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Liupanshui City in Guizhou Province represents a karstmountainous regionwith a
delicate geological environment. The area has a long history of coal mining, and
several coal mines have been progressively closed in recent years. However, even
after closure of coal mines, the fractured rock mass in the mined-out areas
continues to undergo deformation over a specific period. In karst mountainous
regions, this deformation is affected by various factors including elevation, slope,
precipitation, and vegetation. In this study, we employed SBAS-InSAR technology
to construct a time series of surface deformation data from January 2019 to May
2022 within Liupanshui City’s LuJiaZhai-DaPingDi Minefield. Subsequently, this
data was comprehensively analyzed in conjunction with time series vegetation
cover, monthly precipitation, elevation, and slope data from the identical period.
The key findings of this research are as follows: 1) After the closure of the mine,
the subsidence area gradually stabilized, yet the volume of subsidence continues
to increase. The subsidence area primarily occurs near the MaiZiGou Coal Mine
air-mining area, which had a relatively short closure time, as well as in higher
elevation areas in the southern and eastern parts of theminefield. Specifically, the
maximum cumulative subsidence and the subsidence rate during the study
period reached −60.3 mm and −21.83 mm/a, respectively. 2) Surface
deformation is closely linked to slope, vegetation type, and rainfall, with
subsidence rates and amounts noticeably higher during the rainy season than
in the dry season. 3) Surface vegetation cover types display varied effects on
deformation, with grassland or shrub areas being more sensitive to precipitation
than forests. Forests, especially pine and fir, show a delayed subsidence response
to rain, typically 2–3 months post-rainy season onset. This inhibitory effect
lessens with increasing slope, particularly beyond a 25° threshold, where
responsiveness to precipitation and associated subsidence significantly
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increase. The findings of this study hold substantial scientific implications for the
restoration and management of closed mining areas, as well as the prevention of
geological hazards in karst complex mountainous regions.

KEYWORDS

SBAS-InSAR, mine closure, karst collapse, deformation monitoring, slope, precipitation,
vegetation cover type

1 Introduction

Karst landscapes are widespread throughout China. Specifically,
soluble rocks of Karst landscapes cover over an expansive area of up
to 365 × 104 km2, which accounts for more than one-third of the
national territory (Sun et al., 2023). Guizhou Province stands out as
the region of Karst landscapes due to its extensive development of
carbonate rocks and the thickest exposure, predominantly
composed of limestone and dolomite, resulting in the formation
of representative karst landforms (Chu et al., 2015). Additionally,
Guizhou Province is characterized by significant coal resources,
making it one of the southern Chinese regions with abundant coal
reserves. The primary coal-producing areas are located within the
zone of karst landscape development. The complex terrain and
fragile geological environment of this karst mountainous region (Shi
and Zhang, 2023), coupled with years of coal mining, have
exacerbated surface deformation issues. Furthermore, large-scale
landslides and collapses frequently occur, causing severe casualties
and property losses (Wang et al., 2020; Chen H. et al., 2022; Zhong
et al., 2022; Zhao Q. et al., 2023).

Coal, as a vital energy source (Yu et al., 2021), is extensively
utilized in industrial production and electricity generation,
remaining a primary source of energy in many countries (Chen
et al., 2020). China, with its abundant coal reserves and limited oil
resources, heavily relies on coal as a fundamental energy source and
essential rawmaterial (Chen B. et al., 2023), accounting for over 60%
of primary energy consumption (Deng et al., 2022). However, the
exploitation of coal resources has given rise to significant geological
environmental challenges, particularly concerning long-term coal
mining in the fragile surface environments of karst complex
mountainous regions. Prolonged coal mining activities can lead
to ground subsidence, damage to surface structures, and the
occurrence of geological hazards such as ground fissures,
landslides, and surface collapses. These hazards pose severe
threats to the productivity and safety of local communities, as
well as the construction and operation of critical national
infrastructure such as power grids and transportation routes
(Zhu Q. et al., 2019; Li et al., 2019; Li et al., 2021). In the 1980s,
China experienced a substantial demand for coal resources, resulting
in a rapid increase in the number of coal mines inmining cities. Over
time, the intensive and large-scale extraction of coal resources has
led to resource depletion in certain areas. Furthermore, recent
adjustments to China’s energy structure and the implementation
of supply-side structural reforms have prompted the consolidation
and closure of small, scattered, and disorderly coal mines,
significantly increasing the number of closed coal mines in the
country. The closure of these mines leaves behind a considerable
amount of land resources, leading to various issues related to
resources, environment, safety, and society, which have gradually

become apparent (Hu and Yan, 2018; Chen Z. et al., 2022; Li et al.,
2022). The transformation, redevelopment, and management of the
ecological environment of these closed mines have become a critical
concern for the sustainable economic and social development of
resource-based cities. Once a mine is closed, the rock mass of the
coal seam undergoes weathering deterioration and a reduction in
strength due to factors such as stress and groundwater.
Consequently, the stress and bearing capacity of the rock mass,
disrupted by mining activities, change, often resulting in secondary
subsidence of the air-mined area and the surrounding ground
surface (Chen B. et al., 2022). This deformation, particularly in
complex karst mountainous regions, tends to exhibit complex,
concealed, sudden, and long-term characteristics, posing potential
threats to the mining area and its surrounding engineering
construction and mining geological environment. Therefore,
there is an urgent need for comprehensive, long-term, and high-
precision monitoring of subsidence in closed mines. Furthermore, it
is crucial to explore the intricate relationship between surface
deformation in closed mining areas and variables such as
elevation, slope, precipitation, and vegetation cover. This
exploration serves as a vital prerequisite for conducting ecological
restoration and management of mining areas.

Despite high precision in subsidence monitoring, traditional
methods such as precise leveling measurements (Wang, 2013), GPS
measurements (Zhao and Zhu, 2020), and crack gauges (Bai et al.,
2020) suffer from limitations such as low point density, providing
only discrete subsidence data in well-explored deformation areas.
Moreover, these methods are characterized by long observation
cycles, high costs, lower efficiency, and struggle to meet the
increasing demand for regional subsidence monitoring. In
contrast, Interferometric Synthetic Aperture Radar (InSAR)
technology has gained widespread adoption for surface
deformation monitoring due to its advantages such as all-weather
capability, extensive coverage, high precision, and cost-effectiveness
(Zhu et al., 2017; Yang et al., 2020). Nevertheless, in mining areas,
the presence of dense surface vegetation and significant mining-
induced deformations often results in decreased coherence of SAR
interferograms (Zhu J. et al., 2019). This presence poses a challenge
for conventional differential InSAR (D-InSAR) techniques, making
it difficult to achieve optimal results in deformation monitoring in
mining areas. To address this challenge, mining area InSAR
monitoring has transitioned from D-InSAR to time series
interferometric synthetic aperture radar (TS-InSAR). TS-InSAR
effectively mitigates the challenges associated with D-InSAR,
including spatial-temporal decorrelation, DEM errors, and
atmospheric delay disturbances, while conforming to the
requirements for prolonged dynamic monitoring in mining areas
(Du et al., 2017; Tang et al., 2021; Liu et al., 2022). Noteworthily,
existing research employed two primary techniques for mining area

