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Evaluating the interactions between above- and below-ground processes is
important to understand and quantify how ecosystems respond differently to
atmospheric forcings and/or perturbations and how this depends on their intrinsic
characteristics and heterogeneity. Improving such understanding is particularly
needed in snow-impacted mountainous systems where the complexity in water
and carbon storage and release arises from strong heterogeneity in
meteorological forcing and terrain, vegetation and soil characteristics. This
study investigates spatial and temporal interactions between terrain, soil
moisture, and plant seasonal dynamics at the intra- and inter-annual scale
along a 160 m long mountainous, non-forested hillslope-to-floodplain system
in the upper East River Watershed in the upper Colorado River Basin. To this end,
repeated UAV-based multi-spectral aerial imaging, ground-based soil electrical
resistivity imaging, and soil moisture sensors were used to quantify the interactions
between above and below-ground compartments. Results reveal significant soil-
plant co-dynamics. The spatial variation and dynamics of soil water content and
electrical conductivity, driven by topographic and soil intrinsic characteristics,
correspond to distinct plant types, with highest plant productivity in convergent
areas. Plant productivity in heavy snow years benefited from more water
infiltration as well as a shallow groundwater table depth. In comparison, low
snowpack years with an early first bare-ground date, which are linked to an early
increase in plant greenness, imply a short period of saturated conditions that leads
to lower average and maximum greenness values during the growing season.
Overall, these results emphasize the strong impact of snowpack dynamics, and
terrain and subsurface characteristics on the heterogeneity in plant type and
seasonal dynamics.
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1 Introduction

Improving the predictive understanding of ecosystem dynamics
in mountainous watersheds is critical because of their strong societal
relevance, as well as to their high vulnerability to environmental
change. Snow-impacted mountainous watersheds, often referred to
as “water towers,” provide 60%–90% of water resources worldwide
(Viviroli and Weingartner, 2008). Each watershed responds to
variability in meteorological forcing, extreme weather, climate
change, land-use change, fire and other perturbations, and in
turn influences water resources management, energy production,
agriculture, and terrestrial life and life quality. These meteorological
events and perturbations are modulated by the complex interactions
between vegetation, topography, and subsurface, and collectively
influence the system’s cumulative hydro-biogeochemical response,
including ecosystem carbon and water cycles and downgradient
water quantity and quality.

Seasonally snow-covered mountainous watershed systems are
particularly sensitive to changes in meteorological forcing (Seddon
et al., 2016), because of their intrinsic properties, alternate states
within the system (including snow-rain), and strong seasonal and
sub-seasonal weather patterns (Ernakovich et al., 2014). The hydro-
biogeochemical responses of these systems are influenced by the
spatial and interannual variability in seasonal and sub-seasonal
weather events, as well as by a general trend toward warmer
winters (e.g., Hayhoe et al., 2007) and earlier spring warming
and occurrence of snow-free conditions (e.g., Contosta et al.,
2017). The consequences of these changes are multifold.
Decreased snowpack results in lower albedo and thus increases in
the absorption of solar radiation. Greater absorbance of short- and
longwave radiation can increase the soil temperature and
evapotranspiration and thus decrease soil moisture (Fyfe and
Flato, 1999; Stewar, 2009; Rangwala et al., 2013). In water-limited
systems, early snowmelt and early plant growth can lead to drought
conditions, whereby plants become water- and nutrient-stressed
later in the season (Sloat et al., 2015; Devadoss et al., 2020;
Wainwright et al., 2020). In systems that are not water limited,
early and warm springs can lead to an extended period of plant water
uptake and an extended period of plant carbon uptake through
photosynthesis if enough nutrients are available (e.g., Keenan and
Riley, 2018).Warmwinters and/or thick snowpack canmaintain soil
temperature well above 0°C for a long period of time, which favors
belowground microbial activity and carbon and nitrogen cycling
(e.g., Brooks et al., 2011; Brooks et al., 2011; Euskirchen et al., 2017).
Changes in these processes can lead to changes in carbon fluxes and
storage (Ernakovich et al., 2014), and potential changes in species
composition and distribution over decadal time frames.

Complex mechanisms control the flow of water in the hillslope
to floodplain continuum and its accessibility to plant (Fan et al.,
2019). Soil moisture is generally controlled by a combination of
surface and subsurface water flow from upstream locations,
snowmelt and rain events on the hillslope itself, but also depend
on subsurface hydraulic properties, and fluctuation in the stream
stage for locations in the floodplain. Several studies have focused on
the flow of water in hillslope-to-floodplain continuum (e.g.,
McGlynn and McDonnell, 2003; Inamdar and Mitchell, 2007;
Lowry et al., 2010; Thayer et al., 2018; Webb et al., 2018;
Tokunaga et al., 2019). There have been fewer studies

investigating the occurrence and abundances of meadow plants
as a function of their position and their access to water resources
(Loheide II and Gorelick, 2007; Hammersmark et al., 2010; Lowry
et al., 2010; Lowry et al., 2011; Devadoss et al., 2020). Lowry et al.
(2011) investigated the groundwater controls on vegetation
composition and patterning in a mountain meadow in the Sierra
Nevada mountains of California. They found that the hydrologic
niches of several vegetation communities were best described using
the integral of water table depth above an oxygen stress depth
threshold and below a water stress depth threshold. Looking at
meadow covered hillslopes in the East RiverWatershed in the Upper
Colorado River, Devadoss et al. (2020) identified spatial zones that
have characteristic Normalized Difference Vegetation Index
(NDVI) time series from satellite data, and found that each zone
represents a set of similar snowmelt and plant dynamics that differ
from other zones and that these zones are associated with key
topographic features, plant species and soil moisture.

Quantifying the soil and plant hydro-biogeochemical responses
to warm winters and/or early snow melt in natural ecosystems is
particularly challenging because of the strong heterogeneity in plant,
soil and terrain characteristics that all impact the surface water and
energy distribution and exchange. Amajor difficulty is to capture the
soil and vegetation states with spatial and temporal resolution
sufficient to understand their interactions and how they depend
on factors such as topography, plant type, and snowmelt dynamics.
Studies investigating the spatial as well as the temporal variability in
above- and below-ground characteristics at local scale have been rare
(e.g., Dafflon et al., 2017; Rudolph et al., 2015; von Hebel et al., 2018).
Rudolph et al. (2015) used electromagnetic induction measurements
and multi-temporal satellite imagery methods to document a
relationship between bulk soil electrical conductivity and leaf area
index. They found that physical and chemical interactions between
crops and subsoil in arable fields were responsible for the spatial and
temporal variation of the crop performance. Von Hebel et al. (2018)
combined time-lapse, ground-based quantitative electromagnetic
induction and airborne hyperspectral data to explore the effect of
soil texture on plant type for crops in a paleo-river channel system in
the Selhausen region of Germany. They found a significant
correlation between the inverted depth-specific information and
the airborne data and showed that the deeper subsoil drives plant
performance. For an Arctic tundra environment, Dafflon et al.
(2017) documented a relationship between bulk soil electrical
conductivity, thaw layer thickness, soil moisture, and vegetation
vigor during the growing season using geophysical measurements
and phenocams. They found that the spatial distribution of plant
greenness at the peak of the growing season could be used to predict
the spatial variability of the amount of water present in the thawed
layer.

Despite the above-mentioned studies, improving our
understanding of the controls on plant seasonal dynamics in
meadow covered hillslope is still needed to evaluate plant
sensitivity to changes in water availability, as well as to improve
our understanding of water partitioning on hillslope-to-floodplain
systems. This includes the impact of the high versus low snowpack
years in terms of plant productivity, ecosystem health, and water
flow. Hillslope processes have been recognized recently critical
knowledge gaps for implementation in Earth system models.
There is especially extremely limited knowledge of the
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subsurface, where water is periodically stored and supports
vegetation and stream baseflow (Fan et al., 2019). To our
knowledge, no study has focused on the spatial and temporal
interactions between soil moisture resulting from snowmelt
infiltration and the related plant seasonal dynamics at that scale.

In this study, we explore the spatial and temporal co-variability
in soil moisture, soil electrical conductivity and vegetation indices
along a hillslope transect and evaluate how soil-plant co-variability
changes over time as a function of plant type and inter-annual
variability in snowmelt infiltration. We hypothesize that plant
productivity is strongly linked to plant type, terrain
characteristics, and water availability, and that the plant seasonal
dynamic is determined by local and upslope snowmelt dynamics.
We further hypothesize that the strength in the relationships
between state variables, such as electrical conductivity, soil
moisture, and vegetation greenness, are time-dependent and can
be used for ecosystem understanding, if captured at the optimal time
and to constrain spatially continuous estimates of soil moisture
dynamics at hillslope or larger scale. Testing these hypotheses is
needed to understand specific plant type responses to changes in
water availability in snow dominated environments, as well as to
develop strategies to constrain estimates of soil property
distributions through the merging of various datasets. To test the
above hypotheses, an autonomous acquisition system, including an
electrical resistivity tomography (ERT) system and soil moisture
sensors, was deployed along a hillslope to floodplain transect in a
lower montane environment in the upper East River Watershed of
the Upper Colorado River Basin. In addition, the transect was
periodically surveyed with an Unmanned Aerial Vehicle (UAV)
to map vegetation reflectance and infer green chromatic coordinate
(GCC) and normalized difference vegetation index (NDVI), as well
as surface elevation to infer changes in plant height.

2 Site description, and data collection
and processing

2.1 Description of the study area and
meteorological forcing

This study takes place along a north-east facing hillslope-to-
floodplain transect located in the upper East River watershed, near
Crested Butte, Colorado (Figure 1) (Hubbard et al., 2018;
Wainwright et al., 2022). The 160 m long transect spans an
elevation change of 20 m with the lowest point at an elevation of
about 2,750 m, and constitutes the lower portion of a larger hillslope
that extends to an elevation of 2,936 m with possible subsurface
hydrological connectivity to higher elevations. The hillslope includes
a variety of meadow plants including bunchgrass, forb, frasera,
larkspur, lupine, dandelion, potentilla, veratrum, as well as
sagebrush. The toe of the hillslope includes a large proportion of
veratrum and lupine. The riparian zone is characterized by the
presence of shrubs, such as American dwarf birch, mountain willow,
and potentilla, divided internally by patches and narrow corridors of
grassland (Falco et al., 2019a).

