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The North China plain (NCP) is an important production base for winter wheat
and summer maize in China. Severe droughts seriously restrict agricultural
production in this region, threatening food security. Based on the
standardized precipitation evapotranspiration index (SPEI), this study explored
the spatial and temporal drought characteristics during the winter wheat and
summer maize growing seasons in the region. The study found that: 1) From
1980 to 2013, the drought trend of the winter wheat growing season in the NCP
has intensified, with Huang-Huai Plain agricultural area (HH_P) showing the most
significant drought trend. However, the summer maize growing season has
become wetter, with the Shandong hilly agricultural and forestry area (SD_Q)
showing the most significant wetting trend. 2) After the year 2003, the results
fromMann-Kendall trend analysis revealed that the drought trend of HH_P during
the winter wheat growing season became particularly pronounced, but the
wetting trend of SD_Q and HH_P during the summer maize growing season
became more evident. 3) The dominant spatial patterns observed in the NCP
during the growing seasons of winter wheat and summermaizeweremarked by a
consistent distribution of drought and wetness conditions. For winter wheat, the
southern regions of the foothill plain area of Yanshan and TaihangMountains (YT_
P) and the low-lying plain area of Hebei, Shandong, and Henan (JLY_P) were
more sensitive to the changes of drought and wet conditions. For summer maize,
SD_Q was more sensitive to the changes of the drought and wet conditions. The
results of this study could provide references for the formulation of drought relief
strategies of winter wheat and summer maize in the NCP.
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1 Introduction

The North China Plain (NCP) is a key area for grain production in China.
Approximately 50% of the country’s total winter wheat planting area and yield come
from this region (Liu et al., 2006), while the maize planting area in the region accounts for
30% in China, with a yield comprising around 50% of China (Sun et al., 2009). Drought
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poses a significant threat to the food security of the area, being the
primary meteorological disaster affecting agricultural production.
With the backdrop of global climate change, the NCP has
experienced a substantial rise in average temperature over the
past 50 years, leading to intensified drought (Zhang et al., 2015).
Furthermore, drought in this region shows clear cyclic variations
and regional differences (Hu, 2014; Li et al., 2023). Studies have
shown that droughts, heat waves, and floods can have compound
effects (Carvalho and Spataru, 2023). Under extreme climate
change, sudden changes between droughts and floods can have
lasting and profound effects on soil fertility by altering
comprehensive conditions such as water, soil, and temperature,
exacerbating threats to food security (Bai et al., 2023).
Underground coal mining can cause continuous and long-term
surface deformation, triggering landslides, and may also pose a
threat to grain-producing areas (Ma et al., 2022).

Fan assessed the impact of El Niño and La Niña phenomena on
meteorological drought in theWeihe River Basin in China from 1970 to
2020. They found that on a scale of 3–6 months, attention should be
paid to the drought disasters in the summer of the following year caused
by LaNiña, but the impact of El Niño on the 12-month scale of drought
in China cannot be ignored (Fan et al., 2023). Drought is typically
classified into meteorological drought, hydrological drought,
agricultural drought and socio-economic drought (Jiang et al., 2019).
Simultaneous occurrences ofmultiple droughts can significantly impact
the economic development, particularly causing substantial losses in
food production. Research on drought in the context of winter wheat
and summer corn primarily includes the evolution of drought, drought
prediction, spatiotemporal analysis of drought changes, and the
drought influences on agricultural production. Some studies have
also explored the drought spatiotemporal changes of winter wheat
and summer maize from the perspective of solar radiation values
(Zheng et al., 2022).

