yet smaller than the
Paleolithic H. sapiens male calcanei. Differences between samples
can be attributed to factors such as body size, physical activity,
genetic composition, and variability in sexual dimorphism (Alonso-
Llamazares and Pablos, 2019).

A decrease in sexual dimorphism with the transition to farming
was previously suggested to be associated with reduced sexual
division of labor (Ruff, 1987). Nevertheless, sexual dimorphism
of the calcaneus size increased with the transition to a sedentary
lifestyle. This might be related to the positive association between
body mass and calcaneus size (Harper et al., 2022a). The overlap
in variance between males and females in calcaneal indices with
only a few significant differences (LAW/MaxL, LAL/MaxL, and
CFB/CFH) corresponded with previous findings demonstrating
no significant differences in calcaneal shape between the sexes
(Harper, 2023). However, others suggested that sexual dimorphism
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FIGURE 5
Boxplot of linear measurements and indices of the calcaneal articular surfaces in males and females by period: Middle Paleolithic (MP); Early Upper
Paleolithic (EUP); Late Upper Paleolithic (LUP); Natufian (Natuf); Pre-Pottery Neolithic (PPN) and Chalcolithic (Chalc). (A) Dorsal articular facet breadth
(DAFB); (B) Dorsal articular facet length (DAFL); (C) Cuboid facet height (CFH); (D) Cuboid facet breadth (CFB); (E) Ratio between the dorsal articular
facet breadth and dorsal articular facet length (DAFB/DAFL); and (F) Ratio between breadth and height of the cuboid facet (CFB/CFH).*, Mean value.

also exists in calcaneal shape (Nozaki et al., 2020). Furthermore,
our results corresponded to prior studies suggesting that females
have less pronounced skeletal modifications with the transition
from subsistence based on hunting and gathering to farming
(Sparacello et al., 2011; Macintosh et al., 2014; Macintosh et al.,

2015). Accordingly, the changes in the loading intensity or its pattern
during the Neolithization process were probably lower in females.

As others (Harper, 2023), we found an increase in the absolute
size of the calcaneus in males throughout time, i.e., PPN and
Chalcolithic farmers had larger calcaneus than Natufian hunter-
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FIGURE 6
Boxplot of calcaneal indices in males and females by period: Middle Paleolithic (MP); Early Upper Paleolithic (EUP); Late Upper Paleolithic (LUP);
Natufian (Natuf); Pre-Pottery Neolithic (PPN) and Chalcolithic (Chalc). (A) Maximum height divided by maximum length (MaxH/MaxL); (B) Minimum
height divided by maximum length (MinH/MaxL); (C) Load arm width divided by maximum length (LAW/MaxL); (D) Minimum breadth divided by
maximum length (MinB/MaxL); and (E) Load arm length divided by maximum length (LAL/MaxL).*, Mean value.

gatherers. Nevertheless, for the Paleolithic H. sapiens inconsistency
was observed. Somemeasurements (e.g., MinH andMinB) followed
the trend, while others (e.g., MaxH and LAW) demonstrated larger
values than the Natufians. Females had an opposite temporal trend
for some variables, with the Natufians demonstrating larger mean

values than the preceding populations. Yet, the Manot calcaneus
exhibited an exceptionally large calcaneus (except for the MinB)
compared to later female populations.

Previous researchers suggested that an increase in calcaneus size
can be related to an increase in body size over time, as a larger
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calcaneus is required to sustain the loadings applied in bipedal
locomotion (Harper et al., 2021; Harper, 2023). In a recent paper,
Stock et al. (2023) showed that in the Levant from the UP to the
early Holocene, the stature of males slightly decreased while their
body mass remained relatively constant. In females, an opposite
trend was found, with the stature remaining relatively constant and
the body mass reducing and then remaining constant. This might
explain the inconsistency in trends observed in calcaneus variables
throughout time and between the sexes. Furthermore, the female
calcaneal morphology, especially its length, corresponded with
the reduction in robusticity previously noted for various skeletal
elements (Marchi et al., 2011; Ruff et al., 2015; Holt et al., 2017).The
decrease in calcaneal length was previously also related to changes
in footwear (Albee, 2022). Since the earliest use of footwear was in
themiddle UP period (Trinkaus, 2005; Trinkaus and Shang, 2008), it
might indicate footwear had some effect on calcaneal length, though,
in our study, we observed this only in females. However, since no
prominent tendency was observed in MaxL in males (e.g., the MP
calcaneus ofQafzehH9was shorter than others), footwear cannot be
the exclusive factor for explaining the reduction in calcaneal length.
An alternative explanationmight include sex-based division of labor
and genetic factors.

