
TYPE Original Research
PUBLISHED 06 March 2024
DOI 10.3389/feart.2024.1247554

OPEN ACCESS

EDITED BY

Sanyi Yuan,
China University of Petroleum, Beijing, China

REVIEWED BY

Zhaoyun Zong,
China University of Petroleum (East China),
China
Hongling Chen,
Xi’an Jiaotong University, China

*CORRESPONDENCE

Xin Guo,
guoxinzsy@163.com

RECEIVED 26 June 2023
ACCEPTED 12 February 2024
PUBLISHED 06 March 2024

CITATION

Guo X, Gao J, Yong X, Li S, Gui J and Wang H
(2024), A novel high-resolution imaging
method based on sparsity in the time domain
and spectral fitting in the frequency domain.
Front. Earth Sci. 12:1247554.
doi: 10.3389/feart.2024.1247554

COPYRIGHT

© 2024 Guo, Gao, Yong, Li, Gui and Wang.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that
the original publication in this journal is cited,
in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

A novel high-resolution imaging
method based on sparsity in the
time domain and spectral fitting
in the frequency domain

Xin Guo*, Jianhu Gao, Xueshan Yong, Shengjun Li, Jinyong Gui
and Hongqiu Wang

Research Institute of Petroleum Exploration and Development-Northwest (NWGI), Lanzhou, China

During the propagation of seismic waves underground, the high-frequency
seismic response of thin reservoir is absorbed and attenuated, which poses a
challenge in seismic thin reservoir prediction. The high-resolution processing
techniques have the capability to significantly expand the frequency range of the
seismic data, so it becomes a key technique for thin reservoir prediction. Most of
these techniques necessitate the extraction of seismic wavelets. However, the
spatial and temporal variations of seismic data result in multiple solutions for
wavelet extraction. Simultaneously, the majority of techniques fail to consider
the influence of spatial tectonic features on the high-resolution processing.
In this paper, we propose a novel solution to address these two fundamental
challenges by utilizing seismic spectral expansion, sparse reflection coefficients,
and spatial continuity constraints. First, we propose an innovative spectral
fitting method that aims to expand the frequency bandwidth while adhering
to the desired wavelet constraints. This method allows us to fully utilize the
effective frequency information. It not only obtains broadband seismic data
but also captures precise wavelets. Then, sparse deconvolution is employed
to further extend the frequency range by utilizing the accurately expected
wavelet and obtaining a high-resolution reflection coefficient. Finally, the
Hessian matrix regularization is employed to constrain the spatial continuity
of the reflection coefficient. This method is validated in both the model and
real seismic data. Compared to traditional sparse deconvolution and spectral
modeling deconvolution with spatial constraints, this method not only expands
the frequency bandwidth and enhances seismic resolution but also preserves
operational frequency information and improves the spatial continuity of seismic
data. It has been verified that this approach can be used to forecast thin reservoir
and reconstruct spatial tectonic characteristics.

KEYWORDS

high-resolution processing, Hessian matrix regularization, spectral fitting, sparse
deconvolution, spatial continuity constraint

1 Introduction

In the field of petroleum seismic exploration, it is essential to have high-quality
seismic data to carry out tasks like detecting weak seismic signals, forecasting
thin reservoirs, identifying minor faults, and precisely dividing sequences. Domestic
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and foreign scholars have conducted numerous studies on seismic
high-resolution processing, including deconvolution, spectral
whitening, inverse Q filtering, sparse optimization, wavelet
decomposition, deep learning, and other technologies. These
technologies and methods have significantly contributed to the
development of seismic high-resolution processing. However, they
also have their advantages and disadvantages.