Frontiers in Earth Science frontiersin.org02

Huang et al. 10.3389/feart.2023.1353593

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1353593


deformation monitoring based on TS-InSAR, including the phase
stacking method (Zhang et al., 2021) and the small baseline subsets
InSAR (SBAS-InSAR) (Berardino et al., 2002). Both of the
aforementioned techniques are well-suited for long-term
deformation monitoring in mining areas and have gained
widespread use in subsidence monitoring. Zhang et al. (2016)
utilized the Stacking InSAR method to monitor subsidence in the
Pei Bei mining area, such that this method is confirmed to be
effective in large-scale deformation monitoring. Based on Sentinel-1
data, Zhang et al. (2018) employed a novel TOPS imaging mode
Stacking technique to analyze ground subsidence characteristics in
the Huainan mining area, achieving excellent monitoring results.
Their work also underscored the advantages of the Sentinel-1
satellite constellation, with its short revisit cycle and wide
coverage, making it particularly suitable for subsidence
monitoring in mining areas with expansive subsurface regions.
Similarly, Xu et al. (2022) applied three InSAR techniques based
on Sentinel data to extract mining-induced deformations in the
Datong Coalfield from November 2020 to October 2021. The results
suggested that both Stacking InSAR and SBAS InSAR outperformed
D-InSAR, with SBAS InSAR providing more precise displacement
rate results. Notably, Stacking InSAR exhibited superior
performance in densely vegetated or low-coherence regions.

The Liupanshui region boasts abundant coal resources and a
longstanding mining history. Researchers have successfully utilized
InSAR technology to investigate surface deformation in this region.
Zhu et al. (2022) employed Stacking InSAR technology, alongside
multi-temporal optical remote sensing images, stratigraphy, and
geomorphology, to identify 588 active landslides in western
Guizhou for the first time. These landslides, primarily mining-
induced (91.8%), reservoir bank-induced (4.1%), and reactivated
ancient ones (2.4%), underscore the profound impact of coal
mining on regional landslides, especially in steep, elevated areas.
Wu et al. (2021) applied SBAS InSAR technology using Sentinel-1
radar images for extensive surface deformation monitoring in
Liupanshui, Tongren, and Guiyang, Guizhou, identifying
102 hazard areas. Using optical images, they identified
72 deformation areas from mining or construction, along with
16 landslides and 14 suspected landslides. Chen L. et al. (2023)
utilized the Intermittent Small Baseline Subset (ISBAS) method
with Sentinel-1 images to determine Guizhou’s surface deformation
rate, mapping 693 active landslides. They noted a significant
correlation between landslide distribution and factors such as
altitude, slope, and coal-bearing strata. The aforementioned
researchers have effectively utilized InSAR technology for a
comprehensive surveillance of Guizhou’s landslides, providing
crucial insights into the macroscopic distribution of surface
deformation in the area. Furthermore, researchers have examined
and analyzed the destabilization mechanisms behind typical mining-
induced landslides in the region (He et al., 2022; Zhao C. et al., 2023;
Chen H. et al., 2023; Li et al., 2023). Literature review suggests that
research primarily concentrates on extensive landslidemonitoring and
analyzing deformation and destabilization mechanisms of typical
mining-induced landslides in Guizhou’s Liupanshui area. Reports
on surface deformation of closed mines in this region are scarce.
Recent studies on closed mines predominantly focus on long-term
monitoring, subsidence trends, and post-closure mechanism analysis
in plain areas (Deng et al., 2015; Yu et al., 2021; Liang and Hu, 2022;

Qin et al., 2022; Zhang et al., 2023). At present, the majority of
researchers have primarily concentrated on long-termmonitoring and
the analysis of subsidence trends and mechanisms after mine closure.
Nevertheless, in the karst mountainous regions of southwestern
China, factors (e.g., high altitudes, steep slopes, concentrated
precipitation, and diverse vegetation types) complicate the
subsidence patterns in closed mines. These mines not only
experience the effects of underground goaf areas but are also
affected by the mentioned environmental factors. Therefore,
investigating the complex relationship between surface deformation
within closed mining areas and multiple influencing factors in this
region holds significant practical importance.

LiuPanshui City, renowned as the primary “Coal Capital of
South China,” possesses abundant coal reserves and occupies a
significant position as a major coal-producing city in Guizhou
Province and even China. The coal mines in this region are
predominantly located in high-altitude areas characterized by
complex geological formations, including karst mountains.
Extensive coal mining activities over the years have exacerbated
surface deformations, resulting in the emergence of geological
hazards such as ground fissures, landslides, and subsidence (Fang
et al., 2016; Wu et al., 2021). In recent times, LiuPanshui City has
closed several coal mines, prompting this study to focus on the
LuJiaZhai-DaPingDi Minefield as a representative case. Leveraging
100 scenes of Sentinel-1 ascending orbit data spanning from January
2019 to May 2022, the study employs the Small Baseline Subset
(SBAS) InSAR technique to continuously monitor surface
deformations in four closed mines within the region.
Subsequently, the research investigates the intricate relationships
among elevation, slope, vegetation coverage, monthly precipitation,
and surface deformations. The outcomes of this investigation can
serve as a valuable foundation for decision-making pertaining to
ecological restoration, judicious land reuse, and the prevention of
geological hazards in closed mining areas.

2 Study area and data sources

2.1 Study area overview

The study area encompasses the LuJiaZhai-DaPingDi Minefield
(Figure 1), located in the western region of Liupanshui City,
Guizhou Province. The mining area’s central coordinates are
104°31′37.2″E, 25°59′45.6″N. It falls into the transitional slope
zone from the Yunnan Plateau to the central Guizhou mountain
area, and is characterized as a typical southwestern karst mountain
region. The terrain in this area is intricate, featuring expansive
canyons, towering peaks, steep slopes, and deep valleys. It exhibits
poor stability and limited resistance to interference. The elevation
within the region ranges from 1,501 to 2048 m, with a relative height
difference of 547 m. The slopes are notably steep, of which the
steepest slope reach 88.27 degrees. The mining area comprises
MaiZiGou Coal Mine, LongTouShan Coal Mine, FuGuiZhuang
Coal Mine and BaiPing Coal Mine, which have a long history of
mining but are currently closed, with the time of mine closure
depicted in Figure 1D.