Based on different data sources, the drought indices can be
divided into remote sensing-based indices such as Temperature
Condition Index (TCI), Vegetation Condition Index (VCI), and
Vegetation Health Index (VHI), and meteorological data-based
indices such as Standardized Precipitation Index (SPI), Palmer
Drought Severity Index (PDSI) and Standardized Precipitation
Evapotranspiration Index (SPEI) (Vicente-Serrano and Sergio,
2013). The PDSI is primarily utilized to calculate short-term
drought conditions, estimating soil moisture supply and demand
through a two-layer model based on precipitation and temperature.
It can provide a comprehensive indicator of the overall water
condition. However, the PDSI index is mainly used for
calculating short-term drought conditions and has a relatively
singular time scale (Vicente-Serrano and Sergio, 2013). SPI can
monitor drought at different time scales (Pasho et al., 2011). SPI has
been widely used in drought monitoring studies due to its simplicity
in calculating and ability to measure drought at different time scales.
However, its application has limitations in the context of climate
change, as it only considers precipitation conditions. The
accumulated precipitation, one of the indicators of drought, is
not only related to rainfall but also connected to temperature
changes (Zhou et al., 2022). In areas lacking rainfall data, it can
be used to predict drought, landslides, and debris flow disasters
(Zhou et al., 2022). With the development of remote sensing
technology, more and more technologies such as unmanned

aerial vehicle detection and Synthetic Aperture Radar
Interferometry (InSAR) are being applied in the acquisition of
drought indices and land instability analysis (Yang et al., 2021;
Liu et al., 2022; Wang et al., 2022).

SPEI combines the advantages of SPI and PDSI, considering the
impacts of precipitation and temperature on drought (Vicente-
Serrano et al., 2010). It has been widely used in the research for
monitoring and assessing the impact of drought (Guo et al., 2017; Cao
et al., 2021; Tirivarombo et al., 2018; Wu and Chen, 2019; Yang et al.,
2020). The Penman-Monteith (PM) method was used to calculate the
national potential evapotranspiration in China from 1961 to 2019.
Furthermore, by utilizing the SPEI as a monthly drought indicator, it
was determined that there has been an exacerbation of drought in the
North China region due to abnormal temperature and wind speed
(Wen and Chen, 2023). Therefore, in this study, SPEI was chosen as
the drought monitoring index in the NCP. Meteorological data from
50 weather stations in the NCP was selected. And the SPEI could
represent the drought conditions during the winter wheat and
summer maize growing season were calculated. The study utilized
methods such as linear trend analysis, Mann-Kendall trend analysis
and Empirical Orthogonal Function (EOF) decomposition to
investigate the spatiotemporal characteristics of drought during the
winter wheat and summermaize growing seasons in the NCP over the
past 33 years. The aim of this study is to provide references for the
formulation of drought relief strategies of winter wheat and summer
maize in the NCP.

2 Study area and materials

2.1 Study area and data

The North China Plain (NCP) (32°N ~ 40°N, 114°E ~ 121°E) is
located in the northern part of China, including all or part of seven

FIGURE 1
Spatial distribution of meteorological stations in the study area.
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provinces (municipalities) including Hebei, Henan, Shandong,
Jiangsu, Anhui, Beijing, and Tianjin. This region belongs to the
Huang-Huai-Hai agricultural region in the comprehensive
agricultural zoning of China, including four secondary
agricultural regions: the Huang-Huai Plain agricultural area
(HH_P), the Shandong hilly agricultural and forestry area (SD_
Q), the low-lying plain area of Hebei, Shandong, and Henan (JLY_
P), and the foothill plain area of Yanshan and Taihang Mountains
(YT_P). It is an important grain production base in China
(Figure 1). Winter wheat and summer maize are the main grain
crops in this region. The North China Plain is located in the East
Asian monsoon climate zone, with uneven spatial and temporal
distribution of precipitation. Drought is one of the main factors
restricting the growth of winter wheat and summer maize in this
region. The meteorological data used in this study are from
50 meteorological stations in North China from 1980 to 2013,
obtained from the China Meteorological Data Sharing
Service Network.

2.2 Research methods

As shown in Figure 2. By inputting temperature and
precipitation data, standardized evapotranspiration index (ETI)
can be obtained. The Mann-Kendall test method is used to assess
climate and hydrological change trends, while empirical orthogonal
function (EOF) analysis is employed to identify abrupt changes and
three spatial-temporal distribution patterns.