The geology in the region is mainly composed of sediments with
various degree of metamorphism, and includes the Cretaceous
Mancos Shale formation which is about 1,500 m thick (Hamilton,
1972; Uhlemann et al., 2022). In some places, outside the
investigated site, the sediment layers have been intruded by
igneous rocks. The soil present in the region includes shale rock
land, Tilton sandy loam, Teoculli loam, Cryaquolls and Histosols
(https://websoilsurvey.sc.egov.usda.gov). The hillslope soil textures
are generally loam to silt loam, with increasing fraction of fines
toward the bottom of the hillslope and silty clay and silty clay loam
in the floodplain (Tokunaga et al., 2019; Yan et al., 2021). Soil
thickness measurements obtained by identifying the contact layer
between soil and weathered bedrock vary between 0.15 and 1.5 m,
with a mean value of 0.76 m. The soil thickness shows an increasing
trend toward the bottom of the hillslope with largest values in
topographic lows and in the floodplain (Yan et al., 2021).

Meteorological forcing at the site involves snowpack
accumulation from November through mid-April, with snowmelt
occurring in the spring season (March-June) and peak of snow-
water-equivalent in mid-April. Meteorological data obtained from
the Butte Snow Telemetry (SNOTEL) station located 2 km from the
site and 350 m higher in elevation (https://wcc.sc.egov.usda.gov/
nwcc/site?sitenum=380) indicate a mean daily air temperatures that
ranges from −8.3°C in December to 11°C in June. Annual
precipitation for 30-year period of record at Butte SNOTEL
station is 670 ± 120 mm/year with snow accounting for 66% ±
12% annual precipitation (Carroll et al., 2018). This study covered
the water year (WY) 2017 (time interval from 1 October 2016 to
30 September 2017) and WY2018 (time interval from 1 October
2017 to 30 September 2018). WY2017 was a high water year with a
deep snowpack and late snowmelt, whereas WY2018 was a low
water year, with low snowpack and early snowmelt. The peak Snow
Water Equivalent (SWE) in WY2017 is 2.1 times larger than in
WY2018. Considering the 1991–2020 record for SWE at the Butte
SNOTEL station, WY2017 is close to the 70th percentile with regard
to the first bare-ground date and 90th percentile with regard to peak
SWE. WY2018 is close to the 10th percentile with regard to the fist

FIGURE 1
Aerial view (WordView-2 RGB composition) of the site located in
the upper East River watershed near Crested Butte, CO. The
investigation included a 60 m wide corridor along a 160 m long ERT
transect (white line) that covers a hillslope, its toe and a small
portion of the adjacent floodplain.
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bare-ground date and peak SWE. The Community Land Model
(CLM) (Oleson et al., 2013) was used to delineate spatiotemporal
variations in evapotranspiration (ET) with 900 m resolution across
the East River Watershed (Tran et al., 2019). Application of this
analysis to the hillslope field site for WY2017 and WY2018 yielded
ET of 310 and 288 mm, respectively (Tokunaga et al., 2019). It also
confirmed that ET rises rapidly during snowmelt and that snowmelt
is the major source of water for the system, including for plant
growth and potential recharge to groundwater.

2.2 Data collection and processing

2.2.1 UAV-based spatiotemporal mapping of
vegetation indices and plant height

Time-lapse imagery was collected 4 times in 2017 and 4 times in
2018 using a 3DR Solo UAV platform. In both years, the aerial
surveys involved the collection of RGB imagery using a Sony
5,100 digital camera. In addition, multi-spectral reflectance
imagery was collected with a Micasense Rededge camera in 2017.
The UAV surveys were performed across a 300 x 500 m2 area
encompassing the studied hillslope transect. About 50 small PVC
targets were deployed and used as Ground Control Points (GCPs)
for accurate georeferencing of the UAV-based imagery. The GCPs
centers were measured prior to each UAV flights with a Real Time
Kinematic (RTK)-GPS. The multi-spectral reflectance data were
calibrated using a diffusive reflectance target provided byMicasense.
All georeferenced orthomosaics and digital surface model (DSM)
were reconstructed using AgiSoft reconstruction software using
structure-from-motion-based reconstruction techniques (e.g.,
James and Robson, 2012).

The resulting georeferenced orthomosaics and DSMs, with a
resolution ranging between 2 and 10 cm, were all interpolated to
10 cm pixel resolution for comparison purposes. Comparison of the
orthomosaics and DSM at various times with reference GCPs across
the surveyed area showed that the uncertainty in x, y, z was in the
order of 10 cm. We inferred GCC from the RGB imagery and NDVI
from the Rededge multi-spectral imagery. NDVI is defined as (NIR-
R)/(NIR + R) and the GCC is defined as [G/(R + G + B)], where B, G,
R and NIR represent the blue, green, red, and near-infrared channel,
respectively (e.g., Sonnentag et al., 2012). While the general quality
of the dataset can be considered as high, we found that the blue band
from the Rededge camera was not always reliable and thus GCC was
calculated from the RGB dataset only. In addition, the DSMs
inferred from the RGB camera dataset were used to estimate
changes in plant height over time by subtracting the LiDAR
dataset from the DSMs.

2.2.2 Digital terrain model, vegetation type map
and landsat imagery

Airborne LiDAR data were acquired over the study area on
10 August 2015, using a Riegl Q1560 dual-channel LiDAR system
and provided a point density with more than 8 pulses/m2 that was
used to create a digital terrain model (DTM), representing the first
bare-ground elevation, at a spatial resolution of 0.5 m (Falco et al.,
2019a). The DTM was compared with RTK GPS measurements
(positioning accuracy within few centimeters) in a vegetated region
within the hillslope; the root-mean-square-error of the DEMs was

less than 0.15 m. The DTM was used to infer topographic metrics
including slope and topographic wetness index (TWI).

A map of the vegetation type was obtained by using the Lidar
data, an optical satellite image acquired by the WorldView-2 on
24 September 2015, and ground-based spectral measurements and
identification of plant communities (Falco et al., 2019a). Vegetation
classes were determined based on distinct spectral or structural
signatures as well as their importance for ecosystem functioning.

Landsat 8 imagery (Irons et al., 2012) during the growing season
of WY2017 and WY2018 was used to obtain surface reflectance and
calculate the NDVI and GCC across a 200 m side region
encompassing the transect. Only the datasets without cloud cover
were considered. Due to the Landsat spatial resolution of 30 m, this
dataset is only used to evaluate the temporal trends in WY2017 and
WY2018 and compare them to the trends observed in the UAV-
based imagery.

2.2.3 Point-scale soil moisture monitoring
Continuous measurement of soil moisture and temperature

were obtained using 5 TE soil moisture sensors (Meter Inc.) at
0.1 and 0.5 m depth at three locations along the transect. The three
locations referred further as SM1, SM2 and SM3 are located at 66 m,
103 m and 123 m along the transect, respectively. SM1, SM2 and
SM3 are located on the hillslope, at the hillslope toe and on a very
small ridge separating the hillslope toe and the floodplain,
respectively. SM2 is located in a patch of veratrum, while the two
other locations are located in area with predominantly forb and
some sparse sagebrush. The time-series of soil moisture and
temperature cover most of the 2016–2019 window but data are
missing for several time intervals due to logger failure or animal
disturbance (<5% data missing). The first bare-ground date in
WY2017 and WY2018 was defined when air temperature diurnal
fluctuation led to a temperature fluctuation of a few degrees at 0.1 m
depth. For the comparison with the ERT data at a similar spatial
resolution, the soil moisture data at 0.1 and 0.5 m depth were
vertically averaged at each of the three locations. The porosity is
defined here as the soil moisture value at saturation during the
WY2017 snowmelt period.

2.2.4 Soil electrical conductivity time-lapse
imaging

Electrical resistivity tomography (ERT) data were autonomously
acquired over the transect using a 1.25 m electrode spacing and a
dipole-dipole array configuration. The data were collected using a
MPT DAS-1 electrical impedance tomography system linked to a
field computer, both powered with a solar panel installation. Data
were collected daily from October 2016 to November 2017. Power
limitation or failure, and animal damage led to several gaps in data
with about 20% and 80% data missing in WY2017 and WY2018,
respectively.

The acquired resistance data were used to reconstruct a 2D
model of depth-discrete soil electrical conductivity (or resistivity)
along the transect using a smoothness-constraint inversion code
named boundless electrical resistivity tomography (BERT) (Rücker
et al., 2006; Rücker et al., 2006). Low-quality measurements were
removed prior to the inversion, including signals associated with
measured potentials less than 1 mV. Reciprocal measurements
acquired a few times during the growing season were used to
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remove noisy data linked to a few electrodes with high-contact
resistance during dry conditions. The inversion of each data set was
done with the same mesh and parameterization and independently.
An anisotropic ratio of two between horizontal and vertical
regularization was used. The obtained tomography shows a
smoothed image of the spatial distribution of soil bulk
conductivity with a vertical resolution of roughly a third to a half
of the electrode spacing near the surface, which corresponds to about
50 cm.

The soil electrical conductivity is influenced by subsurface
characteristics such as soil moisture, porosity, fluid electrical
conductivity, clay content, and soil temperature (e.g., Archie,
1945; Revil et al., 1998; Friedman, 2005). Depending on the
environment, the spatial variability in electrical conductivity
can be predominantly driven by one of the above
characteristics, including clay content (e.g., Triantafilis and
Lesch, 2005; Falco et al., 2021), salinity (e.g., Corwin and
Lesch, 2005) or water content (e.g., Dafflon et al., 2017;
Thayer et al., 2018) or a combination of them (e.g., Dafflon
et al., 2013; Uhlemann et al., 2017). In this study, we consider
only the near-surface soil electrical conductivity as averaged from
0 to 50 cm depth, which is an important zone for plant-soil
interactions. It is to note that in this study the ERT data are not
used to estimate the soil thickness because of the large electrode
spacing relative to the soil thickness measured at the site (Yan
et al., 2021) and the limited contrast in electrical conductivity
between the soil and the weathered shale bedrock. Temperature
correction is critical to analyze near-surface electrical
conductivity over time given that temperature variation
between first bare-ground date and the summer time can be as
high as 16°C at 50 cm depth, which implies a 30% change in
electrical conductivity due to temperature at this depth. To
remove the temperature effect on soil electrical conductivity,
we applied a temperature correction of 1.9% increase in fluid
electrical conductivity per degree Celsius (Hayley et al., 2007)
and infer electrical conductivity at a reference temperature of
20°C. The correction was done using the soil temperature data at
50 cm depth at the three locations equipped with soil moisture
sensors. The correction was specific to each location for the
bivariate analysis between soil moisture and soil electrical
conductivity data but we used the average temperature
between the three locations for correction of the entire
electrical conductivity transects.

