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The complexity and strong heterogeneity of carbonate reservoirs with fracture-
vuggy structures present significant challenges in reservoir characterization. To
address these challenges, we propose a novel multi-element information fusion
modeling approach. This approach is designed to integrate multiple methods
and incorporate multi-probability fusion at various facies and scales, thereby
bridging the gap between geological information and reservoir modeling. Our
methodology involves four key steps. First, the statistics between frequency of
karst and geological information are acquired, and we quantify the statistics to
regression equations. Second, these regression equations are transferred to
probability bodies. The probability bodies can be applied in modeling as a soft
control. But just one single body can be input inmodeling process. Third, multiple
probability bodies are fused into a fusion probability body by a probability fusion
algorithm, which can keep the potential information of probability bodies. Finally,
we apply the probability body in modeling workflow. By this way, the fusion
method bridges the gap between geological information and modeling. The
model established through our proposed method showed a significant level of
consistency with reservoir re-evaluation, achieving an impressive 90% degree of
alignment. Furthermore, the history match analysis revealed a high correlation,
indicating the model's reliability. The method effectively integrates various scales
and types of geological information, offering an accurate approach to complex
carbonate reservoir modeling.
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1 Introduction

Fracture-vuggy carbonate reservoirs, which account for a large proportion of oil and
gas reserves, are important targets of oil and gas exploration and development.
However, fracture-vuggy carbonate reservoirs have undergone a serious late-stage
transformation, with various reservoir types and complex development laws.
Among them, the main reservoir is the ancient karst fracture-vuggy system, which
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is more difficult to characterize than pore-type and fracture-type
carbonate reservoirs (Hou et al., 2012). Therefore, we have to
improve the modeling method to combine with the geological
knowledge in fracture-vuggy carbonate reservoir
characterization (Yang et al., 2016; Li, 2013; Yang).

At present, a series of mature modeling ideas or methods have
been proposed by researchers for fracture-vuggy carbonate
reservoirs, which are hereby divided into three categories:
deterministic modeling methods based on interpretation
results (Zhang et al., 2020; Lu et al., 2021), stochastic modeling
methods based on geostatistics (Xie et al., 2023), and modeling
methods based on machine learning (Suihong et al., 2022).
Among deterministic modeling methods, the seismic attribute-
based geological body carving method is a commonly used
fracture-vuggy characterization method. In geostatistical
modeling methods, the sequential indicator simulation method,
for example, expresses the correlation of two points in space
through a variogram function, and interpolates the underground
reservoir space. Multi-point geostatistics (MPS) randomly
generates data events at unevaluated points by scanning the
data events in training images (Deutsch, 2002; Mariethoz et al.,
2010; He et al., 2014; Wang X. et al., 2022), which is capable of
generating fracture-vuggy models. On this basis, geologists have
added some constraints of geological and geophysical
information, including constraints on the causes of formation
of fractures and faults, and constraints on seismic attributes. In
this way, the quality of the stochastic models has been greatly
improved. The deep learning algorithm has also been applied to
carbonate modeling thanks to the development of computer
hardware and software. As the most advanced image
generation algorithm, the generative adversarial network can
learn from a large number of training images, and the trained

network can reproduce the geological model and greatly
accelerate the model generation speed (Xie et al., 2022). The
above mentioned modeling methods still have limitations in
practical application. Despite good modeling results achieved
by advanced machine learning-based modeling methods,
machine learning needs a large amount of training data (Song
et al., 2021a), while fracture-vuggy carbonate reservoirs have few
outcrops on the ground, so it is difficult to obtain a large amount
of training data. Moreover, a lot of computing resources are
needed in the training process, and suitable conditions are
usually unavailable in practical work. In practice, the fracture-
vuggy models are still established by combining deterministic
modeling methods, the two-point statistics modeling method,
and the MPS method. The existing information constraint
methods can introduce geological prior knowledge into the
modeling process, but the focus is always on the controlling
effect of a single factor on a single reservoir, while reservoirs
of the same type are generally related to various factors. For
example, the development of karst caves is affected by faults,
denudation surfaces, etc., accompanied by relatively stable
seismic response characteristics. The single facies control or
probabilistic volume can no longer meet the requirements of
multi-information fusion.