2.2.1 Standardize precipitation evaporation
index (SPEI)

SPEI considers the impact of precipitation, temperature
changes, and potential surface evapotranspiration on drought. It
can identify the occurrence or end of drought and reflect its actual
severity. Here’s how it is calculated:

1) This study involves retrieving daily weather data from the
selected ground meteorological station and organizing it into
monthly climate data. Then, the monthly potential
evaporation (Pe) is calculated based on the monthly average

temperature recorded at the station. The specific calculation
formula is as follows:

Pei � 16K
10Ti

I
( )m

i � 1, 2 . . . 12 (1)

Ii � Ti

5
( )1.514

(2)

I � ∑12
i�1
Ii (3)

where Eqs 1–3, Ti is the monthly average temperature in degrees°C,
Ii is the monthly heat index, I is the annual heat index, and K is the
correction index, a constant m � 0.492 + 1.79 × 10−2I − 7.71 ×
10−5I2+ 6.75 × 10−7I3

K � N

12
( ) NDM

30
( ) (4)

where Eq. 4, NDM is the total number of days in that month, N is the
possible sunshine hours, calculated using Eq. 5:

N � 24
π

( )ws (5)

Where ws is the sunrise hour angle, calculated using Eq. 6:

ws � arccos − tanφ tan δ( ) (6)

Where φ is the latitude in radians (rad), δ is the solar declination
angle, calculated using Eq. 7:

δ � 0.4093 sin
2πJ
365

( ) − 1.405 (7)

Where J is the average day number of that month, ranging from
1 to 365 or 366, with 1st January being day 1.

2) Construct the cumulative water deficit X for different time
scales. Calculated using Eq. 8:

Di � Pi − Pei (8)
Where Di is the monthly water deficit, Pi is the monthly

precipitation, and Pei is the monthly potential evaporation, all in
millimeters (mm).

FIGURE 2
Research methodology flowchart.
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Then, calculate the water deficit Dij for the i-th year and j-th
month, using Eq. 9 and Eq. 10, depending on different time scales.

Xk
i,j � ∑12

i�13−k+jDi−1,j +∑j

i�1Di,j (9)

Xk
i,j � ∑j

i�j−k+1Di,j (10)

3) Calculate the probability distribution of the cumulative
water deficit X

Below introduce the probability density function of the three-
parameter log-logistic distribution as shown in Eq. 11:

f x( ) � β

α

x − γ

α
( )β−1

1 + x − γ

α
( )β[ ]−2

(11)

Where α, β and γ are the scale, shape, and location parameters,
D< γ<∞. Respectively. α, β, and γ are calculated using Eqs 12–14:

α � w0 − 2w1( )β
Γ 1 + 1

β( )Γ 1 − 1/β( ) (12)

β � 2w1 − w0

6w1 − w0 − 6w2( ) (13)
γ � w0 − α Γ 1 + 1/β( )Γ 1 − 1/β( ) (14)

where Eqs 12, 14, Γ(β) is the Gamma function, and in Eq. 15, i is the
ordinal number of the cumulative water deficit sequence Xi,
arranged in ascending order. The probability distribution
function of the three-parameter log-logistic distribution is Eq. 16:

ws � 1
N

∑N

i�1 1 − i − 0.35
N

( )s

Xi (15)

F x( ) � 1 + α

x − γ
( )β⎡⎣ ⎤⎦−1 (16)

Finally, standardize the probability distributions for
each month.

Order P � 1 − F(x), at that time P≤ 0.5, then W � ��������−2 ln (P)√

SPEI � C0 + C1W + C2W2

1 − d1W + d2W2 + d3W3
(17)

Order P> 0.5, at that time W � �����������−2 ln (1 − P)√
where Eq. 17, C0 � 2.515517, C1 � 0.802853, C2 � 0.010328,

d1 � 1.432788 d2 � 0.189269, d3 � 0.001308 are all involved

The SPEI-based drought classification is given in Table 1.

2.2.2 Climate trend rate
Using the least squares method to calculate the regression

coefficient between the sample and time, the change in
meteorological elements can be represented by a linear Eq. 18:

y � aX + b (18)

The climate trend rate is 10a.