2.2.5 Soil moisture mapping
The soil moisture spatiotemporal distribution along the

hillslope transect is estimated with four approaches that rely
on various datasets and thus can provide different spatial
coverage. These approaches, which build on the dynamics
observed from the soil moisture sensors and the ERT, include
1) a single (i.e., for space and time) logarithmic linear regression
between soil moisture measurements from the point-scale sensor
and soil electrical conductivity from the ERT data, 2) the use of
soil moisture data under saturated conditions to estimate
porosity and soil electrical conductivity to estimate the
temporal variability in water saturation, 3) the use of a
logarithmic linear regression between soil moisture and soil
electrical conductivity during saturated conditions to estimate

porosity, coupled with the use of a spatially averaged variation in
soil moisture (between minimum and maximum soil moisture
observed at each of the three sites), and 4) the use of a simple
linear regression between soil moisture under saturated
conditions and GCC acquired close to the peak of the growing
season–based on the assumption that peak GCC is a direct
response to water content during snowmelt–to predict
porosity and the use of the spatially averaged variation in soil
moisture across the three sites to estimate soil moisture over
space and time across the UAV-acquired GCC domain.

The second approach differs from the other approaches in that
the temperature corrected soil electrical conductivity is related to soil
moisture (θ) using Archie’s Law (Archie, 1945), assuming negligible
surface conductance, and evaluating the ratio between soil
conductivity σT20 and the maximum soil conductivity σT20,max

(i.e., at saturation). We obtain

σT20

σT20,max
� Snϕm σw,T20

ϕm σw,T20
(1)

where ϕ, S, σw,T20, n and m are the porosity, the saturation (S = θ/ϕ),
the fluid conductivity, the saturation exponent and the cementation
exponent, respectively. Assuming that the fluid conductivity does
not change significantly over time, we obtain

θ � ϕ
σT20

σT20,max
( )

1/n

(2)

where n falls within the range of 1.0–2.7 typically (Ulrich and Slater,
2004) and is here set to 2. In this study, we use Eq. 2 to evaluate how
well the saturation component inferred from the temporal changes
in soil electrical conductivity could be used to estimate soil moisture
when combined with porosity inferred from soil moisture
measurements at saturation.

3 Results and discussion

3.1 Spatial co-variability in vegetation and
soil characteristics

We first explore the spatial variability in UAV-based
estimate of GCC, NDVI and plant height and the soil
electrical conductivity across the transect and how these
characteristics are linked to topographic metrics and plant
type at the peak of the growing season in WY2017. The peak
of the growing season is defined here as the time when the
spatially averaged value of GCC is the highest, though we
recognize that different plant types may reach their peak in
vigor and density at slightly different times.

We observe strong co-variability between above-, on- and
below-ground characteristics at the peak of the growing season
on 8 July 2017 (Figures 2, 3), with the strongest correlation between
independently-measured properties including soil electrical
conductivity, GCC, plant height, and slope. In particular, the
Pearson correlation coefficients (r) are high for the relations
between soil electrical conductivity and GCC (r = 0.74), plant
height (r = 0.61) and slope (r = 0.58), and between plant height
and slope (r = 0.63) and GCC (r = 0.61). Relationship involving
NDVI and TWI are weaker (r < 0.58). These results are consistent
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with the study of Falco et al. (2019a), that evaluated the co-variability
of plant types, slope and a single time ERT dataset acquired in
September 2016.

Locations with similar vegetation types are strongly
clustered as a function of surface and soil characteristics that
are expected to be adequate in fulfilling vegetation specific
physiological demands (Figure 3). End members include
sagebrush (low GCC) at sites with low electrical conductivity
and high slope, and veratrum and riparian shrubs (high GCC)
with high electrical conductivity and low slope. Plants such as
veratrum and riparian shrubland consistently occupy
depressions or flat areas that are close to level and have high
soil moisture, while plants such as sagebrush grow along ridges
or moderate steep areas with limited soil moisture. Overall, the
results confirm that hillslope vegetation selects, adapts to,
exploits, and thus expresses the integrated water-energy-
nutrients environment (Fan et al., 2019).

Both NDVI and GCC capture spatial variability in plant vigor
and density, although quite differently due to their different
sensitivity (Figure 3). The exponential relationship between
GCC and NDVI is observed on 8 July 2017, as well as at other

times during the growing season (Supplementary Figure S1).
Landsat data show a similar relationship between GCC and
NDVI, confirming their different sensitivity to vegetation
vigor and density. GCC is relatively insensitive to subtle
changes in low plant vigor and density (e.g., at the beginning
of the season) compared to NDVI, while at later times, NDVI
saturates, while GCC still captures a large range of high GCC
values. This different sensitivity implies that NDVI is better
correlated with the soil electrical conductivity at the beginning
of the growth season while at later time (with high NDVI
values) this correlation diminishes. Inversely, GCC becomes
correlated with soil electrical conductivity later in the growing
season, but the relationship gets increasingly strong over time.
Thus, capturing a large range of values in plant vigor and
density requires a different timing for NDVI than for GCC,
while capturing the full range of spatial variability using NDVI
can only be achieved during a relatively short time-window
before the peak of the growing season. Due to the above
observations and the fact that NDVI is more challenging to
infer than GCC, we concentrate on the use of GCC in the rest of
this study.

FIGURE 2
(A–F) Topographic and vegetation characteristics on 8 July 2017 along a 160 x 60 m wide corridor with a central ERT transect location (indicated
with the black horizontal line); (A) RGB orthomosaic, (B) slope derived from LiDAR DTM, (C) plant type classification (Falco et al., 2019a), (D) plant height
inferred from subtracting the LiDAR DTM from the DSM, and UAV-inferred (E) NDVI and (F) GCC. (G) ERT with black dots indicating the soil moisture
sensors locations at 66 m, 103 m and 120 m along the ERT transect, which ends 60 m before crossing the upper East River.
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3.2 Temporal variability in snowpack and soil
moisture

The main variations in soil moisture and electrical conductivity
in the top 0.5 m of soil in WY2017 and WY2018 result from snow
melt events occurring from March to May, increasing soil moisture
up to saturation. This period is followed by a gradual decrease in soil
moisture. Summer rain events create only small and intermittent
increases in soil moisture, with similar amounts in WY2017 and
WY2018 (Figure 4).

The major difference between the WY2017 and WY2018 soil
hydrological dynamics is in the timing of the infiltration event
leading to soil saturation, and the time-interval until the later
decrease in soil moisture after the first bare-ground date
(Figure 4). In WY2017 an initial increase in soil moisture is

observed as early as January 21, while soil saturation was reached
at the three monitored locations betweenMarch 20 and April 13 and
lasted until early-to mid-June. InWY2018, soil at the same locations
remained saturated for a few days only, starting on April 25. Earlier
increase in soil moisture occurred on March 16, while the soil
between 0 and 50 cm depth was partially frozen before that date. The
first bare-ground date at the site in WY2017 and WY2018 was May
13 and April 26, respectively. After the snow melt, the first decrease
in soil moisture occurred between May 27 and June 13 in WY2017,
and between April 28 and May 3 in WY2018. In other words,
WY2018, in comparison withWY2017, is characterized by a 50 days
later first increase in soil moisture during the winter, a 12–35 days
delay in reaching soil water saturation, a 17 days earlier first bare-
ground date, and a 24–48 days earlier decrease in soil moisture after
the end of snowmelt. Indeed, the decay in soil moisture in

FIGURE 3
Cross correlation between and relative frequency distribution of various characteristics including slope, topographic wetness index (TWI), soil
electrical conductivity (EC), plant height, GCC and NDVI on 8 July 2017. The various colors refer to the various plant type. The correlation coefficients (r)
and their statistical significance (p values) are shown in each cross-correlation plot on the top left and bottom right corners, respectively.
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FIGURE 4
Time-series of atmospheric, snow and soil variables for WY2017 (thick lines) and WY2018 (thin lines); (A) air temperature and (B) cumulative
precipitation and snow water equivalent from Butte SNOTEL station located 2 km from the site and 350 m higher in elevation; (C) soil temperature at
10 cm depth, (D) soil moisture averaged between 10 and 50 cm depth, and (E) temperature corrected soil electrical conductivity (EC) in the top 50 cm of
soil at 66 m (SM1, orange), 103 m (SM2, purple) and 120 m (SM3, grey) along the ERT transect. Soil electrical conductivity has been acquired fairly
continuously in WY2017 (small dots) but very sparsely in WY2018 (large dots). The first bare-ground dates for WY2017 (thick vertical red line, 13 May) and
WY2018 (thin vertical red line, 26 April) have been inferred by the onset of diurnal fluctuations in the soil temperature at 10 cm depth. The vertical grey
lines indicate dates when UAV data were acquired in WY2017, and approximately in WY2018. It can be noted that the high and relatively constant soil
moisture values observed during the spring of WY2017 correspond to soil water saturated conditions and a groundwater table close to the ground
surface.
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WY2018 occurred only 1 day after the first bare-ground date, while
this event occurred between 14 and 30 days after the first bare-
ground date in WY2017. It clearly shows the combined effect of
WY2018’s thinner snowpack, frozen ground and earlier first bare-
ground date on the reduced amount of water infiltration and time
the soil was water saturated. Also, the short period of time involving
soil water saturated conditions in WY2018 (~3 days) and its end
right after the first bare-ground date indicates that the high moisture
content was primarily driven by the snowmelt induced vertical
percolation at these locations. On the contrary, the much longer
period of time with saturated conditions in WY2017 (~73 days)
results not only from more infiltration at these locations but also a
shallow groundwater table depth. The presence of the groundwater
table near the surface was confirmed by the earlier increase in soil
moisture data at 0.5 m than at 0.3 m depth in WY2017 (not shown),
as well as by groundwater level data from nearby wells at the top and
bottom of the hillslope indicating that the water table remained
remarkably close to the soil surface and that groundwater table rised
in the top 0.5 m of soil in WY2017 while being deeper than 1 m in
WY2018 (Tokunaga et al., 2019).