With the Ordovician fracture-vuggy carbonate reservoir in Area
12 of Tahe Oilfield as an example, the geological situation of the
study area was introduced in Section 2; the basic principle of the
proposed method was presented in Section 3; in Section 4, the
discrete models of different types of reservoirs in the study area were
established based on their causes of formation by combining
multiple modeling methods with the multi-information
probabilistic volume fusion as the soft constraint on stochastic
modeling, and then fused by conforming to geological and

FIGURE 1
Geological location map of the study area.
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statistical laws, thus establishing a refined geological model of this
fracture-vuggy carbonate reservoir; In Section 5, the final model was
subjected to oil reservoir model test.

2 Geological setting

Tahe Oilfield (Figure 1A), which is located in the south-
central part of Akekule convex, Shaya uplift, Tarim Basin, adjoins
Caohu depression in the east, Halahatang depression in the west,
Mangar depression in the south, and Yakela-Luntai fault-convex
in the north. The Ordovician carbonate formation in this oilfield
is the main horizon with the development of paleokarsts and
marine fracture-vuggy oil reservoirs (Zhang et al., 2004; Qiang
and Fei, 2013; Liu YM. et al., 2018; Shang et al., 2020; Lu et al.,
2021), being a rarely seen complex reservoir on a global scale. It
has experienced multi-period tectonic movements and late karst
reformation, resulting in uneven fracture-vuggy development
and very strong heterogeneity. The main effective reservoir
space is the ancient karst fracture-vuggy system (Qiang et al.,
2015; Li et al., 2016; Liu Y. et al., 2018), which can be divided into
three major classes of reservoirs according to the space size,
morphology, and causes of formation, namely, underground
rivers formed by fluctuating corrosion of groundwater systems
(Yan-feng et al., 2021), fault-controlled karsts formed by
corrosion along fault zones (Changcheng et al., 2016), and
dissolution caves formed by weathering and leaching (Yang
and Qiang, 2016). However, fractures contribute little to oil
and gas accumulation and mainly act as seepage channels to
transport oil and gas, and they can be divided into large-scale
fractures, medium-scale fractures, and small-scale fractures
according to their size. Among them, dissolution caves and
small-scale fractures are strongly weathered and leached,
which can be called weathered crust reservoirs. Underground
rivers, fault-controlled karsts, and dissolution cave reservoirs
store 95% of oil and gas production, thus being the focus of
reservoir development.

This study area is the middle part of the Area 12 in Tahe
Oilfield (Figure 1B), which is divided into four fracture-vuggy
units, among which TH12208 and TH12201 are the main
fracture-vuggy units (Figure 1C). There are a total of
24 development wells, including 22 vertical wells and
2 horizontal wells, with an accumulated oil production of
198 × 104 t. In addition, this area is rich in seismic data

(dominant frequency: 28 Hz, sampling interval: 2 ms, group
interval: 15 m) as well as well logging and drilling data, which
lays a good foundation for modeling.

3 Multi-information fusion
modeling method

The workflow of the multi-information fusion modeling
method for fracture-vuggy carbonate reservoirs is described as
follows: all the factors that affect reservoir development are
considered and digitalized into probabilistic information, then
multi-information is integrated by means of probabilistic fusion
(Allard et al., 2012) as a constraint condition between wells in the
modeling process, so that the established geological model
conforms to geological information and geophysical
information. According to the types and scales of reservoirs,
discrete models of large-scale fractures, medium-scale fractures,
underground rivers, fault-controlled karsts, dissolution caves, and
small-scale fractures are established, among which dissolution
caves and small-scale fractures constitute weathered crust
reservoirs. Large-scale fractures are established deterministically
by seismic fracture interpretation results, and medium-scale
fractures are modeled deterministically based ant tracking and
identification results. The underground rivers are subjected to
geological body carving according to the seismic response
characteristics and the geological mode of underground river
outcrops. For fault-controlled karst reservoirs, faults control the
developments of karsts, the control of karst by the distance from
faults can be represented in a probability body. The seismic
attributes indicate the distribution, we establish a probability
body based on the seismic attribute. The outcrops show the
geometry of the reservoir. This kind of reservoir can
be modeling by object-based method to represent the geometry.
The weak conditioning of object-based modeling method makes it
difficult to meet the well data, and we apply it to establish a training
image. Thus, the MPS method is used to combine the probability
body and training image to generate the fault-controlled karst
reservoirs. For dissolution caves, constraints between wells are
applied according to the distance to the unconformity surface
and seismic attributes, and a model is constructed through the
sequential indicator method. Small-scale fractures are constrained
according to the fracture development density (correlates with a
seismic attribute), and simulated using the object-based method.