2.2.3 M-K trend analysis
The M-K test method is a non-parametric statistical test

method. It can not only detect changes in the trend of the
sequence but also find mutation points in the sequence. It
does not require the sample to follow a certain distribution
and is not affected by a few exceptional values. It is suitable
for the analysis of type variables and ordinal variables. The
calculation process of MK is as follows (Sharma and Goyal,
2020; Alsubih et al., 2021):

For a time series X with a sample size of n, we construct a rank
sequence in Eq. 19:

Sk � ∑k

i�1ri, k � 2, 3,/, n (19)

Where ri � +1, xi >xj

0, xi ≤ xj
{ , j � 1, 2, 3,/, i

It can be seen that the rank sequence Sk is the cumulative count
of the number of values at time i greater than the values at time j.

Assuming random and independent time series, we define the
statistic in Eq. 20:

UFK � Sk − E Sk( )[ ]�������
var Sk( )√ , k � 1, 2,/, n (20)

Where UF1 � 0, E(Sk), var(Sk) are the mean and variance of the
cumulative count Sk. When x1, x2,/, xn are mutually independent
and have the same continuous distribution, they can be calculated by
the following Eq. 21:

E Sk( ) � k k − 1( )
4

var Sk( ) � k k − 1( ) 2k + 5( )
72

⎧⎪⎪⎪⎨⎪⎪⎪⎩ k � 2, 3,/, n (21)

WhereUFi is the standard normal distribution. It is a sequence of
statistics calculated in the order of the time series X, x1, x2,/, xn.
Given a significance level α, we check the normal distribution
table. If |UF1|>Uα, it indicates a significant trend change in
the sequence.

The above process in reverse order of the time series X,
xn, xn−1,/, x1. Simultaneously, we ensure that UBk � −UFk, k �
(n, n − 1,/, 1), UB1 � 0.

Analyze and plot theUFk andUBk curves. If the value ofUFk or
UBk is greater than 0, it indicates an upward trend. If it is less than 0,
it represents a downward trend. When they exceed the critical line, it
indicates a significant upward or downward trend. The range
beyond the critical line is determined as the time region of
occurrence of the mutation. If the UFk and UBk curves intersect,
and the intersection is between the critical lines, then the time
corresponding to the intersection is the start time of the mutation. If
it exceeds the UFk critical line but the intersection of UFk and UBk

TABLE 1 Drought classes based on SPEI.

SPEI index Drought class

−1.0 < SPEI ≤ −0.5 Slight drought

−1.5 < SPEI ≤ −1.0 Moderate drought

−2.0 < SPEI ≤ −1.5 Severe drought

SPEI ≤ −2.0 Extreme drought
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is outside the critical line, it cannot be easily determined whether this
point is a mutation point.

2.2.4 Empirical orthogonal function (EOF)
decomposition

The EOF decomposition was proposed by Pearson in 1902.
In the mid-1950s, Lorenz introduced it into the study of
atmospheric science (Lorenz and Hartmann, 2003). The
advantage of EOF decomposition is that it can decompose
meteorological elements into spatial functions that do not
change with time (eigenvalues) and time functions that are
independent of space. The spatial function part is determined
by the main characteristics of the meteorological element field.
The convergence speed of EOF decomposition is fast, so as long
as a few eigenvectors with large eigenvalues are taken, the spatial
characteristics of the climate element field can be fully described.
EOF decomposition is to decompose the three-dimensional
climate variables into orthogonal spatial typical fields and the
corresponding time series, which can represent the main spatial
distribution structure of meteorological elements.

The observed data of a certain climate variable field is given in
matrix form:

X �
x11 / x1n

..

.
xij

..

.

xm1 / xmn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (22)

In Eq. 22, m represents spatial points,n represents time points,
and xij represents the j observation at the i station. After removing
the anomalies from the variable field, the meteorological significance
of the separated eigenvectors is more intuitive.