The principle of deconvolution involves the compression of the
seismic wavelet in order to improve the resolution of seismic data.
The integration of sparse constraints into the deconvolution process
was initially introduced, resulting in a notably efficient technique.
(Taylor et al., 1979). Many scholars have focused on optimizing
this theory, and their research is divided into two main aspects:
the accurate acquisition of seismic wavelets and the application of
various constraints. Extracting accurate seismic wavelet is critical
(Baziw and Ulrych, 2006; Mirko and pham, 2008; Sacchi, 2010;
Nasser and Mauricio, 2014; Macedo et al., 2016; Cabrera et al.,
2020). These researchers analyzed and optimized seismic wavelets
and proposed various methods for sparse deconvolution. Numerous
scholars have studied optimization methods for seismic inverse
problems, including sparse constraints, impedance constraints, and
algorithm optimization (Velis, 2008; Gholami and Sacchi, 2012;
Chen and Zong, 2022). These methods have been investigated for
addressing geophysical inverse problems. Different constraints are
integrated into the procedure of addressing the inverse problem to
improve the precision of seismic forecasting outcomes. Meanwhile,
it can be noted that there is consistency between seismic data and
the principles of underground geology. Throughout the process
of deposition, sediments display stratified characteristics, and the
seismic data indicate the fluctuations in the stratums of rock. This
should also be evident as a continuous trait. Many scholars have
conducted extensive research in this area (Heimer and Cohen, 2009;
Gholami and Sacchi, 2012; Gholami and Sacchi, 2013; Li et al., 2013;
Yuan et al., 2016; Du et al., 2018; Ma et al., 2020). The focus of these
studies has mainly been on the spatial continuity of seismic data.
These studies have led to the development of high-resolution seismic
data processing. Nevertheless, the constraints associated with these
approaches, particularly the challenges in accurately estimating
wavelets, result in inconsistent outcomes when applied.

Compressing seismic wavelets and enhancing seismic resolution
can be accomplished by employing frequency domain computations,
particularly through the utilization of spectral modeling techniques.
It improves the resolution of seismic data by fitting the spectrum of
seismic records, extracting a smooth wavelet amplitude spectrum
and expanding it to increase the frequency range. The spectral
modeling method also suffers from the challenge of accurately
obtaining the spectrum of the seismic wavelet. The construction
of the wavelet spectrum is primarily accomplished by smoothly
fitting seismic data (Rosa and Ulrych, 1991). Some scholars have
also noticed that the wavelet spectrum is, in fact, the low-frequency
component of the amplitude spectrumof seismic records.As a result,
the concept of the quadratic spectrum was proposed (Tang et al.,
2010). Other scholars have also discovered that seismic wavelets
are time-varying, which leads to a modification of seismic spectral
characteristics. They have proposed a method for constructing a
time-varying wavelet spectrum (Guo et al., 2015; Wang et al., 2017;
Yuan et al., 2017). In the construction of the spectral modeling
method, challenges arise not only in relation to thewavelet spectrum

but also in regard to the three-dimensional spatial configuration.
Therefore, a spectral modeling method based on the constraint of
spatial continuity is proposed (Guo et al., 2022).Thesemethods have
been studied from the perspectives of frequency domain wavelet
extraction, time-frequency characteristic patterns, and constraint
optimization algorithms and have yielded improved results.

The method presented in this paper is based on the concept of
seismic spectrum modeling deconvolution. This method assumes
that the seismic wavelet is zero-phase. Firstly, the process of
broadening the spectrum is achieved through the application of
the seismic frequency division fusion technique, with limitations
imposed by the desired wavelet. It not only expands the bandwidth
but also provides an accurate estimation of the wavelet spectrum of
seismic data. Secondly, the objective function in the time domain
is augmented with the L1 regularization sparse constraint, which
is based on the seismic record and the expected seismic wavelet.
This augmentation allows for the estimation of the seismic reflection
coefficient. Finally, the Hessian matrix regularization constraint is
employed to control the spatial coherence of the seismic reflection
coefficient, taking into account the spatial coherence of geological
strata. The proposed method does not require the extraction of
seismic wavelets. The simultaneous implementation of spectrum
expansion and sparse optimization leads to enhanced resolution and
preservation of high fidelity in seismic data. The high-resolution
seismic data processed by this method have higher confidence for
subsequent seismic interpretation and reservoir prediction.

2 Theories and methods

2.1 Spectrum expansion

According to the seismic convolution model, the seismic signal
is generated by the convolution of the seismic reflection coefficient
with the seismic wavelet in the time domain. In the frequency
domain, the seismic signal spectrum is calculated by multiplying
the amplitude spectrum and the phase spectrum of the seismic
signal as follows:

s = w⊗ r
Time
⇔ S = A ⋅ e−i⋅Ang

Frequency
(1)

where the left side of the equivalent is defined as Eqs 1-1, and w is
seismic wavelet. In this paper, it is assumed that the seismic wavelets
are zero-phase, and r is a seismic reflection coefficient, which is
sparse. s is a seismic record. The right side of the equivalent is
defined as Eqs 1-2, and S is the spectrum of the seismic record. A
is the amplitude spectrum of the seismic record. e−i∗Ang is the phase
spectrum of the seismic record and, Ang is the phase.