FIGURE 2
Modern underground river structure (Qinghua et al., 2019). (A) are the outline and location from the image. (B) is the laser scanning result.
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3.1 Large-medium fracture models

The fracture system in the study area is mainly controlled by
the early Hercynian tectonic movement, along with the evident
multi-level nature. Faults (large-scale fractures) constitute an
important factor controlling the development of other
reservoirs and also the first modeling step. Given the obvious
controlling effect of the large-scale fracture on the medium-
scale fracture, a large-scale fracture model was firstly
established by following the principle of hierarchical
modeling. Then, a medium-scale fracture model was
established. Both of them were “discrete fracture network
(DFN)” models, that is, the fracture distribution in the
reservoir was characterized by a large number of discrete
fracture pieces differing in the direction, length, shape, dip
angle, and azimuth angle.

Large-scale fractures present strong seismic response and
unique response laws, and reliable fracture interpretation
results can be obtained through manual interpretation (Ma
et al., 2014), while medium-scale fractures are controlled by
large-scale fractures and have the system characteristics of
large-scale fractures. The response characteristics of fractures
are strengthened through coherent volume interpretation, and

ant tracking technology is used to automatically identify
fractures based on the attributes of seismic coherent volumes.
The obtained ant body attributes can be matched,
supplemented, and corrected according to the fracture system
information of large-scale fractures, and the medium-scale
fracture results can be acquired conforming to seismic data
and geological cognition, so the discrete models of large-scale
and medium-scale fractures are modeled by deterministic
modeling methods.

3.2 Underground river reservoirs

An underground river system includes chamber caverns and
main channel caverns, whose development, from the cause
analysis, is controlled by multiple factors such as groundwater
supply, fractures, water tables, and lithological differences
(Popov et al., 2009; Fairchild, 2012; Li et al., 2020).
Underground river karst caves show a unique development
law, which is branched and banded on the plane, continuous
or discontinuous, with an overall large scale, multi-layer or
single-layer distribution on the cross section, and a complex
structure, and filled with a large amount of collapsed breccia or

FIGURE 3
(A, B) are circular caves, (C, D) are rectangle caves and (E, F) are ellipse caves.
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sand mud. Due to the protection of cave walls, the fillings inside
the caves are weakly mechanically compacted and remain good
porosity (Qi and Lu, 2010), so they can be used as effective
storage spaces. In the drilling process, emptying and leakage
phenomena are common, the beaded seismic reflection
characteristics, low resistivity, and extremely low density are
manifested, and attenuation occurs frequently during
imaging logging.

According to the laser scanning results (Figure 2B) of
Longwang Cave (Figure 2A), Hunan Province, it is found that,
different from the sand body overlapping and large-scale
development of conventional rivers, underground rivers are
isolated and developed on a small scale. Therefore, only a
small number of wells have encountered underground river
reservoirs during drilling in the study area, which leads to the
scarcity of condition points, insufficient acquisition of cross-well
rules, and it is difficult to obtain a convincing geological model by
the stochastic modeling method. Despite the smaller scale of
underground rivers than that of conventional river channels,
underground rivers are different from the matrix and karst caves,
and the resolution of their seismic data can meet the
identification requirements. The main body of an
underground river can be identified by seismic interpretation,
and the identification results can be re-sampled into three-
dimensional grids for deterministic modeling. Based on the
principle of “well-seismic combination, geological constraint,”
human-machine interactive correction was performed
considering the underground river characteristics exhibited by
outcrops, and an underground river model was finally
established.

3.3 Fault-controlled karst reservoirs

Fault-controlled karst reservoirs mostly develop near faults, which
are formed by the vertical flow of surface water along faults. Different
fromunderground river caves, they exist as isolated caves or cave groups
in morphology, and their development is closely related to faults and
fractures. On the whole, however, fault-controlled karsts are important
effective reservoirs because of their strong development randomness,
major changes in the scale difference, and a low filling degree.
Moreover, their logging characteristics resemble those of
underground rivers, but their seismic characteristics are different.
Generally, the seismic characteristics of karsts extend on a small
scale and exist in an isolated state.