3.3 Spatial variability in soil moisture and
electrical conductivity dynamics

The highest values in soil moisture, at all times, are observed
at the hillslope toe, primarily covered with veratrum (Figure 2).
The timing in soil moisture variations varies along the transect
with earliest increase in soil moisture occurring at the hillslope
toe, soil saturation was reached slightly later at the hillslope toe
than on the hillslope and topographic high, and water saturated
conditions remaining the longest at the hillslope toe. Despite the
above differences, the timing and the magnitude of increase and
decrease in soil moisture at the three locations show similarities
when compared to the inter-annual variability in soil moisture
dynamic. A main difference between the three locations is their
maximum soil moisture (i.e., porosity) and the minimum soil
moisture (under unfrozen conditions) (Figure 4). We obtain
porosity equal to 0.31, 0.47 and 0.33 m3/m3, minimum soil
moisture equal to 0.15, 0.29 and 0.17 m3/m3 and thus range
in soil moisture variation equal to 0.16, 0.18 and 0.16 m3/m3 for
SM1, SM2 and SM3, respectively. Thus, the soil moisture data at
the three sites are linked to very different porosity and minimum
soil moisture, while they show relatively similar range in soil
moisture variation. It is to note that we do not intend to assess a
potential link between the estimated minimum soil moisture and
a residual soil moisture or the wilting point, since it would
require additional measurements. Also, quantifying the
individual controls on the spatiotemporal variability in soil
moisture along the hillslope, such as differences in landscape
position, soil texture and hydraulic properties, and
evapotranspiration, is challenging and beyond the scope of
this study.

The soil electrical conductivity measurements suggest that even
though the mean value changed over time, the spatial relative
variability in electrical conductivity along the transect remained
fairly similar over time. First, the electrical conductivity collocated
with the soil moisture data shows similar ranking of more

conductive to less conductive locations related to wetter to drier
sites (Figure 4). Second, the temporal correlation between various
snapshots is generally strong, as shown in Figure 5, where the
temperature-corrected soil electrical conductivity for the top
50 cm along the entire transect during WY2017 and WY2018 is
presented and used to evaluate the correlation coefficient between a
reference snapshot and every other one. Indeed, outside the
WY2018 winter when the soil was partly frozen, the correlation
coefficient remained higher than 0.8 at all times. It indicates that
while the conductivity for the entire domain fluctuates with regard
to absolute value, the spatial variability remains relatively constant
over time. It is consistent with the observation that all locations
synchronously become wetter or drier and that the ranking in wet to
dry locations does not change much over time. However, it is to note
that this dynamic is field site specific and can be modulated by a
complex combination of various soil characteristics and processes
that impact the spatiotemporal variability in electrical conductivity.
Overall, the observed temporal correlation is consistent with a study
using a similar monitoring approach in an Arctic environment
(Dafflon et al., 2017) that found that the temporal correlation
coefficients in ERT transect data exceeded 0.8 over the entire
growing season. The observation of a spatial pattern in wetness
persisting over time was also found in other studies. For example, the
study of Lowry et al. (2011) in a mountain meadow in the Tuolumne
River basin, California revealed temporally persistent spatial pattern
in soil wetness driven by the groundwater table dynamics, and co-
variability of this moisture pattern and vegetation composition.

3.4 Soil moisture dynamics along the
geophysical transect estimated from soil
moisture sensors and electrical conductivity
data

To evaluate the soil moisture variability along the transect from
a few soil moisture sensors and the ERT dataset, we tested three
different approaches (described in Section 2.2.5) The first approach,
which involves a single logarithmic relationship between both
variables provides a Root Means Square Error (RMSE) of
0.0495 m3/m3 and a Mean absolute Error (ME) of 0.0435 m3/m3

(Figure 5). The second approach, which makes use of location-
specific relationship using Eq. 2, with soil porosity obtained from the
soil moisture data under saturated conditions, enables more reliable
estimation of soil moisture with a RMSE of 0.037, 0.039 and
0.039 m3/m3, and a ME of 0.032, 0.033 and 0.033 m3/m3 for SM1,
SM2 and SM3, respectively (Figure 5). However, the use of the
second approach to estimate soil moisture dynamics at more
locations than monitored with point-scale sensors is not very
practical, as it requires numerous discrete measurements of
porosity, for example, by measuring soil moisture under water
saturated conditions along the entire ERT transect right after the
first-bare ground date using a portable time-domain reflectometer.
The third approach consists in fitting a logarithmic relationship
between the maximum soil moisture and soil electrical conductivity
values to estimate porosity along the transect at the time of complete
soil saturation and the spatially averaged variations in soil moisture
across the three sites to estimate soil moisture over space and time
along the entire transect (Figure 6). Our decision of averaging the
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variation in soil moisture is based on the presence of a relatively
similar range of variation in soil moisture at the three sites, as well as
similarities in how soil moisture varies over time (Section 3.3). The
obtained RMSE and ME for soil moisture estimated using this
approach at the three moisture sensor locations are equal to
0.029, 0.032, 0.036 and 0.028, 0.027, 0.032 m3/m3, respectively.
The overall RMSE and ME across all three locations are equal
0.033 and 0.029 m3/m3, respectively, which is lower than using a
single logarithmic relationship or Eq. 2. The third approach is,
therefore, used to evaluate the co-variability between soil moisture

and vegetation dynamic along the entire transect. It is to note that
the above approaches show RMSEs relatively similar to other studies
involving soil moisture and electrical conductivity at the field scale
(Cardenas and Kanarek, 2014; Thayer et al., 2018). The RMSE for
water content regression in Thayer et al. (2018) and Cardenas and
Kanarek. (2014), is 0.024 m3/m3 and 0.042 m3/m3, respectively. The
results of this study confirm the range of uncertainty present in
estimating soil moisture from electrical conductivity data along
heterogeneous transects, and provide with other studies some
baseline for comparing different strategies. Further, the above

FIGURE 5
(A) Soil electrical conductivity in the top 50 cm over time and (B) correlation coefficient and mean ratio between 10 June and all other times.
Horizontal orange, blue and grey lines in (A) indicate SM1, SM2 and SM3 location, respectively. Vertical red and grey lines indicate the first bare-ground
dates and the UAV survey dates, respectively. (C) Bivariate relationship between collocated soil moisture and electrical conductivity (EC) data. The
logarithmic relationship (black line), which would correspond to a linear relationship between the decimal logarithm of soil electrical conductivity
and soil moisture, provides a RMSE of 0.0495 and a ME of 0.0435 m3/m3. The location specific relationship (Eq. 2) for SM1 (orange), SM2 (purple) and SM3
(grey) provide a RMSE of 0.037, 0.039 and 0.039 m3/m3, respectively. The two yellow lines represent a logarithmic function fitted to the lowest and
highest values in soil moisture and electrical conductivity.

FIGURE 6
(A) Spatiotemporal reconstruction of soil moisture [m3/m3] distribution using spatially averaged variation in soil moisture and a simple linear
regression between porosity and maximum electrical conductivity. (B) measured (thick line) and estimated (thin line) soil moisture over time and (C)
versus each other. RMSE at SM1 (orange), SM2 (purple) and SM3 (grey) are equal to 0.029, 0.032 and 0.036 m3/m3, respectively, and the overall RMS is
equal 0.033 m3/m3.
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results confirm the need to develop integrated approaches that
capture both the soil porosity and the variability in soil saturation.

3.5 Spatiotemporal co-variability in soil
electrical conductivity, soil moisture and
vegetation indices

To investigate the timing in interactions between soil and plant
as a function of position in a hillslope to floodplain domain, we
evaluate the spatial and temporal dynamics in the relationship
between several soil and plant variables from first bare-ground
date to senescence in WY2017 and WY2018. Figure 7 shows the
dynamic in soil and vegetation variables in WY2017 and WY2018,
as well as the bivariate relationship between soil electrical
conductivity and GCC at the time of UAV-based surveys.
Figure 8 shows the relationship between the soil moisture
estimated using the third approach described in Section 2.2.5

(Figure 6) and GCC as a function of plant type for WY2017 and
WY2018.

The bivariate analysis between vegetation indices with shallow
soil electrical conductivity at different times in WY2017 and
WY2018 shows variable relationships and strength during the
year, with the strongest amplitude in GCC in high water year
(WY2017) (Figure 7). The beginning of the growing season is
marked by low values of GCC and a large range of soil electrical
conductivity. As plants grow, the range of GCC values becomes
larger, while electrical conductivity values slowly decrease. The
highest GCC values are observed on 8 July 2017. The linear
relationship between GCC and electrical conductivity in
WY2017 is the strongest on 8 July 2017 (ME=24.7 mS/m),
followed by June 19 (ME=25.5 mS/m), and June 3 (ME=38.1 mS/
m). The relationship is strongly driven by the presence of wet
locations where greening is strong, while dry locations having
low electrical resistivity are less variable over time. As a result,
the slope and intercept of the relationship vary over time. These

FIGURE 7
Dynamics in soil and vegetation variables inWY2017 andWY2018. (A) soil electrical conductivity, (B) estimated soil moisture (Figure 6) along the ERT
transect, and UAV-inferred (C)GCC and (D) relative growth in veratrum (solid line) and average trend when considering all plant types (dashed line) along
the studied transect. Each colored rectangle indicates the lower to upper quartile range with the median value shown with a black dot. Each vertical line
represents thewhisker that reaches the value that is the furthest from themedianwhile still being inside a distance of 1.5 times the interquartile range
from the lower or upper quartile. Values outside the whisker are shown with circles. (E–F) Bivariate analysis between GCC and soil EC on (E) 3 June,
19 June, 7 July and 14 August 2017, and (F) 1 June, 18 June, 6 July and 07 August 2018. In (E–F) the correlation coefficient (r) and the Mean absolute Error
(ME) (mS/m) of the fitted linear relationships are provided.
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results indicate that the greenness values alone cannot be linked to
electrical conductivity with a unique relationship remaining
constant over time.

