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Various lab-scale friction tests and seismic observations have highlighted the role
of fault gauges in earthquake initiation in geological faults. These fault gauges
consist of particles accumulated over thousands of years due to surface wear
caused by friction. Understanding their properties is crucial as they significantly
influence both the frictional strength and sliding stability of faults. This study
investigates the friction stability parameter (a-b) under loading rates of
0.2–25 μm/s using velocity step tests on gypsum fault gauges under a low
normal stress condition (0.9 MPa) and steady-state velocity step tests on fault
gauges composed of varying ratios of kaolinite/calcite mixture under an effective
normal stress of 3 MPa. The conclusions drawn from this study are as follows: 1)
The (a-b) values obtained from near steady-state velocity step tests on gypsum
fault gauges and those reported in previous studies under similar conditions were
both negative. However, our results show that the former values were one order
of magnitude lower than the latter, indicating a higher susceptibility to velocity
weakening. 2) Steady-statevelocity steptests on the kaolinite/calcite mixture fault
gauges demonstrated positive (a-b) values for all mixtures with varying kaolinite
contents. Moreover, the (a-b) values were proportional to the kaolinite content.
We established a functional relationship between the (a-b) values of the mixture
fault gauge and the mass fraction of kaolinite, providing valuable insights for
future experiments and numerical simulations related to fault stability.
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1 Introduction

Earthquakes are natural phenomena resulting from abrupt accelerated sliding on
tectonic faults. This sliding releases energy through seismic waves and heat (Niemeijer
et al., 2012). Seismic waves propagate through the earth’s crust, causing surface vibrations,
and earthquakes with significant magnitudes can result in substantial loss of life and
property. Therefore, comprehending earthquake formation processes and mechanisms has
become a relentless pursuit for numerous scientific researchers (Scholz, 1989; He et al.,
1998; Marone, 1998; Mair et al., 2002; West et al., 2005; BenDavid et al., 2010; Kaproth and
Marone, 2013). Brace and Byerlee (1966) introduced one crucial understanding of
earthquake mechanisms, who suggested that the stick-slip phenomenon observed
during the relative sliding of two rocks in laboratory experiments might be a
mechanism for shallow earthquakes.

Since then, extensive laboratory friction experiments have been conducted to investigate
the sliding properties of rock-rock interfaces (Johnson and Scholz, 1976; Scholz and
Engelder, 1976; Engelder, 1978; Dieterich, 1979; Lockner and Okubo, 1983; Weeks and
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Tullis, 1985; Tullis, 1988; Kato et al., 1992; Karner and Marone,
2000). Nevertheless, lab-scale friction tests and seismic observations
revealed that fault gauges in geological faults may play a critical role
in earthquake initiation. These fault gauges consist of particles
accumulated through surface wear over thousands of years due
to friction.

The properties of fault gauges have a decisive influence on both
the frictional strength and sliding stability of faults (Brace and
Byerlee, 1966; Johnson et al., 1973; Sammis and Biegel, 1989;
Frye and Marone, 2002; Mair et al., 2002; Anthony and Marone,
2005; Marone et al., 2008; Ikari et al., 2015; Scuderi et al., 2015; Jiang
et al., 2016; Lieou et al., 2017; Hedayat et al., 2018). However,
acquiring natural deep fault gauges without compromising their
micromorphs and loading history is nearly impossible. To study the
sliding properties of fault gauges, some scholars have used fault
gauge samples collected from outcrops of fault surfaces (He et al.,
2007). Various granular materials have also been used as simulants
for fault gauges, assembled into the sliding surface of simulated
faults in laboratories. These include pulverized particles obtained by
manually grinding various rocks (Byerlee, 1978; Engelder, 1978;
Morrow and Byerlee, 1989; Moore et al., 1997; He et al., 2007; Togo
et al., 2011; Lu and He, 2014), industrially produced granular
materials like finely ground glass beads (Géminard et al., 1999;
Albert et al., 2001; Adjemian and Evesque, 2004; Härtl and Ooi,
2008; Johnson et al., 2013; Lastakowski et al., 2015; Rivière et al.,
2018), MgO nanoparticles (Han et al., 2011; Yao et al., 2016), and
even kitchen flour (Shinbrot et al., 2012; Leeman et al., 2015).