From the cause analysis, the development of fault-controlled
karst reservoirs is controlled by faults. The statistical fault-controlled
karst caves in Bachu outcrop (Figure 3) can be divided into multiple
types based on their morphologies, for example, circular, rectangle,
ellipse, etc. The object-based modeling method is a stochastic
simulation method applicable to target bodies with specific
spatial forms and a modeling method suitable for fault-controlled
karst reservoirs, but it fails to reflect the influence of faults on karst
processes. The closer a fault-controlled karst is to the fault, the
greater the karst development scale, and the higher the frequency,
and different zones vary in frequency and scale constraint.
Therefore, the training image was established through the multi-
point geostatistics method and the object method, its spatial
geometrical morphological characteristics were reserved, and the
relationships of the cave height and development density of fault-
controlled karsts with the distance to the fault were respectively
determined. Then, multiple fault-controlled karst zones were

FIGURE 4
(A) shows that dissolved caves correlate the weather crusts horizon, (B) are small scale dissolved caves in a high dense, (C, D and E) are different
caves in core.
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divided on the plane according to statistical laws. Next, different
scales of fault-controlled karst training images were established
based on different development scales of fault-controlled karsts
in different zones. Moreover, the developmental probabilistic
volume based on the distance to the fault was established in line
with the relationship between the distance to the fault and the
development frequency. Finally, the formation causes constraint was
added to the multi-point statistical modeling process by combining
multiple zones, multiple training images, and the probabilistic
volume, thus realizing the modeling process constrained by
double formation causes.

Among them, the probabilistic volume can not only integrate cause
information but also other information. For example, fault-controlled
karst reservoirs can also be characterized by geophysical information, and
usually, fault-controlled karsts on a certain scale present “beaded”
reflection characteristics as manifested in their seismic data (Xinbian
et al., 2014; Shang et al., 2020). Hence, a good correlation is observed
between seismic attributes and fault-controlled karst reservoirs. However,
the modeling process can only be controlled by one probabilistic volume
(such as Sneism (Mariethoz and Caers, 2014)and Simpat (Strebelle,
2002)), so it is necessary to fuse multiple probabilistic volumes
through a fusion algorithm, so as to obtain the probabilistic volume
of multi-information fusion and realize multi-information constraints.

For the probabilistic fusion method, the permanence of ratios
(PR) model (Allard et al., 2012) is selected, which has weak
preconditions, considering both the independence of different
data sources and the redundancy of information. This model,
which is improved from the conventional probabilistic
multiplication method, has been widely used in the field of earth
sciences. The PR model performs multiplication of multiple
probabilities, with its formula as follows:

P C|F, S{ } � 1 − P C{ }( )/ P C{ }( )( )/ 1 − P C{ }( )/ P C{ }( )(
+ 1 − P C|F{ }( )/ P C|F{ }( ) · 1 − P C|S{ }( )/ P C|S{ }( )) (1)

Where F is the distance to the fault, S represents the seismic
attribute, C represents fault-controlled karst, P{C│F,S} is the fusion
probability of fault-controlled karst development under the multi-
factor influence, P{C} is the prior probability of fault-controlled

karst development, P{C│S} denotes the cave development
probability under the condition of distance to the fault, and P{C|
F} stands for the cave development probability under the condition
of the seismic attribute.

3.4 Weathered crust reservoirs

Weathered crusts are mainly stored in dissolution caves and small-
scale cracks and formedmainly due to weathering and leaching actions.
In the process of surface water flowing, undercutting channels, swallow
holes, etc. are formed. When water flows into soluble karst, bedding
dissolution pores, cracks, and so on (dissolution caves) are generated.
High-angle dissolution fractures (small-scale fractures) develop at faults,
tectonic fractures, and weathered fractures. From the aspect of logging,
weathered crusts are characterized by slightly low density, increased
acoustic time difference, and decreased gamma ray, and, from the
perspective of imaging logging, they present the obvious characteristics
of dark star points, which are often densely developed with large
porosity and can be used as effective reservoirs.

According to the outcrop data, dissolution caves develop under the
weathering front, and according to their development causes, they are
irregular pores and caves formed by dissolution, so they are controlled
by the weathering denudation surface. On the whole, the dissolution
caves are widely distributed, and they are distributed in a plane shape
under the unconformity surface (Figure 4A). Locally, such dissolution
caves randomly develop in the reservoir space without fixed
morphological characteristics (Figures 4B,C) and serve as good oil-
bearing reservoir space and an important oil-gas migration channel.
According to their characteristics of uniform random distribution and
no fixed morphology, the dissolution caves are modeled using the
sequential Gaussian method, which, however, is of uncertainties. By
reference to the idea of fault-controlled karsts, therefore, the cause
information and geophysical information were integrated into the
probabilistic volume of reservoir development, specifically as follows:
1) The closer to the top weathered crust, the more obvious the
weathering and dissolution, dissolution caves develop, the distance
to the weathered crust and the development probability of

FIGURE 5
(A) is the large-scale fracture model of Area 12, (B) is the medium-scale fracture model of Area 12.
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dissolution caves are calculated, and a causes-controlled probabilistic
volume is established; 2) the areas with dense development of
dissolution pores and caves show event seismic attribute response
characteristics, so seismic information is correlated with dissolution
caves to some extent, and a probabilistic volume controlled by seismic
information can be established. Here, the aforesaid PR probability
fusion model was also adopted to finally obtain a probabilistic
volume with multi-information fusion.