Considering the dependence of calcaneal size on body weight
(Harper et al., 2021) and environment (Albee, 2022), and based on
our results that calcaneal proportions are less sexually dimorphic,
we suggest that calcaneal proportions, which are also proxies for
shape, are better indicators for examining the effect of habitual
activity and mobility on calcaneal morphology (Nozaki et al., 2020;
Harper et al., 2021). Changes in physical loadings and reduced
mobility were previously reported for the populations inhabiting
the Levant throughout the “Agriculture Revolution” (Eshed et al.,
2004; May and Ruff, 2016). Hence, we hypothesized that calcaneal
morphology would react to the changes in physical loadings applied
to the bone, i.e., hunter-gatherers will have taller (MaxH) calcaneal
tuber, taller (MinH) and wider (MinB) calcaneal body, wider
distal calcaneus (LAW), and wider and longer dorsal articular
surface (DAFB and DAFL) than later sedentary populations
(Gierse, 1976; Su et al., 1999; Pablos et al., 2014; Harper et al.,
2022b). However, the results only partially corresponded with our
hypothesis (Figure 7). Accordingly, opposed to our expectations,
Natufian hunter-gatherer males had relatively shorter calcaneal
tuber (MaxH), a shorter (MinH) and narrower calcaneal body,
and narrower distal calcaneus than the Chalcolithic farmers.
Nevertheless, as we expected, they had a relatively longer distal
calcaneus (i.e., a relatively shorter body).

The calcanei of Paleolithic H. sapiens corresponded better with
our hypothesis. Both male calcanei had relatively taller calcaneal
tuber, though only Qafzeh H9 had a relatively shorter calcaneal
body, and both had relatively wider distal calcaneus. Furthermore,
they had a relatively taller cuboid facet and wider dorsal articular
facet. In females, the transition to farming seemed to affect mainly
the distal calcaneus, though opposed to our expectations, with an
increase in its relative width and length. Nevertheless, the EUP
calcaneal morphology corresponded well with our expectations for
some features, demonstrating a relatively tall calcaneal tuber and
short body.However, it had a relatively narrower distal calcaneus, the

cuboid articular facet was relatively wider, and the dorsal articular
facet was longer than its width.

The morphology observed in the MP and EUP calcanei, such
as a relatively short body (implied by the relative distal calcaneal
length proportion, i.e., LAL/MaxL), suggests that they were better
adapted for running as it relates to a shorter moment arm of
the Achilles tendon (Raichlen et al., 2011). Furthermore, the MP,
EUP, and LUP calcanei had a relatively taller calcaneal tuber (ca.
57% of calcaneal length) than the later Natufian hunter-gatherers,
suggesting better resistance to higher bending stresses, which is also
essential for efficient running (Raichlen et al., 2011; Harper et al.,
2022a). A relatively wide dorsal articular facet is considered to
contribute to a better contact area with the talus and a larger area
for distributing the forces applied to the joint. Hence, it is better
for sustaining larger forces (Jungers, 1988; Ruff, 1988). Accordingly,
higher mobility is related to a wider calcaneal subtalar facet
relative to its length (Sorrentino et al., 2020). This corresponded
with the relatively wide facet Ohalo H2 had but not with the
even width-to-length or relatively narrower facet Qafzeh H9 and
Manot had, respectively. Hence, while some of the traits observed
in Qafzeh H9 and Manot calcanei can be related to loadings,
others could be related to their antiqueness, as they presented
some Neanderthal-like traits (Pablos et al., 2014; Pablos et al., 2019;
Borgel et al., 2021).