Various plant types show distinct greening trends and
maximums that are also linked to the distinct distribution of soil
electrical conductivity or moisture at the first bare-ground date and
later time points. Though a positive correlation between soil
moisture and GCC exists at a single point in time, they are
negatively correlated when looking at a specific plant type (e.g.,
veratrum) over time (Figure 8). For several plant types, the soil
moisture decreases continuously after the first bare-ground date
while GCC increases. The use of NDVI indicates relatively similar
trends, while clearly showing its tendency to saturate at high
vegetation biomass (Supplementary Figure S2). Plant types linked
with high electrical conductivity and soil moisture at the beginning
of the growing season, such as veratrum and shrubs in the riparian
zone, show the strongest seasonal increase in GCC. When observing
the relationship across space vs. time, the opposite trend is noted
owing to the time lag between changes in soil moisture and plant
states. It can be noted that the GCC distribution obtained from a
UAV survey along the transect on the first bare-ground date 26 April
2018 (data not shown), shows a 95% confidence interval of 0.331 ±
0.008, which indicates that all plants have a very similar GCC before
the growing season and thus that GCC at later time is primarily
resulting from the seasonal plant growth.

While soil moisture and electrical conductivity in both years
reach the same value during the snowmelt period (Figure 4),
WY2018 is marked by an early bare-ground date and a very
short duration of water saturated conditions in the soil. As a
consequence, GCC values in WY2018 only exceed those observed
in WY2017 in early June (Figures 7, 8). Though delayed by a later
first bare-ground date, GCC in WY2017 rapidly exceeds values

observed during the duration of the WY2018 growing season. The
veratrum plant heights confirm the higher productivity in
WY2017 by showing a temporal pattern similar to GCC
(Figure 7). Further, while in WY2018 several rain events
occurred in late June and early July, they do not counter-balance
the described trend. It is to note that the vegetation and soil
dynamics and their interactions with summer rain in this lower
montane environment at an elevation of about 2,800 m may differ
from those at higher elevations and/or in different plant community
(Carroll et al., 2019).

Overall, the above results are consistent with the co-variability
observed between vegetation indices and soil moisture patterns (e.g.,
Devadoss et al., 2020). In particular, the fact that the various plant
types show relatively similar slopes between increase in GCC and
decrease in soil moisture (Figure 8) indicates the strong impact of
the initial condition in soil moisture on the GCC value at the peak of
the growing season. It demonstrates that the vegetation indices at the
peak of the growing season–or at their maximum for each
location–provides a good indicator of inter-annual variations in
hydrological status, confirming the link between Landsat-derived
annual peak NDVI and June Palmer Drought Severity Index (PDSI)
(Chen et al., 2021) and the first bare-ground date observed across the
East River watershed (Wainwright et al., 2020). Further, the above
results indicate that plant types linked to high soil moisture values,
such as veratrum and shrubs in the riparian zone, lead to particularly
strong increase in GCC over the season. Besides being valuable
indicators for monitoring plant seasonal dynamic due to their large
dynamical range in GCC versus data uncertainty, capturing their
spatial distribution and dynamics is relevant to reduce the
uncertainty in carbon fluxes and storage in such environment.
Indeed, studies have shown that locations where water converges
and/or is retained and where soil accumulates (Yan et al., 2021), as

FIGURE 8
Bivariate analysis between GCC and estimated soil moisture (Figure 6) in (A) WY2017 and (B) in WY2018. Dot colors and shapes indicate plant type
and time of acquisition, respectively. The color of the regression line represents the time of acquisition. The dashed lines in (A–B) highlight the temporal
co-dynamic in GCC and estimated soil moisture for the various plant types from 3 June to 14 August.
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often in montane meadow in low-gradient valley or hillslope toe,
represent a strong source of uncertainty in the estimation of carbon
storage and emission (e.g., Reed et al., 2021).

3.6 Inferring soil moisture across the
hillslope from soil moisture sensors
and GCC

The strong link between GCC at the peak of the growing season and
the soil moisture distribution allows for the possibility to use plant
greenness to infer the spatial variability in soil moisture. We use the
relationship between the GCC on June 19 and maximum soil moisture
measured during snowmelt to estimate the porosity over space, and we
use the spatially averaged variation in soilmoisture across the three sites to
estimate soil moisture over space and time along the hillslope (Figures 9,
10). Besides the use of GCC, this approach is similar to the previous
approachwhere soil electrical conductivity was used. The obtained RMSE
and ME for all three locations are 0.023, 0.026, 0.035m3/m3 and 0.021,
0.021, 0.031 m3/m3, respectively. The overall RMSE and ME across all
three locations are 0.029 and 0.025m3/m3, respectively, which is lower
than using relationship involving the electrical conductivity
(Section 2.2.5).

Besides providing lower RMSE than the other approaches tested in
this study, the approach using GCC and soil moisture sensors to estimate
the soil moisture spatiotemporal distribution has the advantage of being
more scalable as vegetation indices can be collected usingUAVor satellite
imagery. Still, this approach is only applicable at local scale because the
estimation of soil moisture in this study relies on the observation that the
temporal variations in soil moisture was relatively similar at various
locations along the hillslope (when compared to inter-annual variability).
The reliability of this approach is expected to decrease strongly with
increasing spatial coverage, due to increasing heterogeneity in snowpack
dynamic, topographic position, and soil physical andhydraulic properties.
Although several studies have developed approaches for large-scale, high-
resolution estimation of soil moisture using vegetation indices–primarily

for agricultural purpose–, accounting for the time lag between changes in
soil moisture and corresponding changes in the vegetation indices is
recognized as challenging (Zhang and Zhou, 2016). An approach to
reduce error in soil moisture estimation is to involve models or data that
account for the direct effect of water infiltration events on soil moisture,
which is obviously easier to achieve in rain-than snow-impacted
environment (e.g., Acharya et al., 2022). Our results indicate that the
identified link between vegetation indices and soil moisture in the studied
snow-dominated environment is promising to constrain the
reconstruction of the spatiotemporal distribution of soil moisture,
although soil moisture and/or snowmelt rate datasets are essential.
Currently, extending the approach used in this study beyond a single
hillslope would require a strategic placement of sensors to capture the
range of soil moisture dynamics. Finally, while the UAV provided
unparallel spatial resolution in plant greenness in this study, the
increasing emergence of satellite products having meter scale
resolution is quickly becoming a preferable alternative to reduce the
cost of acquisition and processing time.

3.7 Evaluation of hillslope-scale hydrological
processes and their impact on plant seasonal
dynamic

Drought conditions are likely to intensify in the future as climate
models predict both earlier snowmelt and less snowfall throughout
western North America (e.g., Diffenbaugh et al., 2013; Fyfe et al.,
2017). Results of this study confirm that in a lower montane
environment an earlier bare-ground date, which is often linked to low
snowpack year, is an indicator of later plant drought conditionswhich can
constitute a threat to plant viability (e.g., Iler et al., 2019). An increase in
productivity due to longer growing season would only occur in systems
that are not water limited (Ernakovich et al., 2014).

The inter-annual difference in soil moisture dynamics and associated
plant seasonal dynamics confirm that in the studied lower montane
environment, the vegetation productivity in a heavy snow year (WY2017)

FIGURE 9
(A) Spatiotemporal reconstruction of soil moisture [m3/m3] estimated using the spatially averaged variation in soil moisture and a simple linear
regression between porosity and GCC close to the peak of the growing season (17 June). (B) Time series of measured (thick line) and calculated (thin line)
soil moisture and (C) measured vs. calculated soil moisture for different dates. RMSE at SM1 (orange), SM2 (purple) and SM3 (grey) are equal to 0.023,
0.026 and 0.035 m3/m3, respectively, and the total RMS is equal to 0.029 m3/m3.
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benefits from both greater water infiltration as well as a shallower
groundwater table depth (Figures 4, 10). Tokunaga et al. (2019)
documented that infiltration along this hillslope does not reach the
groundwater table for the majority of time, except for the snowmelt
period. Our study shows that a groundwater table rising close to the
ground surface due to large local and upslope snowmelt water infiltration
can maintain a saturated near-surface soil for several weeks. Its decline
controls the onset of the soil drying process (Figures 4, 10). In particular,
inWY2017, the top 0.5 m of soil remained wet after the first bare-ground
date for a much longer period of time than in WY2018 due to greater
snowmelt infiltration and the groundwater table remaining in the upper
0.5 m depth for almost a month after the first bare-ground date, as
indicated by the soil moisture data (Figure 4), and groundwater table

measurements along the same hillslope (Tokunaga et al., 2019). In
contrast, in WY2018 the groundwater table did not rise close to the
ground surface, which resulted in the earlier onset of soil drying right after
the first bare-ground date.