The strata present in the mining area demonstrate a
characteristic geological pattern known as “hard on top, soft
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below.” These formations can be classified into three distinct rock
types: hard rock, interbedded hard and soft rock, and soft rock. The
hard rock category encompasses the Guanling Formation from the
Triassic period and the Emeishan Basalt Formation from the
Permian period. These formations consist of limestone, dolomite,
and dolomitic limestone, which are characterized by their hardness,
brittleness, and high mechanical strength. However, unfavorable
slope conditions can lead to deformation and collapse in these rocks.
The interbedded hard and soft rock category includes the
Yungningzhen Formation from the Triassic period. This
formation comprises thin to medium-thickness layers of
limestone, dolomite, shale, sandstone, and mudstone. These rocks
exhibit variable lithological properties and complex combinations.
The presence of karst development, active groundwater flow, high
mechanical strength of carbonate rocks, and resistance to
weathering contribute to their stability. Nevertheless, the
existence of weaker interlayers can result in landslides and other
geological hazards under unfavorable slope conditions. The soft rock
category consists of the Feixianguan Formation from the Triassic
period and the Longtan Formation from the Permian period. These
formations consist of thin to medium-thickness layers of mudstone,
sandy mudstone, siltstone, sandstone, shale, and coal seams. These
rock formations are highly susceptible to disturbances caused by
mining activities and exhibit weak resistance to weathering. They
tend to soften when exposed to water, leading to poor stability.
Under unfavorable slope conditions, these rock formations are
prone to landslides, collapses, and other geological hazards.

2.2 Data sources

The study employed Sentinel-1 ascending orbit satellite data to
cover the study area. Sentinel-1 is a radar satellite equipped with a
C-band radar sensor and is part of the European Space Agency’s
Copernicus program. The Interferometric Wide (IW) imagery mode
and Single Look Complex (SLC) data format were utilized. The data
was collected with HH polarization and had a spatial resolution of
5 m × 20 m. The dataset spanned from January 2019 to May 2022,
comprising a total of 100 scenes. This dataset was utilized to construct
a time-series of deformation information within the study area. To
enhance data accuracy, AW3D30 Digital Surface Model (DSM) data
was used for terrain phase correction. Geocoding of the data was
performed using SAR imagery, following the methodology described
by Yang et al. (2021). Systematic errors resulting from orbital
inaccuracies were mitigated using Precise Orbit Ephemerides
(POD) data. Landsat8 OLI remote sensing images, provided by the
USGS, were used to extract Fraction of Vegetation Coverage (FVC)
information for the same time period. The extraction of FVC
information was conducted on the Google Earth Engine platform.
This involved using Landsat OLI remote sensing images from January
2019 to 2022 and calculating the Normalized Difference Vegetation
Index (NDVI) based on the image element dichotomous model. The
Landsat OLI remote sensing images from January 2019 to May
2022 were utilized to calculate the monthly NDVI for the study
area, and subsequently, the time-series FVC of vegetation cover was
calculated based on the image element dichotomous model (Adams

FIGURE 1
Overview of the Study Area and Mine Closure Time. ((A) illustrates the study area’s schematic location, (B) its altitude, (C) its slope, and (D) the coal
mining rights and mine closure times).
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et al., 1986). Furthermore, ASTER Global Digital Elevation Model
(GDEM) data from NASA was utilized to obtain elevation and slope
information for the study area. Monthly average precipitation data for
the study area was obtained from the China Meteorological Data
Network. Further details regarding the data sources can be found in
Table 1. To synchronize the InSAR cumulative deformation, FVC,
and monthly rainfall data for time series analysis, we computed both
the monthly cumulative deformation and FVC data, with the month
serving as the measurement unit.

3 Research methods and technical
principles

3.1 SBAS-InSAR technology principlesw

The small baseline subsets InSAR (SBAS InSAR) technique,
initially introduced by Berardino et al. (2002) in 2002.

The fundamental principle of this technique assumes the
collection of S Synthetic Aperture Radar (SAR) images, denoted
as (t1, t2,/, ts), with the study area covered. Among this collection,
one SAR image from the middle of the sequence is selected as the
master image. The remaining S − 1 SAR images are then registered
and sampled. This process results in the creation of M
interferometric pairs, in accordance with the following (Eq. 1):

S

2
≤M≤

S S − 1( )
2

(1)

In general, vertical baseline thresholds and time baseline
thresholds are established based on actual conditions to limit the
range ofM values. This approach can mitigate the adverse effects of
excessive vertical and temporal baselines that can induce coherence
loss (Li et al., 2013). To calculate the differential interferometric
phase, for the j interferogram, which is derived from SAR image
interferometry acquired at two distinct times, denoted as tA and tB
(tA < tB), the differential interferometric phase of the pixel located at
distance coordinate r in the range direction and azimuth coordinate
x is given by Xiao et al. (2019) as follows (Eq. 2):

δφj x, r( ) � φ tB,x, r( ) − φ tA, x, r( ) ≈ 4π
λ

dtB − dtA( ) + Δφtop,j

+ Δφatm,j + Δφnoise,j (2)

Where λ denotes the radar wavelength, dtB and dtA represent the
cumulative shape variables thought to be the starting value of tA
corresponding to the corresponding moment, Δφtop,j expresses the
residual terrain phase difference, Δφatm,j is the atmospheric delay
phase difference, and Δφnoise,j is the noise phase difference. After
removing the phases other than the shape variables, the
interferometric phase simplifies to:

dtB − dtA � Vi tB − tA( )
Where Vi represents the deformation rate from tA to tB time period.
The phase of the differential interferogram after the resulting de-
entanglement can be expressed by the matrix as:

Av � δφ

Where A represents an m × s matrix, which, when subjected to
Singular Value Decomposition (SVD), provides the average
deformation rate for each time period (Dong et al., 2022).

In this study, the processing of Sentinel-1 data involved
multi-view processing with spatial resolutions of 23.8 m ×
28.0 m in the range and azimuth directions, respectively, using
a 10 × 2 multi-view ratio. The differential interferometric
combinations employed a maximum time interval of 48 days
and a maximum vertical baseline of ±250 m. This resulted in a
total of 416 interferometric pairs acquired from ascending orbit
data. The differential interferometric processing was performed
on these combinations, leading to the generation of differential
interferograms and coherence coefficient maps. To mitigate
phase noise, an adaptive filtering method was applied.
Subsequently, phase unwrapping was carried out on the
filtered interferograms, utilizing the Minimum Cost Flow
(MCF) method for this purpose. After error removal, the
phase unwrapping results underwent Stacking and Small
Baseline Subset (SBAS) processing to obtain deformation rates
and time-series results.