The above matrix is decomposed into two parts Eq. 23:

X � VT (23)

The spatial function V and the time function T, where V and T
are referred to as the spatial function matrix and the time function
matrix, respectively. Each column of V represents a spatial typical
field, which is only related to space. According to orthogonality, the
spatial typical field and the time weighting coefficient should satisfy
the following Eq. 24:

∑m
i�1
vikvil � 1, k � l ; ∑m

i�1
vikvil � 0, k ≠ l (24)

According to the theorem of real symmetric decomposition, we
have Eq. 25:

XX′ � VTX′ � VTT′V′ � VΛV′ (25)
where Λ is a diagonal matrix composed of the eigenvalues of the
matrix. According to the properties of eigenvectors, (ÛTU=I).
Therefore, the spatial function matrix can be obtained from the
eigenvectors of Λ. After obtaining V, the time function matrix T can
be obtained. Λ is a diagonal matrix, and the diagonal elements are
the eigenvalues of the matrix. Arrange the eigenvalues in descending
order as shown in Eq. 26:

λ1 ≥ λ2 ≥/≥ λm (26)

Calculate the variance contribution of each eigenvalue and the
cumulative variance contribution of the first k eigenvectors, based
on Eq. 27 and Eq. 28:

Rk � λk/∑m
i�1
λi, k � 1, 2,/, p p<m( ) (27)

G � ∑p
i�1
λi/∑m

i�1
λi (28)

3 Results and discussion

3.1 Drought trends during the growing
season of winter wheat and summer maize

Between 1981 and 2013, the growth season of winter wheat in the
Huang-Huai-Hai Plain area of North China showed an increasing trend
of drought, with a decrease rate of SPEI at 0.4/10a (p < 0.05). In contrast,
the growing season of summer maize in this region overall exhibited a
trend towards wetter conditions, with an SPEI growth rate of 0.1/10a
(Figure 3A). The changes in SPEI for the crop growing season in the low-
lying plains of Hebei, Shandong, and Henan provinces were not
significant overall, indicating no significant change in the dryness or
wetness conditions during the crop growing season over the past 33 years
(Figure 3B). The growing season of summer maize in the hilly and
forested area of Shandong showed a trend towards wetter conditions,
with a growth rate of approximately 0.27/10a. However, the winter wheat
growing season in this region exhibited a slightly drier trend at 0.066/10a
(Figure 3C). The foothill plains of the Yanshan and Taihang Mountains
showed a trend towards drier conditions for both the winter wheat and
summermaize growing seasons, with the summermaize season showing
a more pronounced trend towards dryness at 0.158/10a compared to the
winter wheat season at 0.072/10a (Figure 3D).

By using climate trend analysis methods to analyze the changes in
SPEI at 50 stations in the North China region from 1981 to 2013, it can
be observed that during the past 33 years, most stations in North China
showed a trend towards drier conditions during the winter wheat
growing season, particularly pronounced in the Huang-Huai-Hai Plain
area. Only some stations in the northern part of the North China Plain
showed a certain trend towards wetter conditions, mainly distributed in
the northern parts of the low-lying plains of Hebei, Shandong, and
Henan provinces, and the northern foothill plains of the Yanshan and
Taihang Mountains (Figure 4). As for the summer maize growing
season, apart from some stations in the northern part of North China
showing a more pronounced trend towards dryness, most areas in the
North China region exhibited a trend towards wetter conditions during
the summer maize growing season (Figure 5).

Overall, in the past 30 years, the winter wheat growing season in
North China has shown a trend towards drier conditions, while the
summer maize growing season has shown a trend towards wetter
conditions. This dry-wet trend, in terms of spatial distribution, has
manifested as a worsening drought trend at most stations for winter
wheat, with a few stations in the north showing a trend towards
wetter conditions, such as in cities like Bazhou, Miyun, and Botou
(Figure 4). As for summer maize, it has shown a trend towards
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wetter conditions at most stations, with a few stations in the north
exhibiting a trend towards dryness, such as in cities like Miyun,
Beijing, and Tangshan (Figure 5).

3.2 Mann-Kendall trend analysis results
of SPEI

The Mann-Kendall method was employed to analyze the
variation trends and change patterns of SPEI during the winter
wheat and summer maize growing seasons in four secondary
agricultural regions in North China. In Figure 6, UF represents
the statistics for the upward sequences, while UB represents the
statistics for the downward sequences.