Small-scale fractures are composed of tectonic fractures and
dissolution fractures. The original structural fractures (Figure 4D) are
often corroded and enlarged to form dissolution fractures (Figure 4E)
after being corroded by groundwater. In other words, affected by large-
scale faults, the zoning and orientation of such fractures are controlled by
the development characteristics of the original fractures. Moreover, they
are randomly distributed in the whole reservoir, and can serve as
channels connecting caves, with a small scale (usually 1–5 mm wide
and 5–50 cm long) and extensive development. Since the resolution of
seismic data interpretation is exceeded (main seismic frequency is
28 Hz), it is impossible to obtain deterministic results from seismic
information, but sections with dense fracture distribution are apparently

correlated with the coherent volume attribute. Therefore, the fracture
characteristics, including the fracture type, dip angle, azimuth angle,
fracture development density, and other parameters, were determined by
rock core and logging data, andmodels were established using the object
simulation method under coherent volume attribute constraints.

4 Modeling of different types of karst
reservoirs

4.1 Large andmedium-scale fracturemodeling

Through artificial interpretation and identification of seismic
data, there are 6 major faults in the study area, with a fault distance
of about 5–30 m, a dip angle of about 80°, and an extension length of
500–3,000 m. The distribution model of a large-scale fracture (fault)
was established by the deterministic modeling method (Figure 5A).

The information of fault formation systems (NE, NNW, and NS
fault formation systems) could be obtained according to the
interpretation results of large-scale fractures. Then, the artificially

FIGURE 6
(A): the well log interpretation of Well TH12207. (B): the IF attribute slice if Area 12. (C): the boundry of IF attribute slice. (D): the geobody is a
prediction based on a cut-off value and the initial seismic attribute. (E): a predicted model of underground river by manual revision.
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interpreted earthquake faults were supplemented and corrected
using automatically extracted fracture information by means of
man-machine interaction, and 36 medium-scale fractures were
automatically picked up by ant bodies in the study area. Finally,
a deterministic discrete distribution model of medium-scale
fractures was established according to the interpretation results of
ant bod (Figure 5B).

4.2 Modeling of underground river
reservoirs

According to the logging data of TH12207 well (Figure 6A), the
target section exhibits the obvious characteristics of underground rivers,
which present a high gamma (GR) value that changes suddenly and a
low resistivity (RT) value in logging, indicating serious mud filling.
Moreover, evident attenuation is observed through imaging logging.

Based on the correlation analysis between the plane seismic attributes
and the well logging interpretation results, the correlation between the
instantaneous earthquake frequency is considered high. Therefore, the
instantaneous earthquake frequency attribute (Figure 6B) of the river
channel was tracked starting from the underground river encountered
during TH12207 well drilling, so as to obtain the plane distribution
pattern of this river channel (Figure 6C). Next, a 3D predictionmodel of
the underground river (Figure 6D) was depicted through the Geobody
seismic carving method in Petrel software on basis of the wave
impedance attribute. The channel distribution characteristics of the
predicted underground river were clear and coincided with the
characteristics of the underground river reflected by outcrop data as
a whole. Furthermore, the underground river structure was corrected
with the mode dependence on outcrop characteristics (Figure 2).

Figure 6E shows the distribution model of underground rivers in
TH12208 and TH12201 fracture-vuggy units after manual revision.
The results show that the underground river develops from north to

FIGURE 7
(A, B) represent the correlation analysis of developed probability-distance from fault and developed probability-energy seismic attribute. (C, D) are
probability model from the correlation of fig 7A and 7B. The (E) is a fusedmodel of fig 7C and 7D. The (F) is a interpretation result of fault-controlled karst in
Well TH12201, based on this result, the karst model is simulated by geostatistical modeling method. the top-view map is shown as (H).
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south, with a total length of about 10 km. Two small underground
river branches with an average thickness of about 30 m develop on
both sides of the main underground river. Besides, the underground
river is high in the south and low in the middle.