TABLE 1 Data details.

Data type Data
track

Date of
data

Incident
angle/°

Resolution/
m

Source

Sentinel-1 Ascending
track

2019.01-
2022.05

37.03 5 × 20 European Space Agency (https://search.asf.alaska.edu/)

Landsat OLI — 2019.01-
2022.05

— 30 United States Geological Survey (https://glovis.usgs.gov/)

AW3D30 DSM — 2011 — 30 Japan Aerospace Exploration Agency (https://www.eorc.jaxa.jp/
ALOS/en/aw3d30/data/index.htm)

ASTER GDEM — 2013 — 30 National Aeronautics and Space Administration (https://search.
earthdata.nasa.gov/search)

Precise Orbit
Ephemerides data

— 2019.01-
2022.05

— — European Space Agency (https://scihub.copernicus.eu/gnss/)

month average rainfall — 2019.01-
2021.12

— — china meteorological data service center (https://data.cma.cn/)
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3.2 Stacking technology principles

Stacking refers to a technique (Sandwell and Price, 1998) used to
perform a weighted average solution on multiple differential
interferograms acquired through the Differential Interferometric
Synthetic Aperture Radar (D-InSAR) method. This process is aimed
at obtaining linear phase deformation rates to mitigate the influence
of spatially uncorrelated noise. The solution format can be expressed
as follows (Eq. 3):

ph rate � ∑n
i�1Δti*phi( )

∑n
i�1Δt2i

(3)

Where ph rate represents the linear phase deformation rate, Δti
stands for the time baseline of the i set of differential interferograms,
phi represents the unwrapped phase value of the i differential
interferogram.

4 Results and analysis

4.1 Subsidence rate results and
accuracy analysis

Using SBAS-InSAR technology, we obtained radar line of sight
(LOS) deformation rates (Figure 2) and cumulative time-series
deformation results (Figure 4) for four closed mines in the
LuJiaZhai-DaPingDi Minefield in Liupanshui City from January
2019 to May 2022. In these figures, positive values indicate vertical
surface uplift (i.e., along the LOS), while negative values represent
vertical subsidence (i.e., along the LOS). As depicted in Figure 2, during
the study period, significant deformation was observed in the
northeastern and southwestern parts of the mining area. The
maximum annual average subsidence rate and the maximum uplift
rate within themining area, located in the western and southern regions
of the MaiZiGou Coal Mine, were determined as −21.83 mm/year and
8.13 mm/year, respectively. In the western part of the MaiZiGou Coal

Mine, a prominent subsidence center was observed, with subsidence
rates irregularly spreading out in an elliptical pattern from the center.
This subsidence was notably higher than the other three mines. The
overall subsidence within the mine was oriented in an “east-west”
direction, primarily affected by the closure time of the mine and the
distribution of old goaf areas. The MaiZiGou Coal Mine was closed in
December 2019 but was still operational in 2019, resulting in higher and
concentrated subsidence rates in the western part of the mine.
Furthermore, multiple subsidence centers were observed in the
southwestern part of the mining area, which were distributed in a
“northwest-southeast” direction, of which the maximum subsidence
rate was determined as −15.13 mm/year.

It is imperative to assess the reliability of the monitoring results
before the analysis of the results of ground subsidence monitoring.
Currently, there are two commonly used accuracy validation methods:
internal consistency accuracy validation and external consistency
accuracy validation. Due to the lack of concurrent ground-based
monitoring data, this study employs the internal consistency
accuracy validation method. This method involves cross-validating
the subsidence rate results extracted by two different algorithms to
investigate the reliability of the surface subsidence monitoring results.
Using the SBAS technique to extract Line of Sight (LOS) deformation
rates in the study area as the X-axis and the LOS deformation rates
extracted by the Stacking technique as the Y-axis, a scatter density plot
was created, as presented in Figure 3. The correlation coefficient (R2)
between the LOS deformation rates for corresponding points obtained
by the two methods was 0.7017, indicating a high degree of correlation
between the deformation rates obtained by the two InSAR techniques in
the study area, thus validating the reliability of the subsidence
monitoring results in the study area.

To evaluate the extent of ground subsidence development in the
study area, this research classifies the ground subsidence rates into four
distinct categories, as outlined in Table 2. During the period spanning
from January 2019 to May 2022, the LuJiaZhai-DaPingDi Minefield
exhibits the following tiers of ground subsidence: Areas experiencing
subsidence rates below −15 mm/year are classified as regions with a

FIGURE 2
Average annual deformation rate of closed mines in LuJiaZhai-DaPingDi Minefield.
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high degree of ground subsidence development, constituting a mere
0.29% of the overall mining area. Subsidence rates ranging
from −15 mm/year to −5 mm/year indicate regions with a moderate
level of ground subsidence development, encompassing approximately
19.34% of the total mining area. Regions with subsidence rates falling
between −5 mm/year and 5 mm/year denote areas with relatively stable
ground subsidence development, representing the largest portion,
accounting for 79.55% of the entire mining area. Areas exhibiting
subsidence rates exceeding 5 mm/year are categorized as uplifted
regions, comprising a mere 0.82% of the total mining area. This
classification system serves as a valuable tool for evaluating and
characterizing the extent of ground subsidence development in the
study area, enabling a comprehensive understanding of the spatial
distribution of subsidence and uplift patterns within the mining region.

The results indicate that, following the closure of the mines, the
overall proportion of surface deformation areas within the LuJiaZhai-
DaPingDi Minefield is relatively high. Except for the relatively stable
areas, the combined area of other subsidence development levels
accounts for 20.45% of the total mining area.

4.2 Spatial and temporal distribution analysis
of surface deformation in the mining area

This study aimed to analyze the spatiotemporal distribution
patterns of surface deformation in various closed mines and the
mining area. To accomplish this, the study utilized acquired

subsidence rates and performed temporal integration to assess
the cumulative subsidence over time in the study area (Figure 4).
Nine equally spaced time intervals were selected to represent the
cumulative subsidence for each period.