According to Eq. 1, the deconvolution procedure entails the
compression of the seismic wavelet, leading to an expansion of
the seismic frequency band in the frequency domain. Therefore,
determining the range of frequency broadening is very important.
The technique of seismic record spectrum scanning can help
determine the effective frequency bandwidth. The limited band
information is 4–64 Hz, as shown in Figure 1. In practical
applications, it is advisable to use a narrower scanning interval band.
Then, the distribution of effective information within the band can
be more accurately determined.
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FIGURE 1
Practical seismic record and different frequency division scanning sections.

FIGURE 2
(A) Gaussian frequency division curve and (B) Amplitude spectrum and wavelet spectrum of the seismic record.

According to the results of the spectrum scanning, the spectrum
fitting method is employed to expand the frequency range within
the effective frequency band. Then, the octave can be increased to
enhance seismic resolution. In this paper, the spectral fittingmethod
adopts a frequency division weighted superposition approach. At
first, Gaussian functions are constructed in different frequency
bands. These functions are subsequently employed for frequency
division processing, as depicted in Figure 2A. The Gaussian
functions of different frequency bands are expressed as fi , where
i is the frequency and its number is the total number in the effective
frequency bandwidth.The size of fi is typically approximately 10 Hz
in bandwidth and its number is the same as that of i. Figure 2B shows
the amplitude spectrum of a real seismic record.

Gaussian functions with different frequencies are employed to
limit the amplitude spectrum of the seismic record, leading to
the acquisition of seismic frequency division amplitude spectra
(illustrated by the colored line in Figure 3A). According to the
results of spectrum scanning, the desired range of wavelet amplitude
spectrum can be determined accordingly. The amplitude spectra

of the frequency division are weighted and superimposed, and the
expansion of the spectrum is performed while adhering to the
constraints of the desired wavelet amplitude spectrum, as below:

Freq(α) = argmin
αi
‖∑

i
Adiag( fi)αi −W‖

2

2

= argminα‖Afα−W‖22, (2)

where α is the weight coefficient of the frequency division amplitude
spectrum, which is a vector. αi|i=1,2,⋯,N are the elements of α.
W is the expected wavelet spectrum, which is determined by the
effective frequency bandwidth, as shown by the blue dashed line
in Figure 3A. Af = {Adiag( fi)}i=1,2,⋯,N is the matrix constructed by
different frequency division amplitude spectra. Within the confines
of the expected wavelet amplitude spectrum, the amplitude spectra
of various frequency bands are amalgamated through the utilization
of weight coefficients. This effectively expands the frequency range
of the seismic record. Simultaneously, this method effectively
maintains the attributes of the seismic spectrum curve, as shown in
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FIGURE 3
(A) Gaussian frequency division spectra and (B) Wide spectrum constrained by expected wavelet spectrum.

Figure 3B. In short, the spectral fittingmethodmaintains the seismic
spectrum pattern by superimposing and dividing frequencies, while
also upholding the desired wavelet constraint.

2.2 Sparse optimization

Following the acquisition of high-resolution seismic data and
wavelets through the spectral fitting method, it is possible to
conduct sparse deconvolution. The conventional method for sparse
deconvolution involves constructing a sparse objective function
when the wavelet is known. This can be done as follows:

L(r) = ‖Wr− s‖22 + λ‖r‖1 (3)

where W is the seismic wavelet matrix. r is the seismic reflection
coefficient, s is the seismic record, and λ is the scale coefficient.
Sparse deconvolution requires an accurate seismic wavelet.
Figures 4A,B show the results of sparse deconvolution. Evidently,
the sparse deconvolution method yields superior spectral recovery
within the effective band. However, there is a significant discrepancy
in the spectrum between 100 and 200 Hz outside the frequency
range (as depicted in Figure 4B), resulting in a substantial difference
between the calculated reflection coefficient and the true seismic
reflection coefficient (as illustrated in Figure 4A).Theprimary factor
is that the seismic spectral energy in high frequencies is diminished,
leading to reduced accuracy in the recovery of this portion through
sparse deconvolution.