The consistent result of a temporal increase in the relative width
of the calcaneal body and the increase in calcaneal body height
from the Natufians to the Chalcolithic in both sexes contradicted
our hypothesis, as they are considered archaic features (Pablos et al.,
2014). There are several possible explanations for these trends.
Among these, changes in body mass or proportions may have
affected bone morphology (Ruff, 2000; Shaw and Stock, 2011).
Additionally, changes in daily physical activitymayhave also affected
the observed trends, as farmers weremore involved in local activities
in standing positions (Eshed et al., 2004). Thus, the morphology of
the calcaneus was adapted to sustain the loading applied by the
triceps surae muscle while standing (Pablos et al., 2014).

The cuboid facet of the calcanei of PaleolithicH. sapiens differed
in proportions from later groups. While the Paleolithic H. sapiens
males had a vertically elongated facet, Manot had a horizontally
elongated facet. Furthermore, in males, it remained quadrangular
in shape (i.e., a ratio of 1) between the Natufian hunter-gatherers
and Chalcolithic farmers, and in females, it demonstrated mixed
results (quadrangular in the Natufian and Chalcolithic samples and
elongated horizontally in the PPN). It is well established that the
calcaneocuboid joint plays a crucial role in restricting the range
of motion and increasing the stability of the human foot, which is
necessary for bipedal locomotion (Kidd et al., 1996; Meldrum and
Hilton, 2004; Ginot et al., 2016). Furthermore, based on a study
on rodents, it was reported that a wider facet on the horizontal
plane enables a broader range of horizontal movement, and a
taller facet on the sagittal plane facilitates a wider range of sagittal
movement (Ginot et al., 2016). However, the inconsistent results
obtained here require further investigation to understand how the
morphology of the cuboid articular surface was affected, if at
all, by the transition to a sedentary way of life. Inconsistency in
the trend was also observed for the dorsal articular surface. In
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FIGURE 7
Summary of the trends observed in calcaneal proportions over time by sex. MaxL, Maximum length; MaxH, Maximum height; MinH, Minimum height;
MinB, Minimum breadth; LAW, Load arm width; LAL, Load arm length; CFH, Cuboid facet height; CFB, Cuboid facet breadth. Middle Paleolithic (MP);
Early Upper Paleolithic (EUP); Late Upper Paleolithic (LUP); Natufian (Nat); Pre-Pottery Neolithic (PPN), and Chalcolithic (Chalc).

males, the relative width increased during the terminal Pleistocene-
early Holocene, whereas in females, as expected, it decreased, i.e.,
becoming more oval. Noteworthy is that a more oval facet was also
related to footwear, suggesting females hadmore restrictive footwear
(Sorrentino et al., 2020).

To conclude, our results imply that the timing of change differed
between the traits, as well as the factors causing it (Figure 7). The
calcanei of Paleolithic H. sapiens were better adapted for high
mobility, independent of sex.Thus, changes related to the decrease in
mobility occurred before the Natufian period. During the transition
to a sedentary lifestyle, the changing environment affected males
and females differently. The decrease in calcaneal length in females,
the increase in the relative dorsal articular facet in males, and
the increase in calcaneal body relative height and width in both
sexes may suggest that factors related to sexual division of labor,
adaptation to lengthy standing, and changes in footwear designed
the sedentary human calcaneus.

This study faced some limitations inherited in anthropological
research, mainly those related to the sample size, especially of
Paleolithic samples, which are scarce. Furthermore,misclassification
of sex based on the calcaneus only could confound the results.
These reasons could also explain different patterns throughout
time between males and females. Further investigation with a
large sample size per site is required to understand whether the
differences between males and females are population-specific or
depend on the period studied. Furthermore, this study relied
on linear measurements and indices that cannot capture the
complicated shape of the calcaneus and, therefore, are restricted to
gross changes.
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