Figure 4 demonstrates that the distribution of cumulative
subsidence aligned with the subsidence rates. Overall, the region’s
different mines underwent varying degrees of deformation. The
highest cumulative subsidence was observed in the MaiZiGou Coal
Mine, measuring −60.3 mm, while the maximum uplift was reported
in the southern part of the study area, with a magnitude of
34.17 mm. During the study period, the MaiZiGou Coal Mine
was operational in 2019 but closed by the year’s end. However,
deformation persisted even after closure, expanding from the goaf
area to the surrounding regions. The maximum cumulative
subsidence and uplift reached −60.3 mm and 21.45 mm,
respectively. The FuGuiZhuang Coal Mine ceased operations in
June 2018. Within the study period, this mine experienced a
maximum cumulative subsidence of −23.48 mm and an uplift of
22.82 mm. Subsidence primarily affected the higher-altitude western
area of the mine. Although cumulative subsidence increased over
time, deformation in this mine stabilized, with limited diffusion. The
LongTouShan Coal Mine closed in February 2015. Its western part
remained relatively stable without significant deformation, while the
eastern part experienced cumulative subsidence of −24.18 mm and
uplift of 19.71 mm, influenced by the MaiZiGou Coal Mine. The
BaiPing CoalMine closed in August 2015.Within its boundaries, the
maximum cumulative subsidence and uplift were −21.86 mm and
22.44 mm, respectively. Deformation in this area remained relatively
stable, primarily concentrated in the higher-altitude northeastern
region of the mine, with ongoing deformation.

Notably, two distinct subsidence clusters were observed near the
closed mines. One cluster was located in the southwestern part of the
mining area, while the other was found in the eastern region,
characterized by higher altitudes and steeper slopes. These
clusters experienced cumulative subsidence and uplift
of −49.93 mm and 27.95 mm, respectively. Figure 4 indicates that
the extent and magnitude of deformation within these areas
continued to expand throughout the study period. Although the
range of deformation stabilized byMay 2022, the deformation values
were still increasing, indicating ongoing subsidence beneath the
surface with future persistence.

The study also included two profile lines for the LuJiaZhai-
DaPingDi Minefield, one in the longitudinal direction and the other
in the transverse direction (Figure 1D). These profile lines were
strategically positioned to intersect areas with significant subsidence.
Subsidence rates and elevation values were then extracted from these
profiles. Figure 5 illustrates an overall negative correlation between

FIGURE 3
Correlation Analysis of Common Points between SBAS and
Stacking Techniques.

TABLE 2 Ground subsidence levels in the LuJiaZhai-DaPingDi minefield.

Subsidence rate/(mm/a) Subsidence level Area proportion/(%)

<−15 High Subsidence Area 0.29

−15–−5 Moderate Subsidence Area 19.34

−5–5 Relatively Stable Area 79.55

>5 Uplifted Area 0.82
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subsidence rates and elevation. This suggests that as elevation
increases, surface deformation becomes more frequent and
exhibits a fluctuating decreasing trend. In contrast, as elevation
decreases, subsidence rates decrease and tend to stabilize. In the
northern section of Profile Line D, influenced by the closure time of
the MaiZiGou Coal Mine, a “V”-shaped curve became evident
around the profile line points near 100.

The findings of this study indicate that surface deformation
within the closed mining area is influenced not only by the timing of
mine closures but also by the elevation of the region. This correlation
can be attributed to the study area’s characteristics as a typical karst
mountainous region, where high elevations and significant
topographic variations are prevalent. These high-elevation areas
are often characterized by steep slopes and deep valleys. Due to
external factors such as precipitation, these regions are more
susceptible to complex and concealed surface deformation.
Additionally, elevation plays a role in determining the types of
vegetation covering the surface. Different vegetation types exert
diverse effects on slope stability (Asada and Minagawa, 2023).
Consequently, this study places particular emphasis on
investigating the interconnected relationship between surface
deformation, elevation variations, slope characteristics, vegetation

distribution, and precipitation patterns following mine closures
within karst regions.

4.3 Analysis of surface deformation at
different elevation gradients and slope levels

To conduct a comprehensive analysis of surface deformation within
a mining area in a complex karst region following mine closures at
various elevations and slopes, and to investigate the interplay between
surface deformation, precipitation patterns, and vegetation coverage,
this study employed two sets of deformation feature points for cross-
validation purposes within the designated study area. The selection of
these feature points aimed to minimize the influence of anthropogenic
activities, such as urban areas and croplands, on surface deformation.
Figure 1B illustrates the deformation feature points at different
elevations (points a to l), while Figure 1C displays the feature points
at various slopes (points m to x). The primary objective of this research
is to examine the relationship between surface deformation within a
mining area in a typical karst region after mine closures, considering
different elevations and slopes, as well as its interaction with
precipitation and vegetation coverage.

FIGURE 4
Temporal Cumulative Subsidence in the Lu LuJiaZhai-DaPingDi Minefield for Closed Mines (reference time: 2019-01-09).
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Figure 6 presents time series curves depicting the deformation
patterns at different elevations, ranging from 1566 m to 2022 m. The
subsidence trends for these points consistently exhibit fluctuating
downward movement. Among these points, the maximum
cumulative subsidence is −31 mm (point c), while the minimum
is −16 mm (point f), with the remaining points falling within
the −20 mm to −30 mm range. Precipitation in the study area is
concentrated between May and October, while vegetation coverage
is particularly high from June to September. Generally, the
subsidence values at these points display a systematic response to
precipitation. During the rainy season, subsidence rates and
magnitudes increase significantly, whereas during the dry season,
the points tend to experience sliding or uplift. Notably, points a, c, d,
and e exhibit a more rapid response to precipitation, showcasing
significant subsidence early in the rainy season as precipitation
accumulates. In contrast, points b and f demonstrate a delayed
response, with noticeable subsidence occurring two to 3 months
after the onset of the rainy season.

Precipitation is a significant contributing factor to surface
deformation and geological hazards, such as landslides and
collapses, particularly when precipitation is prolonged and heavy
(Zhang et al., 2020; Wang et al., 2022; Ma et al., 2023; Pei et al.,
2023). In the designated study area, precipitation is concentrated
within specific periods, with substantial amounts recorded. Monthly
average precipitation at the deformation points from May to
October can reach as high as 1887 mm, and certain months
exhibit maximum monthly precipitation of up to 3,586 mm. The
unique geological conditions in this area, characterized by a layered
structure of hard rock atop soft rock and the presence of coal seams

in the Longtan Formation (P3l) underlying the mountains, have
been disrupted by past coal mining activities, resulting in the
formation of fractures. Consequently, precipitation plays a
significant role in surface deformation and the development of
geological hazards in this region. Figure 6 demonstrates that
subsidence is more pronounced during the rainy season. This can
be attributed to twomain factors. Firstly, heavy precipitation leads to
surface soil erosion and extensive infiltration through rock fractures,
resulting in the softening of rocks and soils, increased water content,
and added weight to the slopes. Prolonged precipitation further
saturates the soft rock layers, significantly reducing their shear
strength and resistance to sliding along contact surfaces. The
combination of increased material weight and slope gradient
accelerates surface subsidence. Secondly, the study area exhibits
typical characteristics of a complex karst mountainous region, with
underlying fractured rock bodies and well-developed joint and
fracture networks influenced by tectonic movement. Previous
coal mining activities have created pathways for atmospheric
precipitation to penetrate the rock mass. Prolonged precipitation
intensifies dissolution processes, leading to the formation of
numerous karst fissures and conduits. These geological features
reduce the stability of the mountain mass and trigger surface
deformation.