In order to achieve a precise sparse reflection coefficient, it is
essential to capture accurate spectral properties of high-frequency
signals. According to Eq. 2 and Eq. 1, it is easy to establish a
relationship between the seismic spectrumand the seismic reflection
coefficient.

s =W ⋅ r⇔ F−1Afαe
−i⋅Ang (4)

Where F−1 is the Fourier inverse matrix. According to Eq. 2,W
is the wavelet matrix, and the wavelet spectrum can be accurately

set. So, W is deterministic. Thus, Eq. 4 can be derived as a formula
for the reflection coefficient.

r =W−1F−1Afαe
−i⋅Ang (5)

Where W−1 is the inverse matrix of W. According to Eqs 3,
5, a new form of sparse deconvolution objective function can
be constructed.

Freq_L1(α) = ‖Afα−W‖22 + λ‖W
−1F−1Afe

−i⋅Angα‖
1

(6)

After obtaining the weight coefficient α, the seismic reflection
coefficient can be obtained according to Eq. 5.

The recently developed objective function offers two benefits in
comparison to conventional sparse deconvolution techniques. The
initial point to consider is the elimination of the necessity to extract
the wavelet, thereby mitigating potential errors in the extraction
of the seismic wavelet. The second point is that the expected
wavelet encompasses a wider spectrum of frequencies, resulting in
a more accurate restoration of spectral characteristics. Compared
with Figures 4A,C, the two sparse deconvolution methods show
significant differences in the reflection coefficient. Figure 4C
depicts the outcome of the application of the proposed method,
demonstrating a significantly improved accuracy in the estimation
of the inverted reflection coefficient. The primary factor is that
the conventional sparse deconvolution method cannot effectively
handle the spectral characteristics of high-frequency seismic records
(green curve in Figure 4B). This results in a notable disparity
between the calculated reflection coefficient and the true value. The
sparse deconvolution method proposed in this paper is closer to
the true seismic reflection coefficient because it can more effectively
restore the spectral characteristics of high-frequency seismic signals
(as depicted by the green curve in Figure 4D).This demonstrates the
effectiveness of the objective function in this paper.

2.3 Spatial continuity constraints

There are differences in the reflection coefficients obtained by
the sparse deconvolution method in different seismic channels,
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FIGURE 4
Comparison of the effects of traditional sparse deconvolution and the sparse deconvolution method proposed in this paper. (A) The reflection
coefficient by traditional spare deconvolution; (B) The spectra of the true reflection coefficient (blue line) and sparse deconvolution reflection
coefficient (red line); (C) The reflection coefficient by the proposed method; (D) The spectra of the true reflection coefficient (blue line) and the
reflection coefficient by the proposed method (red line).

encompassing discrepancies in time bias and amplitude fluctuations.
These differences contradict the expected gradual lateral transition
of geological features. So, the spatial continuity constraints
are essential for achieving sparse solving while maintaining
constructive control.

The first-order differential matrix, commonly referred to as
total variation (TV) regularization, lead to a step-like effect that
is not appropriate for spatial control constraints. The second-order
differential matrix possesses smooth characteristics, enabling it to
preserve the surface of three-dimensional data and ensure the
spatial continuity of seismic data. In this paper, the method of
regularizing the Hessian matrix is used to impose spatial continuity
constraints. The Hessian matrix is composed of multiple second-
order differential matrices. Assuming the three-dimensional seismic
data is s, then its Hessian matrix is:

H =(

Lsx,x Lsx,y Lsx,t
Lsy,x Lsy,y Lsy,t
Lst,x Lst,y Lst,t

) (7)

where H is the Hessian matrix. Lsi,j: =
∂s
∂i∂j
= Dij ⊛ s , Dij is the

differential filter. x,y, t are the three different directions of the 3D
seismic data—the direction of the survey line, the survey trace,
and the time.

The regularization of the Hessian matrix can be expressed as:

Us = ∑
i,j∈{x,y,t}
‖Lsi,j‖

2
2
= ∑

i,j∈{x,y,t}
‖li,j ⊛ s‖

2
2

(8)

where li,j are second-order differential operators in different
directions (Gholami and Sacchi, 2013). The regularization of the
Hessian matrix is computed for the 3D geological model data,
as depicted in Figure 5. The figure demonstrates that the Hessian
matrix exhibits surface smoothing characteristics. Therefore, it
can be employed to limit the spatial coherence of the seismic
reflection coefficient.