In the four secondary agricultural regions of North China, the UF
curve of the winter wheat growing season showed an upward trend in
the early and mid-1980s, but it exhibited a downward trend after the
mid-1980s (Figures 6A, C, E, G). After the mid-1980s, the winter wheat
growing season showed a trend towards drier conditions. In the hilly
and forested area of Shandong, the UF curve showed a gentle decline

after the mid-1980s, suggesting that the trend towards drier conditions
was not significant (Figure 6A); in the Huang-Huai Plain area, the UF
curve showed a noticeable decline around 2003, indicating an
intensified trend towards drier conditions after 2003 (Figure 6C); in
the low-lying plains of Hebei, Shandong, and Henan, and the foothill
plains of the Yanshan and Taihang Mountains, the UF curve showed a
more stable trend after 1998, suggesting relatively unchanged drought
conditions in these areas (Figures 6E, G).

In the four major agricultural regions of North China, the UF curve
of the summer maize growing season exhibited spatial differences. The
UF curve trends in the hilly and forested area of Shandong and the
Huang-Huai Plain area were similar (Figures 6B, D). In these two
regions, the UF curve changes were relatively stable from around
1980 to 2003, indicating no significant change in drought conditions
during this period. After 2003, theUF curves of these two regions showed
an upward trend, suggesting a gradual trend towards wetter conditions
during the summer maize growing season. In the low-lying plains of
Hebei, Shandong, and Henan, and the foothill plains of the Yanshan and
Taihang Mountains, the UF curve trends were similar (Figures 6F, H).
Before 1997, the UF curve showed some fluctuation trends, but after

FIGURE 3
Drought trends during the winter wheat and summer maize growing seasons in different agricultural areas of the North China Plain from
1981 to 2013.
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1997, the UF curves in both of the mentioned areas exhibited a clear
downward trend, indicating that these areas showed a more pronounced
drying trend during the summer maize growing season after 1997.

3.3 Drought spatiotemporal characteristics
during the growing seasons of winter wheat
and summer maize

In order to further analyze the spatiotemporal distribution
characteristics of drought during the winter wheat and summer

maize growing seasons in North China over the past 30 years, the
SPEI for the winter wheat and summer maize growing seasons were
separately subjected to EOF decomposition. Through EOF
decomposition, mutually orthogonal characteristic vectors can be
obtained, which can represent independent drought spatial
distribution types in North China. The magnitude of the variance
contribution rate after EOF decomposition characterizes the
typicality of the corresponding mode’s drought spatial
distribution form. The larger the variance contribution rate, the
more typical the corresponding drought distribution form. The
maximum center of each mode is the sensitive center of drought
variation. The temporal coefficient can be used as a weight of the
spatial coefficient to reflect the contribution rate of a certain year to
this drought spatial distribution. The larger the absolute value of the
temporary coefficient, the more typical the distribution form
of that year.

Based on the magnitude of the variance contribution rate, the
first 3 characteristic vectors of the SPEI for the winter wheat and
summer maize growing seasons were selected. Table 2 respectively
list the variance contribution rates corresponding to the first
3 characteristic vectors of winter wheat and summer maize. It
can be seen that the variance contribution rate of the first mode
for both crops is much larger than that of the second and third
modes, indicating that, whether for winter wheat or summer maize,
the first mode corresponds to the main drought spatial distribution
type in North China. Below discusses the spatial distribution and
temporal coefficients for different modes:

3.3.1 The first mode
The variance contribution rate of the spatial coefficient

characteristic vectors of the first mode for the winter wheat and
summer maize growing seasons is significantly higher than that of
the second and third modes (Table 2), indicating that the spatial
distribution type of the first mode is the main spatial distribution
type in North China. From Figure 7, it can be seen that the spatial
coefficients corresponding to the first mode of the growing seasons
for both crops are positive, indicating a good spatial consistency in
the drought distribution in North China during the growing seasons
of the two crops. For winter wheat, the high-value area of the first
mode is mainly distributed in the southern part of the Yanshan and
Taihang mountain foothill plains and the low-lying plains of the
Hebei, Shandong, and Henan regions, including areas such as
Xingtai, Anyang, and Chaoyang. For summer maize, the high-
value area of the first mode is mainly distributed in the hilly
agricultural and forestry areas of Shandong and the plains of the
Huang-Huai region, including areas such as Shangqiu, Dangshan,
and Ganyu, indicating that the variability of drought occurrence is
more significant and their response to dryness and wetness is more
sensitive (Figures 7A, C).