In addition to the observed strong inter-annual variability, the results
of this study confirm that topographic lows, such as the bottom of
hillslope and thefloodplain, have awetter soil than higher locations on the
hillslope and remain wet longer for a variety of reasons, including their
position in convergent areas, an average groundwater table depth closer to
the surface, as well as a soil layer that tends to be thicker, have higher
porosity, and contain a higher fraction of fines that improve water
retention (Tokunaga et al., 2019). The observed spatial pattern in soil
moisture remains relatively similar over time in both WY2017 and

FIGURE 10
Seasonal dynamics in soil moisture and vegetation. (A) Estimated soil moisture in the top 0.5 m of soil across the hillslope (shown in Figure 2) in
WY2017 and WY2018 at 14- and 28-day interval from 15 April to 8 July and 8 July to 5 August, respectively. (B) UAV-inferred vegetation GCC in
WY2017 and WY2018 and schematics illustrating major hydrological processes. The Groundwater Table (GWT) depth, snow surface (SS), ground surface
(GS) and top 0.5 mof soil (brown) are represented to illustrate themajor difference betweenWY2017 andWY2018, specifically the soil remainingwet
much longer inWY2017 due to a larger amount of snow, a later first bare-ground date, and aGWTmaintained near the ground surface for a long period of
time due to significant local and upslope snowmelt events.
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WY2018. This result is consistent with other studies in snow-
dominated environments, which showed the strong impact of
snow distribution, topographic position and subsurface
characteristics on the spatial pattern in soil moisture during
the snowmelt period, and its persistence during the dry periods
(Williams et al., 2009; Hermes et al., 2020). This pattern and its
strong co-variability with plant type and seasonal dynamics
confirms that the soil moisture is overall the key control on the
observed variability in plant seasonal productivity. Finally, this
study illustrates how soil moisture, and indirectly many coupled
processes that cannot be disentangle easily, impact the plant
type distribution (e.g., Lowry et al., 2011). It can be noted that
the dynamic observed in our study is different from the one in
Lowry et al. (2011), which documented a main control of
groundwater table depth on the vegetation composition in a
floodplain environment.

A thorough evaluation of the controls on groundwater table
fluctuations and soil moisture dynamics on plant seasonal
dynamic would require an understanding of subsurface
hydraulic properties and hydrological dynamics occurring
locally and at upslope locations, and in particular the
snowmelt timing and amplitude, and the travel time of these
pulses. Several studies have discussed the complexity and
challenges in understanding the subsurface hydrology, such as
the partitioning between shallow ephemeral flow through the soil
and/or saprolite and saturated groundwater moving through
alluvial and bedrock units with a wide range in flow path and
travel time (Williams et al., 2009; Heidbüchel et al., 2012; Carroll
et al., 2020). While quantifying the lateral groundwater flow as
well as the local and upslope soil hydraulic properties is beyond
the scope of this study, the results of this study underline the
importance of the vertical groundwater-to-soil continuum for
understanding the plant-snow-soil interactions in semiarid
mountainous hillslope ecosystems.

4 Conclusion

In this study, we used soil moisture, soil electrical
conductivity, and UAV-inferred plant vegetation indices and
height to reveal their interactions over (a) space, (b) seasonal
and inter-annual time scales, (c) and for contrasting snow
years. To our knowledge, this is the first study to quantify
the co-variability in soil-plant states over space and time at the
hillslope scale. Overall, the results of this study show that plants
have type-specific seasonal growth dynamics, which are
controlled by snowmelt-induced soil moisture conditions. In
WY2018, early snowmelt and limited snowmelt water
availability induced early greening followed by lower peak in
NDVI and GCC linked to more limited plant growth and vigor
due to water stress. A main driver of the high plant productivity
observed in WY2017 is that soil water content was maintained
at or close to saturation during the beginning of the growing
season, driven by a large amount of percolation and the
presence of a seasonally-persistent shallow groundwater
table. These results confirm our hypothesis that the soil
hydrological dynamics during the snowmelt period are
predefining the plant seasonal dynamic. Importantly, the

results indicate that the soil hydrological dynamics can vary
strongly from year to year, with heavy snow years leading to soil
water recharge from upgradient locations during and after the
local percolation, with correspondingly longer periods of time
with wet soil conditions and plant growth along the hillslopes.

The results of this study are in accordance with our hypothesis
that the strength in the relationships between electrical conductivity,
soil moisture, and vegetation greenness are highly time-dependent
and can be used–if captured at the optimal time–to constrain
spatially continuous estimates of soil moisture dynamics at the
hillslope or larger scale. In this study, the high temporal
correlation in the spatial distribution of soil electrical
conductivity tends to indicate that the soil characteristics are
strongly linked to plant types and landscape position, and that
the soil moisture spatial distribution varies in a coherent way with
locations that remain always wetter than other locations. Still, the
intrinsic soil characteristics and hydrological regimes linked to
various landscape positions cannot be easily disentangled and
would require a laterally and vertically resolved acquisition and
analysis of soil hydraulic properties.

The information generated by this study regarding the connectivity
and interactions between vegetation, terrain, and soil characteristics will
guide the development of approaches to simulate the spatiotemporal
distribution of soil moisture and understanding of soil hydro-
biogeochemical characteristics and processes across scales. While this
particular study focused on the hillslope scale where meteorological
processes do not vary significantly over space, it represents one scale
of heterogeneity that can be integrated with other gradients in
heterogeneity, such as, for example, radiation, elevation, meadow/
forest and geology. Based on the results of this study, we believe that
the development and deployment of distributed sensor networks (incl.,
soil moisture) is critical, as well as their combination with remote sensing
techniques, to refine the multi-scale understanding of snow-soil-plant
interactions that influence water, carbon and other fluxes.

Data availability statement

The soil moisture, ERT and UAV datasets can be accessed at
Dafflon and Leger (2021), Dafflon et al. (2023a) and Dafflon et al.
(2023b), respectively. The LiDAR and vegetation datasets can be
obtained from Falco et al. (2019b).

Author contributions

BD, EL, SH, and HW designed the study. BD, EL, and JP acquired
and processed the GPS and UAV data. BD performed the data analysis.
JC processed the satellite imagery. NF provided the vegetation
classification and processed multi-spectral measurements. KW
provided technical support at the field site. BD wrote the manuscript
with inputs from HW, SH, EL, KW, and NF.

Funding

This material is based upon work supported by the Watershed
Function Scientific Focus Area, funded by the U.S. Department of

Frontiers in Earth Science frontiersin.org15

Dafflon et al. 10.3389/feart.2023.976227

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.976227


Energy Office of Science Office of Biological and Environmental
Research (award no. DE-AC02-05CH11231).

Acknowledgments

The authors would like to thank Jack Lamb, Ian Shirley and Yves
Robert for their assistance in field data acquisition and Caitlin
Haedrich for assistance in UAV-imagery processing.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/feart.2023.976227/
full#supplementary-material

References

Acharya, U., Daigh, A. L., and Oduor, P. G. (2022). Soil moisture mapping with
moisture-related indices, OPTRAM, and an integrated random forest-OPTRAM
algorithm from Landsat 8 images. Remote Sens. 14 (15), 3801. doi:10.3390/rs14153801

Archie, G. E. (1945). Electrical resistivity log as an aid in determining some reservoir
characteristics. Trans. Am. Inst. Min. Metallurgical Eng. 164, 322–323.

Brooks, P. D., Grogan, P., Templer, P. H., Groffman, P., Öquist, M. G., and Schimel, J.
(2011). Carbon and nitrogen cycling in snow-covered environments. Geogr. Compass 5
(9), 682–699. doi:10.1111/j.1749-8198.2011.00420.x

Cardenas, M. B., and Kanarek, M. R. (2014). Soil moisture variation and dynamics
across a wildfire burn boundary in a loblolly pine (Pinus taeda) forest. J. Hydrology 519,
490–502. doi:10.1016/j.jhydrol.2014.07.016

Carroll, R. W., Bearup, L. A., Brown, W., Dong, W., Bill, M., and Willlams, K. H.
(2018). Factors controlling seasonal groundwater and solute flux from snow-dominated
basins. Hydrological Processes 32 (14), 2187–2202.

Carroll, R. W. H., Deems, J. S., Niswonger, R., Schumer, R., and Williams, K. H.
(2019). The importance of interflow to groundwater recharge in a snowmelt-dominated
headwater basin. Geophys. Res. Lett. 46 (11), 5899–5908. doi:10.1029/2019gl082447

Carroll, R. W. H., Manning, A. H., Niswonger, R., Marchetti, D., and Williams, K. H.
(2020). Baseflow age distributions and depth of active groundwater flow in a snow-
dominated mountain headwater basin. Water Resour. Res. 56 (12), e2020WR028161.
doi:10.1029/2020wr028161

Chen, J., Dafflon, B., Tran, A. P., Falco, N., and Hubbard, S. S. (2021). A deep learning
hybrid predictive modeling (HPM) approach for estimating evapotranspiration and
ecosystem respiration. Hydrology Earth Syst. Sci. 25 (11), 6041–6066. doi:10.5194/hess-
25-6041-2021

Contosta, A. R., Adolph, A., Burchsted, D., Burakowski, E., Green, M., Guerra, D.,
et al. (2017). A longer vernal window: The role of winter coldness and snowpack in
driving spring transitions and lags. Glob. Change Biol. 23 (4), 1610–1625. doi:10.1111/
gcb.13517

Corwin, D. L., and Lesch, S. M. (2005). Characterizing soil spatial variability with
apparent soil electrical conductivity. Comput. Electron. Agric. 46 (1-3), 135–152. doi:10.
1016/j.compag.2004.11.003

Dafflon, B., and Leger, E. (2021). Soil moisture and temperature data along the
northeast facing hillslope at the Lower Montane site in the East River Watershed,
Colorado. ESS-DIVE. doi:10.15485/1646477

Dafflon, B., Leger, E., and Peterson, J. (2023a). Electrical resistivity tomography (ERT)
data from 2016 to 2018 along the northeast facing hillslope at the Lower Montane site in
the East River Watershed, Colorado. Watershed Function SFA, ESS-DIVE repository.
Dataset. doi:10.15485/1969563

Dafflon, B., Leger, E., and Peterson, J. (2023b). Optical RGB ortho-mosaics and other
products inferred from multiple UAV surveys in 2017 and 2018 at the Lower Montane
site in the East River Watershed, Colorado. Watershed Function SFA, ESS-DIVE
repository. Dataset. doi:10.15485/1969564

Dafflon, B., Hubbard, S. S., Ulrich, C., and Peterson, J. E. (2013). Electrical
conductivity imaging of active layer and permafrost in an arctic ecosystem, through
advanced inversion of electromagnetic induction data. Vadose Zone J. 12 (4),
vzj20120161. doi:10.2136/vzj2012.0161

Dafflon, B., Oktem, R., Peterson, J., Ulrich, C., Tran, A. P., Romanovsky, V., et al.
(2017). Coincident aboveground and belowground autonomous monitoring to quantify

covariability in permafrost, soil, and vegetation properties in Arctic tundra. J. Geophys.
Res. Biogeosciences 122 (6), 1321–1342. doi:10.1002/2016jg003724