In order to be able to optimize the solution for seismic data
= F−1Afαe

−i⋅Ang , the convolution operation of Hessian in Eq. 8
should be changed to a matrix operation (Guo et al., 2022).

Us = ∑
i,j∈{x,y,t}
‖Lsi,j‖

2
2
= ∑

i,j∈{x,y,t}
‖P(li,j) ⋅ s‖

2
2

(9)

where P(li,j) is the matrix form of the differential operators.
Combine Eqs 6, 9 to get the final objective function:

F(α) = ‖Afα−W‖22 + λ‖r‖1 + γ ∑
i,j∈{x,y,t}
‖P(li,j) ⋅ r‖

2
2

(10)

where r =W−1F−1Afe
−i⋅Angα. λ and γ are the scale factors, which

can be preferentially determined by model testing. The objective
function (Eq. 10) is solved using the Split Bregman algorithm
(Guo et al., 2022). The weight coefficient α can be obtained by
solving the objective function. Then, the high-resolution seismic
record and the seismic reflection coefficient can be obtained through
Eq. 11, respectively.

{
sg = F−1Afe

−i⋅Angα 
rg =W−1F−1Afe

−i⋅Angα
(11)
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FIGURE 5
(A) 3D geological model with two stratigraphic interfaces and (B) The Hessian Frobenius norm shows the smooth interface.

Where, sg is the high-resolution seismic record. rg is the seismic
reflection coefficient.

3 Model validation

To confirm the advantages of themethod proposed in this paper,
a geological model is constructed (Figure 6A).The geological model
includes three sets of thin reservoirs with a thickness range of
0–15 m.These reservoirs are utilized for evaluating the effectiveness
of various methods in thin reservoir prediction, as depicted in
Figure 6A (①②③). The synthetic seismic record was generated by
convolving a seismic wavelet with a reflection coefficient obtained
from the geological model (Figure 6B). The seismic wavelet is a
Ricker wavelet with a main frequency of 25 Hz. Gaussian noise
(S/N=3) was added to the synthetic seismic record to simulate
the noisy seismic record (Figure 6C). The S/N is the ratio of the
amplitude of the true seismic signal to that of the noise.

Different methods are employed for the analysis of the
seismic data containing noise as depicted in Figure 6C. Since
the proposed method can obtain both the seismic reflection
coefficient and high-resolution seismic records, this paper compares
it with various conventional methods. Firstly, Figure 7 shows
the application effect of the proposed method and the sparse
deconvolution method. Figure 7A represents the actual seismic
reflection coefficient. Figure 7B illustrates the seismic reflection
coefficient that has been computed through the utilization of
sparse deconvolution. Figure 7C shows the seismic reflection
coefficient computed utilizing the method in this paper. The
method presented in this paper is more accurate for recovering
the reflection coefficient. The main reason is that the proposed
method incorporates a spatial continuity constraint, resulting in
improved interface continuity of the solved seismic reflection
coefficient compared to the conventional sparse deconvolution
method. Meanwhile, the spectral fitting method is more accurate
in recovering seismic spectrum features. The inversion of high-
frequency information in seismic signals provides more accurate

and detailed information. It also improves the precision of
thin reservoir responses, as indicated by the arrow in the
figure. Additionally, it improves the high-resolution fidelity of
seismic data.

In practical use, obtaining seismic data with high resolution is
essential for subsequent attribute analysis and seismic inversion.
Figure 8A shows a seismic record containing Gaussian noise.
Figure 8B is a high-resolution seismic section processed using
spectralmodeling deconvolutionwith spatial continuity constraints.
Figure 8C is a high-resolution seismic section processed using
the proposed method. The process of spectral fitting exists in
both methods, so the overall spectral range is basically the same,
and the range has been extended from the initial 5–45 Hz to
approximately 5–65 Hz. The difference between Figures 8B,C is the
variation in spatial continuity. The spatial continuity refers to the
characteristics of the seismic waveform in Figure 8B and the seismic
reflection coefficient in Figure 8C. It can be seen that the high-
resolution seismic results, constrained by the seismic reflection
coefficient (Figure 8C), demonstrate superior noise cancellation
compared to those depicted in Figure 8B. Meanwhile, the proposed
method provides more accurate spatial constraints for thin reservoir
information.