Within the framework of the rate- and state-dependent friction
criterion, velocity weakening is a necessary condition for
earthquakes to occur, while velocity strengthening typically
cannot cause earthquakes (Scholz, 1998). Recent studies have
shown that on some naturally seismogenic faults, creep on the
fault during the seismic gap is unevenly distributed across the
fault (Freymueller et al., 2000; Chlieh et al., 2008). This means
that while some areas inside the fault are self-locking and
undergoing stress recovery to prepare for the next earthquake,
others are slowly creeping. These observations suggest the
simultaneous existence of speed enhancement and velocity

weakening on the same fault. In laboratory settings, some
scholars have explored the influence of material inhomogeneity
on fault belts’ sliding properties (Buijze et al., 2021; Bedford et al.,
2022). Consequently, investigating the friction stability of fault
gauges with different attributes greatly aids related research on
laboratory earthquakes. Prior studies have indicated that gypsum
behaves as a speed-weakening material at room temperature (Buijze
et al., 2021), meaning that (a-b) < 0. As such, (a-b) of gypsum is
fitted through stick-slip experiments and cannot be obtained by
steady-state tests of speed steps. Conversely, calcite and kaolinite are
velocity-enhanced materials at room temperature (Buijze et al.,
2021), signifying that (a-b) > 0. However, the friction
properties of their mixtures have not been systematically reported
to date. Given these reasons, it holds significant scientific
importance to study the changes in friction stability parameters
(a-b) throughvelocity steptests of gypsum fault gauges under
low normal stress conditions and steady-state tests of speed
steps of kaolinite/calcite mixture fault gauges with different
proportions.

2 Experimental

The experiment was conducted at the Structural Physics
Laboratory of the Institute of Geology, China Earthquake
Administration. Gypsum, calcite, and kaolinite were purchased
from Aladdin Company. We controlled the particle size of the
gypsum fault gauge to 100–150 μm and that of kaolinite and
calcite to 75–100 μm through grinding and sieving. To enhance
the rigidity of the entire system and promote stable fault sliding,
we used steel blocks for the surrounding rock of the fault. The steel
blocks on both sides measured 100 × 50 × 50 mm³, while the middle
steel block measured 150 × 50 × 50 mm³. The thickness of the fault
gauge was 1.5 mm. Figure 1A shows the specific sample loadingmode.
Initially, we placed the assembled samples on the horizontal biaxial
press, which had a maximum single-axis load capacity of 150 t and
could be driven by either displacement or load control.We first loaded
pressure in the Fx direction to the predetermined pressure, which was

FIGURE 1
(A) Sample assembly diagram; (B) sample assembly and loading schema diagram, (1) Sample assembly; (2) Loading piston, (3) Fixed piston, (4) LVDT,
(5) Loading frame, (6) Steel spacers, (7) Slide-bearing steel plates.
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0.9 MPa for the gypsum fault gauge experiment and 3 MPa for the
kaolinite/calcite mixture experiment. Once the Fx direction reached
the predetermined pressure, we controlled the Fy direction using
displacement and performed shear experiments at speeds of 0.2, 1, 5,
and 25 μm/s, allowing approximately 0.5 mm of slip under each speed
condition until the sliding reached a steady state.

After completing the experiment, we determined the values of
the friction stability parameters (a-b) based on the rate-state friction
constitutive relation. Rate- and state-dependent friction is described
using τ and refers to the conditions under which materials either
strengthen or weaken with an imposed velocity step (Dieterich,
1979; Ruina, 1983). The Dieterich-Ruina formulation allows us to

FIGURE 2
(A) Curves of the fault gauge frictional coefficient changing with displacements of different proportions of kaolinite/calcite mixture under the
condition of room temperature and 3 MPa effective normal stress, (B) and (C) enlarged images of the black arrow in (A), (D) variation curve of gypsum fault
gauge frictional coefficient with displacement under the condition of room temperature and 0.9 MPa effective normal stress.
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calculate τ as follows: τ τ � σ (μ0 + aln v
v0
+ bln θv0

Dc
), where σ

represents the effective normal stress, and μ0 is the friction
coefficient when the slip velocity (V) equals the reference velocity
(v0). The direct effect term (aln v

v0
) accounts for the initial increase in

frictional strength, while the evolution term (bln θv0
Dc
) accounts for the

reduction in frictional strength with slip distance and time, whereDc

denotes the critical slip distance, and θ denotes the state variable.
The parameters a and b are empirical, dimensionless quantities that
govern these terms. The term (a − b) represents the velocity
dependence of the material under specific environmental
conditions, such as stress, temperature, slip velocity, and fluid
effects (Marone, 1998).When the sliding reached a steady state, (a −
b) � Δμs/Δ Ln (V).