Since the spatial coefficients corresponding to the first mode
of the growing seasons for winter wheat and summer maize are
both greater than 0 (Figure 7), the positive or negative situation of
the temporal coefficients corresponding to the first mode reflects
the overall dryness and wetness conditions in North China for
that year. The temporal coefficients corresponding to the first
mode of the winter wheat growing season show an overall trend
of first increasing and then decreasing. Specifically, between
1981 and 1991, the temporal coefficients of the first mode for

FIGURE 4
SPEI variation trends during the winter wheat growing season in
different stations of the North China Plain from 1981 to 2013.

FIGURE 5
SPEI variation trends during the summermaize growing season in
different stations of the North China Plain from 1981 to 2013.
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winter wheat show an overall increasing trend, and after 1991,
they show an overall decreasing trend, indicating that the main
drought spatial distribution type in North China during the
winter wheat growing season over the past 34 years has
undergone an evolution from wet to dry (Figure 7B). For

summer maize, before 2000, its temporal coefficients
alternated between positive and negative without a clear trend,
indicating that from 1981 to 2000, the overall dryness and
wetness conditions during the summer maize growing season
in North China did not change significantly. After 2000, there

FIGURE 6
Mann-Kendall test figures for winter wheat and summer maize growing seasons in different agricultural areas of North China from 1981 to 2013.
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were significantly more years with positive temporal coefficients
than with negative ones for the winter wheat growing season in
North China, showing an overall increasing trend, indicating that
after 2000, the summer maize growing season in North China has
shown a trend towards wetter conditions (Figure 7D).

3.3.2 The second mode
Both winter wheat and summer maize show significant north-

south differences in the spatial distribution of the second mode’s
SPEI EOF during their growing seasons. Specifically, for the winter
wheat growing season, the spatial coefficients of the SPEI EOF
exhibit a positive trend in the north and a negative trend in the south

(Figure 8A), while for summer maize, it is the opposite, with a
negative trend in the north and a positive trend in the south
(Figure 8C). This indicates that the second dominant dry-wet
spatial distribution pattern during the growing seasons of winter
wheat and summer maize in North China exhibits a contrasting
spatial pattern from north to south.

After 2000, there is a significant increase in the number of years
with positive temporal coefficients corresponding to the second
mode of the winter wheat growing season, indicating that the
northern drought during the winter wheat growing season in
North China has eased, while the southern drought has
intensified (Figure 8B). For summer maize, after 2000, the

TABLE 2 Variance contribution rates of the first 3 modes of EOF decomposition of the SPEI index for the winter wheat and the summer maize growing
season in the NCP (%).

Winter wheat Summer maize

Modal 1 2 3 Modal 1 2 3

Variance 41.29 14.27 8.10 Variance 32.32 17.52 8.37

Cumulative Variance 41.29 55.56 63.66 Cumulative Variance 32.32 49.84 58.21

FIGURE 7
Spatial distribution and temporal coefficient changes of the first mode for winter wheat and summer maize growing seasons in the NCP.
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temporal coefficients corresponding to the second mode show a
decreasing trend, indicating that the northern drought during the
summer maize growing season in North China is gradually
worsening, while the southern drought is gradually easing. In
particular, 2012 and 2013 are typical years of northern drought
and southern wetness (Figure 8D).