In general, a scarcity of vegetation coverage leads to a relatively
exposed surface with limited capacity for retaining soil, rendering it
more vulnerable to subsidence during prolonged and heavy
precipitation (Jacquemart and Tiampo, 2021). Conversely, high
vegetation coverage indicates the presence of well-established
surface vegetation, which enhances the soil’s ability to retain its

FIGURE 5
Profile of Subsidence Rate and Elevation. [(A–D) depict the subsidence rates and elevations for cross-section lines (A) through (D), respectively].
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structure. However, despite the substantial vegetation coverage
during the rainy season, significant surface subsidence persists in
the study area, indicating a robust response of surface deformation
to precipitation. Additionally, it is important to note that vegetation
coverage solely reflects the extent of surface vegetation and does not
consider the specific types of vegetation present. Different vegetation
types have varying impacts on soil retention capacity (Zhang et al.,
2020). Among the deformation points presented in Figures 6A–F,
with the exception of deformation point d, which has a slope of 33°,
the other deformation points exhibit similar slopes ranging from 11°

to 19°. Deformation points b and f demonstrate distinct deformation
patterns compared to other feature points. These points are
predominantly covered by dense coniferous trees, including tall
species such as fir and pine. The presence of these tree species,
characterized by expansive canopies and deep-rooted systems, plays
a crucial role in stabilizing the soil structure, thereby reducing soil
loosening and collapse. Furthermore, the dense canopies of fir and
pine trees act as effective buffers during precipitation, mitigating the
impact of precipitation on the soil. Moreover, the accumulation of
fallen branches and leaves on the ground resulting from these trees
significantly decelerates water flow and erosion, contributing
positively to soil and water conservation efforts.

Although deformation points a, c, d, and e have relatively high
vegetation coverage, they exhibit a more rapid response to
precipitation. Typically, with the increase in precipitation during
the early part of the rainy season, these deformation points
experience a significant increase in subsidence. The primary
reason for this behavior is that the surface coverage in these
deformation points mainly consists of shrubs and grassland.
Compared to large trees (such as fir and pine trees), the surfaces
with shrubs and grassland are more vulnerable to the impact and

erosion of heavy rain, leading to soil loosening and collapse, and
consequently accelerating surface deformation.

To establish the correlation between surface deformation at
different elevations and precipitation and vegetation coverage, an
additional set of deformation points was selected for validation. The
selection criteria for these points remained consistent, with efforts made
to avoid areas influenced by human activities, such as farmland and
urban regions. In Figure 7, deformation points g-l were chosen,
exhibiting elevations that incrementally increased by approximately
100 m, ranging from 1591 m to 2011 m. With the exception of
deformation points I and j, which possessed a slope of 28°, the slope
of the remaining deformation points exhibited minimal variation,
falling within the range of 12°–22°. Figure 7 illustrates a comparable
pattern among deformation points g-l and deformation points a-f in
Figure 6. Overall, all deformation points displayed a fluctuating
downward trend, with the subsidence values systematically
influenced by precipitation. Notably, the subsidence rate and
magnitude of deformation points notably escalated during the rainy
season. The diverse types of vegetation coverage observed at the
deformation points led to distinct deformation patterns during this
period. Deformation points g, k, and l were predominantly
characterized by the presence of large trees, such as fir and pine
species. These points exhibited a noticeable delay in subsidence,
typically occurring 2–3 months after the onset of the rainy season.
Conversely, deformation points h and j were primarily covered by
shrubs and grasslands, rendering them highly responsive to
precipitation. These points often displayed significant subsidence
during the initial month of the rainy season. Additionally,
deformation point I, despite having tree vegetation, possessed a
steep slope of 28.63°. It demonstrated a sensitive response to the
rainy season, exhibiting significant subsidence during the early stages

FIGURE 6
Time Series Curves of Deformation Points at Different Elevations. [(A–F) have elevations of 1566 m, 1672 m, 1729 m, 1829 m, 1930 m, and 2022 m,
respectively].
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of precipitation. This suggests that the terrain’s slope is a contributing
factor to surface deformation, with the steepness of the slope influencing
the extent to which precipitation impacts deformation points.

Topography and geomorphology play a significant role in
governing slope stability, with slope gradient serving as a crucial
parameter for characterizing the terrain (Guo et al., 2008). To
examine the deformation patterns of deformation points at
different slopes and their response to precipitation, we extracted
time series cumulative subsidence data, vegetation cover data, and
monthly cumulative precipitation data from two distinct sets of
deformation feature points. To reduce the effect of different
vegetation types on precipitation data, we selected deformation
feature points that all exhibited woody vegetation cover.

As depicted in Figure 8, time series curves were generated for
deformation points at different slope levels (<5°, 5°–15°, 15°–25°,
25°–35°, 35°–45°, >45°). The slope angles for points in Figures
8M–R increased progressively, ranging from 4.38° to 57.76°. In
general, all deformation points exhibited a fluctuating subsidence
trend, demonstrating a distinct response to variations in precipitation.
During the rainy season, deformation points are subjected to
significant subsidence, while they will remain relatively stable
during the dry season. With the increase of the slope gradient,
subsidence rates will accelerate. Notably, deformation points in
Figures 8M, N, O do not show significant subsidence at the early
stages of the rainy season, even under intense precipitation in June
2021. Instead, they exhibit delayed subsidence, typically occurring
2–3 months after the onset of the rainy season. In contrast,
deformation points in Figures 8P, Q, R responded rapidly to
increased precipitation during the early stages of the rainy season,
displaying noticeable subsidence. These results suggested that with the
increase of slope gradient, deformation points will become more

sensitive to precipitation. Specifically, when the slope gradient was less
than 25°, deformation points were less affected by precipitation, and
their response time may be delayed, with significant subsidence
occurring 2–3 months after the rainy season starts. Nevertheless,
when the slope gradient was greater than 25°, deformation points
respondedmore quickly to precipitation, typically showing substantial
subsidence at the beginning of the rainy season.