4 Example

4.1 Applications in thin reservoir and
microstructure recovery

For testing, 3D seismic data from the GST area of the Sichuan
Basin was utilized. The targeted stratum is the Qixia Formation,
and its thickness remains relatively stable at approximately 110 m.
The depth of the targeted stratum is 4,500–4,700 m. The reservoir
type is a dolomite pore reservoir, characterized by low porosity and
low permeability. The physical parameters of the reservoir are very
similar to those of the surrounding rock. The reservoir thickness
is thin, with each group of reservoirs ranging from 6 to 10 m in
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FIGURE 6
(A) Geological model with three sets of thin reservoir shown as①②③; (B) Synthetic seismic record convolved with Ricker wavelet of main frequency
25Hz; (C) Synthetic seismic record with Gaussian noise of S/N=3.

FIGURE 7
(A) True seismic reflection coefficient; (B) The solved reflection coefficient by sparse deconvolution; (C) The solved reflection coefficient by the
proposed method.

thickness.The dominant frequency of the seismic data is 25 Hz.The
response of the reservoir within the Qixia Formation is disrupted
by the strong reflection from the upper and lower boundaries of
the targeted stratum. Low-resolution seismic data in the Sichuan
Basin presents two primary challenges: firstly, it results in unclear
seismic structural characteristics, and secondly, it obscures thin
reservoir responses.

The reservoir of the Qixia Formation in the GST area of the
Sichuan Basin is predominantly situated within the central portion
of the targeted stratum. The forward geological model is designed
to depend on reservoir characteristics, as shown in Figure 9A.
The arrow points to the dolomite reservoir, which has a designed
thickness of 10 m.The position of the reservoir gradually shifts from
the left to the right,moving toward the center of the targeted stratum.

Frontiers in Earth Science 07 frontiersin.org

https://doi.org/10.3389/feart.2024.1247554
https://https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Guo et al. 10.3389/feart.2024.1247554

FIGURE 8
(A) Noise-containing seismic record; (B) High-resolution section by spectral modeling method; (C) High-resolution section by the proposed method.

The seismic forward data is shown in Figure 9B. The forward
simulation process (from the geologicalmodel to the seismic record)
uses the theory of the Zoeppritz equation. The dominant frequency
of the seismic wavelet is 35 Hz. It can be observed that the reservoir
exhibits a strong bright spot response when it is located near the
center of the targeted stratum. The bright spot response of the
reservoir gradually weakens as it approaches the upper boundary
of the targeted stratum. The forward model test shows that the
presence of a reservoir leads to a bright spot response within the
targeted stratum. However, in practice, the bright spot response of
thin reservoirs may not be readily apparent due to limitations in the
resolution and signal-to-noise ratio of seismic data. High-resolution
seismic data is essential for accurately predicting the presence of
thin reservoirs.

Figure 10 illustrates a comparison of the efficacy of different
methods on real seismic data. Figure 10A shows the original seismic
section. There are two industrial gas wells named Well 1 and
Well 2, but there is no bright spot response from the reservoir
at Well 1. This is primarily due to the scarcity of seismic data,
leading to an extended duration of the wavelet. The identification
of the reservoir is challenging due to the obstruction caused by the
side lobes of the seismic-reflected wavelets at the top and bottom.
Simultaneously, the stratum contact (P1m) consists of low-speed
argillaceous limestone above and high-speed limestone below. It is
observed as a peak response on the seismic section. Nevertheless,
the presence of seismic noise and constraints in frequency ranges,
combined with the impact of intricate lithological formations in the
upper section of the targeted stratum, result in the overlapping of
seismic wavelets from different reflection interfaces. Consequently,
it is not feasible to precisely track the position of the stratum.
Hence, the interpretation of the P1m strata (as shown in Figure 10A,
at position ③) presents a challenging task. Two methods are