Devadoss, J., Falco, N., Dafflon, B., Wu, Y., Franklin, M., Hermes, A., et al. (2020).
Remote sensing-informed zonation for understanding snow, plant and soil moisture
dynamics within a mountain ecosystem. Remote Sens. 12 (17), 2733. doi:10.3390/
rs12172733

Diffenbaugh, N. S., Scherer, M., and Ashfaq, M. (2013). Response of snow-dependent
hydrologic extremes to continued global warming. Nat. Clim. Change 3 (4), 379–384.
doi:10.1038/nclimate1732

Ernakovich, J. G., Hopping, K. A., Berdanier, A. B., Simpson, R. T., Kachergis,
E. J., Steltzer, H., et al. (2014). Predicted responses of arctic and alpine
ecosystems to altered seasonality under climate change. Glob. Change Biol. 20
(10), 3256–3269. doi:10.1111/gcb.12568

Euskirchen, E. S., Bret-Harte, M. S., Shaver, G. R., Edgar, C. W., and Romanovsky, V.
E. (2017). Long-Term release of carbon dioxide from arctic tundra ecosystems in
Alaska. Ecosystems 20 (5), 960–974. doi:10.1007/s10021-016-0085-9

Falco, N., Wainwright, H., Dafflon, B., Leger, E., Peterson, J., Steltzer, H., et al.
(2019b). Remote sensing and geophysical characterization of a floodplain-hillslope
system in the East River Watershed, Colorado. ESS-DIVE. doi:10.21952/WTR/1490867

Falco, N., Wainwright, H., Dafflon, B., Léger, E., Peterson, J., Steltzer, H., et al.
(2019a). Investigating microtopographic and soil controls on a mountainous meadow
plant community using high-resolution remote sensing and surface geophysical data.
J. Geophys. Res. Biogeosciences 124 (6), 1618–1636. doi:10.1029/2018jg004394

Falco, N., Wainwright, H. M., Dafflon, B., Ulrich, C., Soom, F., Peterson, J. E., et al.
(2021). Influence of soil heterogeneity on soybean plant development and crop yield
evaluated using time-series of UAV and ground-based geophysical imagery. Sci. Rep. 11
(1), 7046. doi:10.1038/s41598-021-86480-z

Fan, Y., Clark, M., Lawrence, D. M., Swenson, S., Band, L. E., Brantley, S. L., et al.
(2019). Hillslope hydrology in global change research and earth system modeling.
Water Resources Research 55 (2), 1737–1772.

Friedman, S. P. (2005). Soil properties influencing apparent electrical conductivity: A
review. Comput. Electron. Agric. 46 (1-3), 45–70. doi:10.1016/j.compag.2004.11.001

Fyfe, J. C., Derksen, C., Mudryk, L., Flato, G. M., Santer, B. D., Swart, N. C., et al.
(2017). Large near-term projected snowpack loss over the Western United States. Nat.
Commun. 8 (1), 14996. doi:10.1038/ncomms14996

Fyfe, J. C., and Flato, G.M. (1999). Enhanced climate change and its detection over the
Rocky Mountains. J. Clim. 12 (1), 230–243. doi:10.1175/1520-0442-12.1.230

Hamilton, J. R. (1972). Incipient metamorphism and the organic geochemistry of the
Mancos shale near Crested Butte. Colorado: Rice University.

Hammersmark, C. T., Dobrowski, S. Z., Rains, M. C., and Mount, J. F. (2010).
Simulated effects of stream restoration on the distribution of wet-meadow vegetation.
Restor. Ecol. 18 (6), 882–893. doi:10.1111/j.1526-100x.2009.00519.x

Hayhoe, K., Wake, C. P., Huntington, T. G., Luo, L., Schwartz, M. D., Sheffield, J., et al.
(2007). Past and future changes in climate and hydrological indicators in the US
Northeast. Clim. Dyn. 28 (4), 381–407. doi:10.1007/s00382-006-0187-8

Hayley, K., Bentley, L. R., Gharibi, M., and Nightingale, M. (2007). Low temperature
dependence of electrical resistivity: Implications for near surface geophysical
monitoring. Geophys. Res. Lett. 34 (18), L18402. doi:10.1029/2007gl031124

Frontiers in Earth Science frontiersin.org16

Dafflon et al. 10.3389/feart.2023.976227

https://www.frontiersin.org/articles/10.3389/feart.2023.976227/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/feart.2023.976227/full#supplementary-material
https://doi.org/10.3390/rs14153801
https://doi.org/10.1111/j.1749-8198.2011.00420.x
https://doi.org/10.1016/j.jhydrol.2014.07.016
https://doi.org/10.1029/2019gl082447
https://doi.org/10.1029/2020wr028161
https://doi.org/10.5194/hess-25-6041-2021
https://doi.org/10.5194/hess-25-6041-2021
https://doi.org/10.1111/gcb.13517
https://doi.org/10.1111/gcb.13517
https://doi.org/10.1016/j.compag.2004.11.003
https://doi.org/10.1016/j.compag.2004.11.003
https://doi.org/10.15485/1646477
https://doi.org/10.15485/1969563
https://doi.org/10.15485/1969564
https://doi.org/10.2136/vzj2012.0161
https://doi.org/10.1002/2016jg003724
https://doi.org/10.3390/rs12172733
https://doi.org/10.3390/rs12172733
https://doi.org/10.1038/nclimate1732
https://doi.org/10.1111/gcb.12568
https://doi.org/10.1007/s10021-016-0085-9
https://doi.org/10.21952/WTR/1490867
https://doi.org/10.1029/2018jg004394
https://doi.org/10.1038/s41598-021-86480-z
https://doi.org/10.1016/j.compag.2004.11.001
https://doi.org/10.1038/ncomms14996
https://doi.org/10.1175/1520-0442-12.1.230
https://doi.org/10.1111/j.1526-100x.2009.00519.x
https://doi.org/10.1007/s00382-006-0187-8
https://doi.org/10.1029/2007gl031124
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.976227


Heidbüchel, I., Troch, P. A., Lyon, S. W., and Weiler, M. (2012). The master transit
time distribution of variable flow systems.Water Resour. Res. 48 (6), 11293. doi:10.1029/
2011wr011293

Hermes, A. L., Wainwright, H. M., Wigmore, O., Falco, N., Molotch, N. P., and
Hinckley, E. L. S. (2020). From patch to catchment: A statistical framework to identify
and map soil moisture patterns across complex alpine terrain. Front. Water 2, 578602.
doi:10.3389/frwa.2020.578602

Hubbard, S. S., Williams, K. H., Agarwal, D., Banfield, J., Beller, H., Bouskill, N., et al.
(2018). The East river, Colorado, watershed: A mountainous community testbed for
improving predictive understanding of multiscale hydrological–biogeochemical
dynamics. Vadose Zone J. 17 (1), 1–25. doi:10.2136/vzj2018.03.0061

Iler, A. M., Compagnoni, A., Inouye, D. W., Williams, J. L., CaraDonna, P. J.,
Anderson, A., et al. (2019). Reproductive losses due to climate change-induced earlier
flowering are not the primary threat to plant population viability in a perennial herb.
J. Ecol. 107 (4), 1931–1943. doi:10.1111/1365-2745.13146

Inamdar, S. P., and Mitchell, M. J. (2007). Contributions of riparian and hillslope
waters to storm runoff across multiple catchments and storm events in a glaciated
forested watershed. J. Hydrology 341 (1), 116–130. doi:10.1016/j.jhydrol.2007.05.007

Irons, J. R., Dwyer, J. L., and Barsi, J. A. (2012). The next Landsat satellite: The Landsat data
continuity mission. Remote Sens. Environ. 122, 11–21. doi:10.1016/j.rse.2011.08.026

James, M. R., and Robson, S. (2012). Straightforward reconstruction of 3D surfaces
and topography with a camera: Accuracy and geoscience application. J. Geophys. Res.
Earth Surf. 117 (F3), 2289. doi:10.1029/2011jf002289

Keenan, T. F., and Riley, W. J. (2018). Greening of the land surface in the world’s cold
regions consistent with recent warming. Nat. Clim. Change 8 (9), 825–828. doi:10.1038/
s41558-018-0258-y

Loheide, S. P., and Gorelick, S. M. (2007). Riparian hydroecology: A coupled model of
the observed interactions between groundwater flow and meadow vegetation
patterning. Water Resour. Res. 43 (7). doi:10.1029/2006wr005233

Lowry, C. S., Deems, J. S., Loheide, S. P., II, and Lundquist, J. D. (2010). Linking snowmelt-
derived fluxes and groundwater flow in a high elevation meadow system, Sierra Nevada
Mountains, California. Hydrol. Process. 24 (20), 2821–2833. doi:10.1002/hyp.7714

Lowry, C. S., Loheide, S. P., II, Moore, C. E., and Lundquist, J. D. (2011). Groundwater
controls on vegetation composition and patterning in mountain meadows. Water
Resour. Res. 47 (10), 86. doi:10.1029/2010wr010086

McGlynn, B. L., and McDonnell, J. J. (2003). Quantifying the relative contributions of
riparian and hillslope zones to catchment runoff. Water Resour. Res. 39 (11), 2091.
doi:10.1029/2003wr002091

Oleson, K. W., Lawrence, D. M., Gordon, B., Bonan, G. B., Drewniak, B., Huang, M.,
et al. (2013). P. E.: Technical description of version 4.5 of the community land model
(CLM), NCAR technical note NCAR/TN-503CSTR, 420. doi:10.5065/D6RR1W7M

Rangwala, I., Sinsky, E., and Miller, J. R. (2013). Amplified warming projections for
high altitude regions of the northern hemisphere mid-latitudes from CMIP5 models.
Environ. Res. Lett. 8 (2), 024040. doi:10.1088/1748-9326/8/2/024040

Reed, C. C., Merrill, A. G., Drew, W. M., Christman, B., Hutchinson, R. A., Keszey, L.,
et al. (2021). Montane meadows: A soil carbon sink or source? Ecosystems 24 (5),
1125–1141. doi:10.1007/s10021-020-00572-x