The topographic characteristics of the study area, characterized
by elevated mountains and steep slopes, exert a profound influence
on slope stability. The gradient of the slope not only impacts the
distribution of stress within the slope but also plays a pivotal role in
determining crucial factors such as surface water runoff, the
distribution of loose deposits across the slope, and the thickness
of such deposits. Steeper slopes experience more significant stress
distribution across their surfaces and upper sections, rendering them
more susceptible to deformation and failure. Furthermore, during
the rainy season, steeper slopes tend to accumulate surface runoff,
and the steep gradient amplifies the velocity of the runoff. This
phenomenon intensifies erosion and scouring of the slope surface,
exacerbating soil erosion and facilitating soil loosening and collapse.
In such circumstances, surface deformation becomes more probable,
thereby increasing the occurrence of geological hazards.

To verify the deformation patterns and their response to
precipitation at different slopes, we selected another set of
deformation points with varying slopes. The slopes of these
points, as presented in Figure 9, were 3.58°, 12.31°, 21.05°, 32.58°,
35.93°, and 49.33°, and all of them had woody vegetation cover. As
depicted in Figures 9S–X, these points displayed a similar pattern to
those in Figure 8. Overall, with an increase in slope, the deformation
points showed an accelerating sinking trend. The response of the
deformation points to precipitation was quite apparent, with

FIGURE 7
Time Series Curves for Deformation Points at Different Elevations. [(G–L) have elevations of 1591 m, 1634 m, 1750 m, 1855 m, 1938 m, and 2011 m,
respectively].
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significant sinking occurring during the rainy season. Among these
points, a slope of 25° appeared to be a threshold for the speed of
response to precipitation. Specifically, when the slope was less than
25°, the deformation points exhibited a delayed response to
precipitation, typically showing significant sinking 2–3 months
after the rainy season begins. On the other hand, when the slope
exceeded 25°, the deformation points responded very rapidly, with
significant sinking occurring at the start of the rainy season.

5 Discussion

5.1 Analysis of surface deformation in karstic
mountainous regions as affected by
subsidence of closed mines

Following the cessation of mining activities, the persistence of
ground subsidence, characterized by collapsed rock masses within
goaf regions, remains a prominent contributor to land subsidence in
the area.Within the study area, which represents a typical karst complex
mountainous region, comprehending the implications of subsidence
induced by mine closures on surface deformation is of utmost
importance. Currently, there exists a dearth of research concerning
the distribution patterns and impact models of surface deformation
resulting from mine closure within this specific study area. Hence, our
discourse is primarily centered around this representative study area.

In their investigation on surface deformation resulting from mine
closures, Chen et al. (2020) explored the characteristics of surface
deformation in several abandoned goaf areas at Ying’an Coal Mine
and Baoshan Coal Mine, situated in the alluvial plains of Jilin, China.
Their findings revealed that the subsidence process subsequent to coal

mining can be divided into two distinct stages: the initial stage primarily
entails subsidence in the central region of the goaf, while the subsequent
stage witnesses subsidence predominantly concentrated in the
peripheral areas of the goaf. The distribution patterns of surface
deformation arising from mine closures in this study exhibit
consistency with the observations made by Chen et al. However, it
is crucial to recognize that the study area under consideration represents
a typical karst complex mountainous region characterized by robust
karst processes, thereby rendering the impact of mine closure on
ground subsidence more intricate than in plain areas.

Surface deformation in the LuJiaZhai-DaPingDi Minefield extends
beyond the confines of the closed mining areas, predominantly
impacting high-altitude regions adjacent to the closed mining areas.
This phenomenon can be attributed to multiple factors. Coal mining
operations typically disrupt the initial stress state of overlying rock
layers, resulting in their redistribution and consequent movements and
deformations. This process generates various voids, encompassing
fractures between rocks, cracks within overlying rock layers, and
fissures within loose sedimentary materials (Wang et al., 2016). The
study area exhibits significant elevation variation, characterized by a
“hard on top and soft underneath” pattern in the rock layers. Coal
seams are situated within the Longtan Formation (P3l) at the base of the
mountains, while the mining goaf is located at the foothills. During the
initial phases of coal mining, the central portion of the goaf, providing
the weakest support to the overlying rock layers, experiences substantial
early movements and deformations concentrated in its central region.
As the overlying rock layers subside, the progressive deformation
gradually extends upward, resulting in surface subsidence and the
formation of numerous fractures within the mountains. With time,
the central part of the mining goaf undergoes compaction first. At this
stage, the central portion of the goaf reaches a relatively stable state,

FIGURE 8
Time Series Curves of Deformation Points at Different. [(M–R) have slopes of 4.38°, 10.54°, 21.53°, 29.69°, 37.68°, and 57.76°, respectively].
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leading to a decline in surface deformation. However, in the boundary
regions of the goaf, there remains space that requires compaction.
Consequently, during the later stages following mine closure,
subsidence primarily concentrates in the border areas of the goaf.

Preceding the coal mining activities in the karst mountain regions,
the area was already influenced by tectonic movements, resulting in
fractured rock formations with well-developed joint fissures. Under the
influence of precipitation and weathering, the existing cracks had
already manifested in the mountainous terrain. As coal mining
operations progressed, these initial cracks further widened, and new
cracks emerged (Sun et al., 2023). These mountain cracks not only
compromised the stability of the terrain but also provided pathways for
rainwater infiltration into the rock formations, thereby accelerating the
karstification process. Consequently, this gave rise to karst subsidence
occurrences within the area.

5.2 Analysis of the coupled relationship
between surface deformation of closed
mines in karst mountainous areas and
factors such as slope, precipitation, and
vegetation types

Our experimental results indicate that besides the goaf, slope is
the primary factor causing surface deformation in closed mines in
karst mountainous areas, with precipitation acting as a triggering
factor leading to periodic changes in surface deformation in the
study area. When the slope is less than 25°, arboreal coverage (such
as pine and fir trees) significantly mitigates surface deformation
induced by rainfall. However, this mitigating effect rapidly
diminishes when the slope exceeds 25°. To further analyze the

impact of slope on surface subsidence in the Karst mountain
areas of Liupanshui and its response to precipitation and
vegetation coverage, we have compared our findings with
previously published similar studies, outlining the complementary
aspects of our research and identifying any existing limitations.