3.3.2 The third mode
The variance contribution rates of the third mode of the SPEI

EOF decomposition for the growing seasons of winter wheat and
summer maize are 8.10% and 8.37% respectively (Table 2), to some
extent reflecting the drought spatiotemporal distribution
characteristics of the two crops’ growing seasons in North China.
From the spatial distribution maps of the third mode’s spatial
coefficients for the two crops (Figures 9A, C), it can be observed
that for both the winter wheat and summer maize growing seasons’
SPEI EOF decomposition, the high-value areas of the third mode are
concentrated in the Shandong Peninsula. The difference lies in the
fact that for winter wheat, the hilly agricultural and forestry areas of
Shandong near Taian and Jinan are also significant high-value areas.
Overall, for winter wheat, the third mode exhibits a drought spatial

distribution pattern of three northeast-southwest-oriented bands,
with the middle band’s spatial coefficient higher than the two outer
bands, and the northern band having the smallest spatial coefficient.
For summer maize, the spatial coefficients of the third mode exhibit
a decreasing trend from the eastern coastal areas to the
western areas.

The temporal coefficients of the third mode during the winter
wheat growing season show an overall trend of first increasing and
then decreasing (Figure 9B). In 1986, 1988, 1991, and 2008, the
winter wheat growing season in North China exhibited significant
dryness in the middle and wetness on the sides; in 1993, 1994, and
2006, it exhibited a spatial distribution pattern of wetness in the
middle and dryness on the sides. The temporal coefficients
corresponding to the third mode of the summer maize growing
season show an overall increasing trend (Figure 9D), indicating that
during the summer maize growing season, the eastern part of North
China is becoming wetter, while the western part is becoming drier.
1981, 1982, and 2000 were typical years of western wetness and
eastern dryness in North China, while 1985, 1986, 1997, 2001, as well
as 2005 and 2007, were relatively typical years of eastern wetness and
western dryness.

FIGURE 8
Spatial distribution and temporal coefficient changes of the second mode for winter wheat and summer maize growing seasons in the NCP.
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4 Conclusion

Based on the SPEI, this study explored the spatiotemporal
characteristics of drought during the growing season of the
winter wheat and summer maize in the NCP from 1980 to 2013.
The main conclusions were as follows:

(1) From 1980 to 2013, except for the northern parts of YT_P
and JLY_P, the drought trend during the winter wheat
growing season has intensified, with HH_P showing the
most significant drought trend. In contrast, the summer
maize growing season showed wetting trends generally, with
SD_Q showing the most significant wetting trend, only the
northern parts of YT_P and JLY_P show a drought trend.

(2) The Mann-Kendall trend analysis results indicate that after
the mid-to-late 1980s, the winter wheat growing season in the
NCP has shown consistent drought trends, with HH_P
showing a particularly pronounced drought trend after
2003. For summer maize, after 2003, the wetting trends in
the SD_Q and HH_P was more significant, while the drought
trend is evident for JLY_P and YT_P after 1997.

(3) The consistency of the drought-wet spatial distribution is the
dominant pattern for the winter wheat and summer maize
growing seasons in North China. For winter wheat, the
southern parts of YT_P and JLY_P were more sensitive to
the changes of drought-wet conditions, while for summer
maize, SD_Q were more sensitive to the changes of the
drought-wet conditions.

(4) The opposite north-south drought-wet spatial distribution
pattern was the second dominant spatial distribution pattern
for the winter wheat and summer maize growing seasons in
the NCP. The third drought-wet spatial distribution pattern
for winter wheat consisted of three northeast-southwest-
oriented bands, with the spatial coefficient of the middle
band higher than the two outer bands. For summer maize,
the third drought-wet spatial distribution pattern overall
exhibited opposite characteristics from east to west.

5 Discussion

This study presents a comprehensive analysis of agricultural
drought in the North China Plain region, focusing solely on the

FIGURE 9
Spatial distribution and temporal coefficient changes of the third mode for winter wheat and summer maize growing seasons in the NCP.
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Standardized Precipitation Evapotranspiration Index (SPEI) and the
Empirical Orthogonal Function (EOF) method. The integration of
drone and remote sensing data with SPEI and EOF methods offers a
promising approach for monitoring and forecasting agricultural
drought, thus contributing to the development of effective
strategies for drought management in the North China Plain.
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