employed to improve the resolution of seismic data in order to
address this issue. Figure 10B shows the effects of spectral modeling
deconvolution with spatial continuity constraints. It can be seen that
the resolution of seismic data is effectively improved, particularly
in the vicinity of the reservoir (Figure 10B, at positions① and②).
The bright spot response of the reservoir is very clear. However,
there is a sudden increase or decrease in the energy level at the
upper boundary of the targeted stratum (P1m), and the continuity
of the stratum deteriorates, as shown at the circled position in
Figure 10B (③). The primary factor is that the upper part of the
targeted stratum contains a complex combination of lithologies.
Furthermore, a flaw exists in the approach employed to retrieve the
energy of the reflection interface, leading to an impact on the seismic
reflection within the upper portion of the targeted stratum and
causing a disruption in the energy convergence of P1m. Figure 10C
shows the application effect of the proposed method. The reservoir
is also clearly highlighted, and the bright spot response corresponds
more accurately to the industrial gas wells. The convergence of
the formation interface (P1m) energy and the interpretation of the
structure becomes easier. The interpretation results are consistent
with the principles of geology and logging.

To confirm the precision of the high-resolution data, synthetic
records from the two wells depicted in Figure 10 were utilized to
compare with the processed data near the same wells. Figure 11A
shows the logging data fromWell 1 and its synthetic seismic record
with a wavelet of dominant frequency 35 Hz. The high-resolution
data obtained through the conventional spectral modeling approach
and the novel method introduced in this paper were extracted
in close proximity to the well in order to be compared with the
synthetic seismic record, as shown in Figure 11A (3) and (4),
respectively. The waveforms of both methods closely resemble the
synthetic record at the targeted stratum position, and both methods
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FIGURE 9
Seismic forward simulation. (A) Designed geological model with the reservoir in the middle of targeted stratum; (B) Seismic forward section by the
Zoeppritz equation.

FIGURE 10
Sections comparison of different methods. (A) Original seismic section; (B) Seismic section by spectral modeling deconvolution with spatial continuity
constraints; (C) Seismic section by the proposed method.

exhibit a strong response from the reservoir. However, in the upper
portion of the targeted stratum, the spectral modeling method
does not match well with the synthetic record in terms of the
time-shift and amplitude bias. The correlation coefficient of the

method proposed in this paper is 0.71.While the waveform recovery
method in this paper is more accurate and better matched with
the synthetic record, and its correlation coefficient reaches 0.85.
Figure 11B shows the synthetic record ofWell 2 and the comparison
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FIGURE 11
Well-to-seismic comparison. (A) P-wave velocity of Well 1 (1), density of Well 1 (2), synthetic seismic record with a wavelet of dominant frequency
35 Hz (black line in (3) (4)), high-resolution seismic trace by the traditional spectral modeling (pink line in (3)), and high-resolution seismic trace by the
method in this paper (red line in (4)); (B) P-wave velocity of Well 2 (1), density of Well 2 (2), synthetic seismic record with a wavelet of dominant
frequency 35 Hz (black line in (3) (4)), high-resolution seismic trace by the conventional spectral modeling (pink line in (3)), and high-resolution seismic
trace by the method in this paper (red line in (4)).

of high-resolution seismic data near the well. It can be observed that
the waveform generated by the traditional method in the targeted
stratum poorly matches the synthetic seismic record, especially in
stratum contact (P1m) where a significant time shift is evident.
While the method described in this paper can accurately capture
the reservoir information. The seismic stratum and the interpreted
logging stratum correspond better.

According to the correspondence of the bright spot response to
the reservoir, seismic bright spot responses indicate the presence of
reservoirs. We selected a time window of 8 milliseconds below the
upper boundary and 8 milliseconds above the lower boundary of
the targeted stratum in Figure 10. The maximum peak amplitude
in the time window is then extracted from various seismic data,
as shown in Figure 12. Figure 12A shows the amplitude property
extracted from the original seismic data. The bright spot response is
not visible at Well 1, and there is a weak bright spot response at Well
2. In Figure 12B, the amplitude property extracted using the spectral
modeling method with a spatial continuity constraint is shown.The
bright spot response at Well 1 is enhanced, and a new bright spot
appears at Well 2. But in the southern area (indicated by the white
dashed line), there is a structural interpretation error caused by the
absence of energy convergence at the upper boundary of the targeted
stratum. This error leads to the occurrence of false bright spots
and an unclear pattern. Figure 12C shows the amplitude property
extracted from the data processed using the method described in

this paper. The bright spot response is observed in Well 1 and
Well 2, which is consistent with the forward analysis and logging
interpretation. The explanation of the lower right corner of the
figure is accurate, and the regularity of the highlighted amplitude
is stronger.