3 Results and discussion

Figure 2A illustrates the stable sliding behavior of different
kaolinite/calcite mixtures under various loading rates (0.2–25 μm/
s). As the proportion of kaolinite mass increases, the overall mixed
fault gauge’s frictional coefficient gradually decreases. The frictional
coefficient exhibits sudden changes during the experimental loading
rate switching process, where an increase in loading rate results in a
sudden increase in the frictional coefficient (Figure 2B), and a
decrease in loading rate leads to a sudden decrease in the friction
coefficient (Figure 2C).

Previous studies suggested that gypsum exhibits stick-slip
behavior under different normal stress conditions at room
temperature (Buijze et al., 2021). However, using steel blocks as
the surrounding rock and a low effective normal stress of 0.9 MPa in
our experimental design is not conducive to stick-slip in the gypsum
fault gauge. Therefore, we observe a more stable sliding behavior in
the gypsum fault gauge. The accuracy of the gypsum fault gauge’s
(a-b) obtained through the steady-statevelocity steptest is superior to
the value obtained by fitting the stick-slip data (Dieterich, 1979;
Ruina, 1983). Additionally, the friction coefficient exhibits sudden
changes during the experimental loading rate switching process,

where an increase in loading rate leads to a sudden decrease in the
friction coefficient, while a decrease in loading rate causes a
sudden increase.

Based on the data, we derived the variation curves of different
fault gauge frictional coefficients with loading rate, as shown in
Figure 3A. Using the formula (a − b) � Δμs/ΔLn (V), we
determined that the slope of the curve in Figure 3 (middle)
represents the (a-b) value of the fault gauge. The slope of the
gypsum fault gauge is less than 0, indicating velocity weakening
under this loading condition, with (a-b) approximately −0.01.
Compared with the (a-b) value of −0.0031 (deMeer and Spiers,
1997) obtained through fitting the gypsum fault gauge under similar
particle size conditions, our results show stronger velocity
weakening. In contrast, the slopes of the kaolinite/calcite mixture
fault gauges are all positive, indicating speed enhancement
characteristics. Furthermore, as the kaolinite content increases,
the slope of the curve becomes larger, suggesting that the (a-b)
value of the material increases with the proportion of kaolinite.
Additionally, we calculated themixed fault gauge’s (a-b) for different
kaolinite content, as shown in Figure 3B. This allowed us to establish
the relationship between the mixed fault gauge’s (a-b) and kaolinite
content. Through this relationship, we can estimate the mixed fault
gauge’s (a-b) for different kaolinite mass fractions, providing a basis
for future experiments and numerical simulations.

4 Conclusion

By designing a well-designed steady-state velocity step test, we
successfully determined the values of (a-b) for both the gypsum fault
gauge and the fault gauge consisting of different components of the
kaolinite/calcite mixture. For the gypsum fault gauges, the (a-b)
values obtained through near steady-statevelocity steptests and
those reported in previous studies under similar conditions were
negative. However, the (a-b) values obtained in our tests were one
order of magnitude lower than those reported in previous studies,
indicating that the gypsum fault gauge in our experimental setup

FIGURE 3
(A) Variation of frictional coefficient with loading rate for different fault gauge, (B) variation of kaolinite/calcite mixture fault gauge (A, B) with the
mass fraction of kaolinite.

Frontiers in Earth Science frontiersin.org04

Ren 10.3389/feart.2023.1346880

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1346880


exhibits a stronger tendency toward velocity weakening. Our steady-
state velocity step tests on the kaolinite/calcite mixture fault gauges
revealed that all mixtures, regardless of their kaolinite contents,
exhibited positive (a-b) values. Furthermore, we observed a
proportional relationship between (a-b) and the kaolinite content.
As a result, we established a functional relationship between the
(a-b) values of the mixture fault gauge and the mass fraction
of kaolinite.
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