Contemporary investigations concerning the impact of slope,
precipitation, and vegetation coverage on surface deformation
primarily concentrate on landslide causation and susceptibility
assessments. For example, Zhang et al. (Zhang et al., 2020)
examined the spatial distribution characteristics of landslide-prone
regions in Xiangxi Autonomous Prefecture, Hunan Province, China,
based on diverse geographical factors. Their study underscored the
significance of slope and vegetation coverage in landslide occurrence.
Among the 21 geographical factors examined, slope emerged as the
most influential contributor to landslides. Furthermore, the distribution
of landslide-prone areas exhibited a close association with vegetation
coverage. Specifically, regions with higher Normalized Difference
Vegetation Index (NDVI) values displayed fewer landslides,
indicating that areas with lower NDVI values possessed weaker
vegetation stability and were more susceptible to landslides. Bao and
You (2010), through field surveys and an analysis of geological hazard-
prone locations in the Zhongshan area of Liupanshui, investigated the
characteristics and causes of geological disasters. Their findings revealed
that landslides predominantly transpired in areas with slopes ranging
from 10° to 65°, with the majority falling within the 25°–35° range.
Additionally, the peak period for geological disasters was from May to
September, corresponding to heightened precipitation and heavy
precipitation. Similarly, Qian et al. (2022) conducted a susceptibility
analysis of landslides in Liupanshui, employing various geographical
factors and a Logistic fuzzy comprehensive coupling model on a
Geographic Information System (GIS) platform. Their results

FIGURE 9
Time Series Curves for Deformation Points at Different Slopes. [(S–X) have slopes of 3.58°, 12.31°, 21.05°, 32.58°, 35.93°, and 49.33°, respectively].
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indicated that areas at extremely high and high risk of landslides were
considerably influenced by slope and surface undulation. These
researchers generally evaluated the contribution of influencing
factors to landslide occurrence at a general level, typically relying on
known geological hazard-prone locations and employing statistical or
modeling approaches. Our study aligns with these trends in a general
sense. However, our research distinguishes itself by utilizing SBAS
technique to obtain time series deformation monitoring results,
enabling a more detailed assessment of the contributions of different
slope levels, vegetation types, and precipitation to surface subsidence in
closed mining areas. In recent studies, Asada et al. (2020) emphasized
the importance of precipitation as a significant factor compared to
vegetation, attributing approximately 40% of the likelihood of shallow
landslides to it. Their research also highlighted the effective mitigation
of shallow landslides by vegetation under specific conditions. In their
more recent study (Asada and Minagawa, 2023), they constructed
generalized linear models (GLM) and random forest models (RF) using
statistical methods to quantitatively assess the impact of different
vegetation conditions on shallow landslide occurrence. The models
were developed considering slope and hourly precipitation as critical
parameters for evaluating slope stability. The study found that forest-
covered slopes exhibited greater stability compared to grass-covered
slopes, and secondary grasslands and shrubs were more prone to
landslides than coniferous forests. However, it was observed that the
slope stability of forested areas had its limitations. Our study exhibits a
similar trend to Asada’s research. Specifically, under comparable slope
conditions, areas with grassland and shrub coverage display heightened
sensitivity to precipitation, while areas with forest coverage exhibit a
certain degree of delayed response. Moreover, when vegetation
primarily consists of trees, slope becomes a pivotal factor influencing
the response to precipitation. Specifically, when the slope is less than 25°,
tree-covered surfaces exhibit a noticeable delay in response to
precipitation. Conversely, when the slope exceeds 25°, the response
to precipitation is rapid. Our research provides an analysis of the

contributions of slope, vegetation type, and precipitation to surface
subsidence in closed mining areas based on time series deformation
results. However, numerous factors influence surface deformation in
karst mountain areas with closed mines. Consequently, undertaking a
quantitative exploration of the contributions of multiple factors to
surface deformation in closed mining areas using Interferometric
Synthetic Aperture Radar (InSAR) technology represents a crucial
focus of our future research.

In addition, in order to further verify the reliability of the
deformation extraction results in this study, we went to the
LuJiaZhai-DaPingDi Minefield to conduct a field investigation,
and the results of the field investigation are shown in Figure 10,
from which it can be clearly seen that the slopes with steeper slopes
under the cover of shrubs have been sliding obviously (Figures 10D,
F) and the sliding surfaces are fresh, and meanwhile, a number of
highways in the wellfield have been damaged due to the ground
settlement (Figures 10A–C, E), which suggests that surface
subsidence has continued to take place in the area even though
all the mines in the wellfield are closed to the public so far.

6 Conclusion

In the context of the intricate interplay between surface
deformation, precipitation, and vegetation cover in karst mountain
regions, this study focuses on the LuJiaZhai-DaPingDi Minefield
situated in Liupanshui City. Leveraging remote sensing technology,
we investigate the influence of various factors, including altitude, slope,
vegetation cover, and precipitation, on surface deformation within
closed mining areas. An extensive analysis was performed utilizing
time series data of surface deformation, vegetation cover, precipitation,
altitude, and slope. The key findings are as follows:

The areas exhibiting surface deformation within the study region are
primarily concentrated near the recently closed MaiZiGou Coal Mine

FIGURE 10
Photographs of LuJiaZhai-DaPingDi Minefield survey: (D) and (F) depict pronounced sliding on steep slopes under bush cover; (A), (B), (C) and (E)
illustrate road damage caused by subsidence.
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and the higher-altitude eastern and southern regions of the mining field.
These deformation areas comprise 20.45% of the total mining area. Over
the study period, the maximum cumulative subsidence
reaches −60.3 mm, while the maximum uplift is 34.17 mm. The
maximum annual average subsidence rate and uplift rate
are −21.83 mm/yr and 8.13 mm/yr, respectively. Overall, surface
deformation in the closed mining area displays systematic variations
with precipitation. During the rainy season, both the subsidence rate and
subsidence values in the mining area are significantly higher compared
to the dry season. Furthermore, distinct types of vegetation cover exert
varying degrees of influence on surface deformation. Surfaces covered by
grassland and shrubs exhibit a more rapid response to precipitation
compared to areas adorned with deciduous trees such as fir and pine.
Typically, substantial subsidence occurs promptly during the initial
stages of the rainy season or periods of heavy precipitation on
grassland and shrub-covered surfaces. However, when the surface is
enveloped by deciduous trees, even in the presence of the rainy season or
heavy precipitation, surface subsidence does not manifest immediately.
Instead, a delayed response ensues, typically lagging behind precipitation
by 2–3 months. In regions characterized by deciduous tree vegetation
cover, the response of surface deformation to precipitation is primarily
influenced by the terrain slope. When the slope is below 25°, surfaces
covered by deciduous trees do not display significant subsidence in the
early stages of the rainy season or heavy precipitation, with the response
typically lagging behind the rainy season by 2–3months. Conversely,
when the slope exceeds 25°, substantial subsidence occurs early in the
rainy season or during heavy precipitation, even if the surface is covered
by deciduous trees. This indicates that a slope of 25° represents a critical
threshold for surface deformation in response to precipitationwithin this
region. Moreover, deciduous trees such as fir and pine exhibit a certain
degree of restraining effect on surface subsidence triggered by
precipitation. However, this restraining effect is limited and
diminishes as the slope increases.
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