4.2 Applications in minor fault
identification

High-resolution seismic data also contributes positively to
the detection of minor faults. To assess the effectiveness of this
approach in identifying minor defects, a particular area within
the SN district in the Sichuan Basin was chosen for evaluation.
The work area is characterized by a syncline structure, with the
east and west wings exhibiting upturned formations and faults.
Reservoirs primarily consist of lithological formations and are
located in the central part of the syncline. Minor faults in this
area have significant implications for reservoir reconstruction. The
characterization of minor faults provide a foundation for accurate
reservoir prediction, but its imaging is blurred due to the low
resolution of the seismic data. The dominant frequency of seismic
data is approximately 26 Hz, which makes it difficult to detect
minor faults. Figure 13A shows the original seismic section, which
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FIGURE 12
Maximum peak amplitude inside the targeted stratum extracted from different data. (A) Amplitude property from original seismic data; (B) Amplitude
property from the data processed by the spectral modeling method with spatial continuity constraint; (C) Amplitude property from the data processed
by the proposed method.

FIGURE 13
Seismic section comparison about minor fault. (A) Original seismic data with small obscure fault; (B) The high-resolution seismic section processed by
the proposed method.

demonstrates poor seismic resolution. So, minor faults and micro-
tectonic morphology are similar, making it difficult to accurately
identify them, especially in the y1 area. Figure 13B shows the
seismic section processed using the method described in this
paper. The figure shows the internal section of the syncline. The
minor fault shown in Figure 13B is precisely delineated, with
clear indication of the fault’s orientation and angle of inclination.
Currently, seismic data has identifiable minor fault breaks of
approximately 8 milliseconds. Based on the velocity of around

4,000 m/s here, the identifiable minor fault break is approximately
16 m. This confirms the accurate identification ability of the
proposed method.

In light of these insights, the coherence property along the
stratum interface was extracted, as shown in Figure 14. The faults
on both sides of the work area developed, but the reservoir was
primarily located in the syncline. So, the characterization of faults
within the syncline was more significant, while micro-faults were
indistinct within the syncline. Figure 14A shows the coherence map
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FIGURE 14
Coherence map of the targeted stratum comparison from different data. (A) Coherence map extracted from original seismic data; (B) Coherence map
extracted from high-resolution seismic data processed by the proposed method.

extracted from the original seismic data. The wells y1 and y2 in
the work area are industrial gas wells, and the imaging logging
shows that both wells have faults. There are faults in well y2, but no
faults in well y1 on the original seismic coherence map. Figure 14B
shows the coherence property of high-resolution data processed
using the proposed method. The two wing faults can be clearly
described, and the smaller faults aremore visible within the syncline.
The development of micro-faults can be clearly identified at well
y1, which confirms the effectiveness of the proposed method in
characterizing micro-faults.

5 Conclusion

In this paper, we propose a novel solution for extracting
fine wavelets and recovering spatial structures through seismic
spectral expansion, sparse reflection coefficient, and spatial
continuity constraints. We conducted model trial calculations and
processed actual data to validate the effectiveness and accuracy
of the proposed method. Our findings indicate that the proposed
method outperforms traditional methods such as spectral modeling
deconvolution and sparse deconvolution. This study has led to
significant conclusions and insights.

(1) In this paper, we construct the expected wavelet using
spectrum scanning analysis and employ the frequency division
fitting method. Then, by effectively expanding the frequency
bandwidth, increasing the octave range, and improving the
resolution of seismic data, we can achieve these enhancements
while still adhering to the expected wavelet constraint. So, a
precise wavelet and its corresponding high-resolution seismic
data are accessible.

(2) The objective function for sparse deconvolution is formulated
based on high-resolution seismic data and the expected
wavelet.The seismic reflection coefficient can then be obtained.
Meanwhile, the Hessian matrix regularization is used to
constrain the spatial continuity of the seismic reflection
coefficients. This method of regularization serves to safeguard
the signal-to-noise ratio and accuracy of the seismic data.

(3) The final objective function is formulated by combining
constraints on frequency expansion, sparsity, and spatial
continuity. The high-resolution seismic data can be obtained
without extracting the seismic wavelet. The proposed method
is compared with traditional sparse deconvolution and
spectral modeling deconvolution methods. The proposed
method outperforms traditional methods in terms of noise
suppression and enhancing the resolution capability of
thin reservoirs.
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