Revil, A., Cathles, L. M., Losh, S., and Nunn, J. A. (1998). Electrical conductivity in
shaly sands with geophysical applications. J. Geophys. Research-Solid Earth 103 (B10),
23925–23936. doi:10.1029/98jb02125

Rücker, C., Günther, T., and Spitzer, K. (2006a). 3-d modeling and inversion of DC
resistivity data incorporating topography - Part I: Modeling. Geophys. J. Int. 166,
495–505. doi:10.1111/j.1365-246x.2006.03010.x

Rücker, T., Günther, C., and Spitzer, K. (2006b). 3-d modeling and inversion of DC
resistivity data incorporating topography - Part II: Inversion. Geophys. J. Int. 166,
506–517. doi:10.1111/j.1365-246x.2006.03011.x

Rudolph, S., van der Kruk, J., von Hebel, C., Ali, M., Herbst, M., Montzka, C., et al.
(2015). Linking satellite derived LAI patterns with subsoil heterogeneity using large-
scale ground-based electromagnetic induction measurements. Geoderma 241, 262–271.
doi:10.1016/j.geoderma.2014.11.015

Seddon, A. W. R., Macias-Fauria, M., Long, P. R., Benz, D., and Willis, K. J. (2016).
Sensitivity of global terrestrial ecosystems to climate variability. Nature 531, 229–232.
doi:10.1038/nature16986

Sloat, L. L., Henderson, A. N., Lamanna, C., and Enquist, B. J. (2015). The effect of the
foresummer drought on carbon exchange in subalpine meadows. Ecosystems 18 (3),
533–545. doi:10.1007/s10021-015-9845-1

Sonnentag, O., Hufkens, K., Teshera-Sterne, C., Young, A. M., Friedl, M.,
Braswell, B. H., et al. (2012). Digital repeat photography for phenological
research in forest ecosystems. Agric. For. Meteorology 152, 159–177. doi:10.
1016/j.agrformet.2011.09.009

Stewart, I. T. (2009). Changes in snowpack and snowmelt runoff for key
mountain regions. Hydrological Process. Int. J. 23 (1), 78–94. doi:10.1002/
hyp.7128

Thayer, D., Parsekian, A. D., Hyde, K., Speckman, H., Beverly, D., Ewers, B., et al.
(2018). Geophysical measurements to determine the hydrologic partitioning of
snowmelt on a snow-dominated subalpine hillslope. Water Resour. Res. 54 (6),
3788–3808. doi:10.1029/2017wr021324

Tokunaga, T. K., Wan, J., Williams, K. H., Brown, W., Henderson, A., Kim, Y., et al.
(2019). Depth-and time-resolved distributions of snowmelt-driven hillslope subsurface
flow and transport and their contributions to surface waters.Water Resour. Res. 55 (11),
9474–9499. doi:10.1029/2019wr025093

Tran, A. P., Rungee, J., Faybishenko, B., Dafflon, B., and Hubbard, S. S. (2019).
Assessment of spatiotemporal variability of evapotranspiration and its governing factors
in a mountainous watershed. Water 11 (2), 243. doi:10.3390/w11020243

Triantafilis, J., and Lesch, S. M. (2005). Mapping clay content variation using
electromagnetic induction techniques. Comput. Electron. Agric. 46 (1-3), 203–237.
doi:10.1016/j.compag.2004.11.006

Uhlemann, S., Chambers, J., Wilkinson, P., Maurer, H., Merritt, A., Meldrum,
P., et al. (2017). Four-dimensional imaging of moisture dynamics during
landslide reactivation. J. Geophys. Res. Earth Surf. 122 (1), 398–418. doi:10.
1002/2016jf003983

Uhlemann, S., Dafflon, B., Wainwright, H. M., Williams, K. H., Minsley, B., Zamudio,
K., et al. (2022). Surface parameters and bedrock properties covary across a
mountainous watershed: Insights from machine learning and geophysics. Sci. Adv. 8
(12), eabj2479. doi:10.1126/sciadv.abj2479

Ulrich, C., and Slater, L. (2004). Induced polarization measurements on unsaturated,
unconsolidated sands. Geophysics 69 (3), 762–771. doi:10.1190/1.1759462

Viviroli, D., and Weingartner, R. (2008). ““Water Towers”: A global view of the
hydrological importance of mountains,”. Mountains: Sources of water, sources of
knowledge. Adv. Global Change Res. 31 (Dordrecht, Netherlands: Springer),
15–20.

von Hebel, C., Matveeva, M., Verweij, E., Rademske, P., Kaufmann, M. S., Brogi, C.,
et al. (2018). Understanding soil and plant interaction by combining ground-based
quantitative electromagnetic induction and airborne hyperspectral Data. Geophys. Res.
Lett. 45 (15), 7571–7579. doi:10.1029/2018gl078658

Wainwright, H. M., Steefel, C., Trutner, S. D., Henderson, A. N., Nikolopoulos, E. I.,
Wilmer, C. F., et al. (2020). Satellite-derived foresummer drought sensitivity of plant
productivity in rocky mountain headwater catchments: Spatial heterogeneity and
geological-geomorphological control. Environ. Res. Lett. 15 (8), 084018. doi:10.1088/
1748-9326/ab8fd0

Wainwright, H. M., Uhlemann, S., Franklin, M., Falco, N., Bouskill, N. J.,
Newcomer, M. E., et al. (2022). Watershed zonation through hillslope clustering
for tractably quantifying above- and below-ground watershed heterogeneity and
functions. Hydrol. Earth Syst. Sci. 26 (2), 429–444. doi:10.5194/hess-26-429-
2022

Webb, R. W., Fassnacht, S. R., and Gooseff, M. N. (2018). Hydrologic flow path
development varies by aspect during spring snowmelt in complex subalpine
terrain. Cryosphere 12 (1), 287–300. doi:10.5194/tc-12-287-2018

Williams, C. J., McNamara, J. P., and Chandler, D. G. (2009). Controls on the
temporal and spatial variability of soil moisture in a mountainous landscape: The
signature of snow and complex terrain. Hydrol. Earth Syst. Sci. 13 (7), 1325–1336.
doi:10.5194/hess-13-1325-2009

Yan, Q., Wainwright, H., Dafflon, B., Uhlemann, S., Steefel, C., Falco, N., et al. (2021).
Hybrid data-model-based mapping of soil thickness in a mountainous watershed.
Preprint.

Zhang, D., and Zhou, G. (2016). Estimation of soil moisture from optical and thermal
remote sensing: A review. Sensors 16 (8), 1308. doi:10.3390/s16081308

Frontiers in Earth Science frontiersin.org17

Dafflon et al. 10.3389/feart.2023.976227

https://doi.org/10.1029/2011wr011293
https://doi.org/10.1029/2011wr011293
https://doi.org/10.3389/frwa.2020.578602
https://doi.org/10.2136/vzj2018.03.0061
https://doi.org/10.1111/1365-2745.13146
https://doi.org/10.1016/j.jhydrol.2007.05.007
https://doi.org/10.1016/j.rse.2011.08.026
https://doi.org/10.1029/2011jf002289
https://doi.org/10.1038/s41558-018-0258-y
https://doi.org/10.1038/s41558-018-0258-y
https://doi.org/10.1029/2006wr005233
https://doi.org/10.1002/hyp.7714
https://doi.org/10.1029/2010wr010086
https://doi.org/10.1029/2003wr002091
https://doi.org/10.5065/D6RR1W7M
https://doi.org/10.1088/1748-9326/8/2/024040
https://doi.org/10.1007/s10021-020-00572-x
https://doi.org/10.1029/98jb02125
https://doi.org/10.1111/j.1365-246x.2006.03010.x
https://doi.org/10.1111/j.1365-246x.2006.03011.x
https://doi.org/10.1016/j.geoderma.2014.11.015
https://doi.org/10.1038/nature16986
https://doi.org/10.1007/s10021-015-9845-1
https://doi.org/10.1016/j.agrformet.2011.09.009
https://doi.org/10.1016/j.agrformet.2011.09.009
https://doi.org/10.1002/hyp.7128
https://doi.org/10.1002/hyp.7128
https://doi.org/10.1029/2017wr021324
https://doi.org/10.1029/2019wr025093
https://doi.org/10.3390/w11020243
https://doi.org/10.1016/j.compag.2004.11.006
https://doi.org/10.1002/2016jf003983
https://doi.org/10.1002/2016jf003983
https://doi.org/10.1126/sciadv.abj2479
https://doi.org/10.1190/1.1759462
https://doi.org/10.1029/2018gl078658
https://doi.org/10.1088/1748-9326/ab8fd0
https://doi.org/10.1088/1748-9326/ab8fd0
https://doi.org/10.5194/hess-26-429-2022
https://doi.org/10.5194/hess-26-429-2022
https://doi.org/10.5194/tc-12-287-2018
https://doi.org/10.5194/hess-13-1325-2009
https://doi.org/10.3390/s16081308
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.976227

	Advanced monitoring of soil-vegetation co-dynamics reveals the successive controls of snowmelt on soil moisture and on plan ...
	1 Introduction
	2 Site description, and data collection and processing
	2.1 Description of the study area and meteorological forcing
	2.2 Data collection and processing
	2.2.1 UAV-based spatiotemporal mapping of vegetation indices and plant height
	2.2.2 Digital terrain model, vegetation type map and landsat imagery
	2.2.3 Point-scale soil moisture monitoring
	2.2.4 Soil electrical conductivity time-lapse imaging
	2.2.5 Soil moisture mapping


	3 Results and discussion
	3.1 Spatial co-variability in vegetation and soil characteristics
	3.2 Temporal variability in snowpack and soil moisture
	3.3 Spatial variability in soil moisture and electrical conductivity dynamics
	3.4 Soil moisture dynamics along the geophysical transect estimated from soil moisture sensors and electrical conductivity data
	3.5 Spatiotemporal co-variability in soil electrical conductivity, soil moisture and vegetation indices
	3.6 Inferring soil moisture across the hillslope from soil moisture sensors and GCC
	3.7 Evaluation of hillslope-scale hydrological processes and their impact on plant seasonal dynamic

	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