4.3 Modeling of fault-controlled karst
reservoirs

According to the logging information and drilling leakage
information, fault-controlled karsts can be identified, with a
height of 2–16 m and a length and width of 2–10 m. Based on
the outcrop shape, the target body was established, and three zones
were established according to the distance to the fault and the
frequency range of karst development: 0–80 m from the fault,
80–250 m from the fault, and more than 250 m from the fault.

Next, three training images were stablished through the object
method to characterize the scale and frequency of different karst
bodies. Afterward, and formation cause mechanism of faults was
integrated into the training images so that the modeling process
could be simulated synchronously in different zones.

The corresponding training images were used for multi-point
geostatistical simulation in different zones. However, the three
training images could not reflect the gradual relationship between
karst development and faults, earthquake constraint and fault
distance constraint were required. The fault distance constraint
was input in the form of probabilistic volumes. Among 26 karst
reservoirs identified through well logging, those within 400 m range
from the fault accounted for over 70%, while a few karst reservoirs
were distant from the fault. Accordingly, the relationship between
fault-controlled karsts and the distance to the fault could be
acquired. Then, based on this, the probability formula between

FIGURE 8
Small-scale fractures occurrence and density statistics. (A) is an example of image logging. Based on logging data, the statistics of fractures direction
distribution and density are acquired in (B, C, D).
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karst caves and the distance to the fault was solved (Figure 6A), and
the probabilistic volume of karst development controlled by the
corresponding fault was established (Figure 7A). The specific
process of earthquake constraint was described as follows: after
time-depth conversion of seismic data, the above-ground karst and
seismic attributes were determined based on the drilling leakage
results and the corresponding seismic attributes. The results show
that the seismic spectrum energy in seismic attributes is favorably
correlated with fault-controlled karsts. The functional relationship
between seismic spectrum energy and fault-controlled karst
development frequency was obtained through the neural network
algorithm (Figure 7B), and the corresponding karst development
probabilistic volumes were established on this basis (Figure 7D).
Finally, the two probabilistic volumes were fused by the probabilistic
multiplication method (Formula 1) to obtain a comprehensive
probabilistic volume (Figure 7E).

Under the constraint of comprehensive probabilistic volume
and training images and taking the well point interpretation results

(Figure 7F) as the conditional data, the multi-point simulation
scanning template was set to 15 × 15 × 3, the multi-grid level
was set to 3, and the maximum number of known neighborhood
nodes was 8. Three corresponding training images were input in
three zones, and the fault-controlled karst model with formation
cause mechanism and karst geometry (Figure 7G) was finally
obtained by combining the boundary control of fracture-vuggy
units. The results show that fault-controlled karst reservoirs were
mainly distributed near the NNW major fault in the west of
TH12208 and TH12201 fracture-vuggy units, with the cave size
ranging from 8 m to 30 m, mainly being vertical and horizontal
types, and the closer to the fault, the larger the cave size, and with the
increase in the distance to the fault, the cave morphology gradually
transits from the vertical type to the horizontal type. It is worth
noting that according to the production dynamics data of the
oilfield, the effective reservoirs do not develop outside the
fracture-vuggy units. To conform to the actual production
situation, the fracture-vuggy unit boundary was adopted for

FIGURE 9
(A, B) are correlations of dissolved fracture probability-distance from the crust horizon and dissolved fracture probability-variance attribute, The
probability model (C, D) are generated base on A, B. The figure 9C is a fused probability model by PR model. The (F) is a dissolved cave and (G) is a small-
scale fracture model.
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control, so the reservoirs were mainly controlled by the large faults
in the west (Figure 7H), while the northeastern faults generated a
minor influence on the karst body, with a low karst development
efficiency, which accorded with the actual situation of effective
reservoirs not encountered during well drilling in this area.

4.4 Modeling of weathered crust reservoirs

Dissolution caves and small-scale fractures constitute the weathered
crust reservoir, which is the communication channel between the caves.
According to the core and imaging logging results (Figure 8A), the
small-scale fractures aremainly high-angle tectonic shear fractures, with
the extension length mainly distributed in 0.5–50 cm; based on the
fracture occurrence statistics of imaging logging in the study area
(Figure 8B), there are three fracture formation systems in the study
area, including NE, NW, and NS. The fracture development density is
established through the statistical dip angle and fracture development
frequency (Figures 8C,D). Different well locations display different
azimuth angles and development frequencies, and the dip angle of
fractures in the study area is mainly 75°–90°. Based on the statistical
parameters and development density of small-scale fractures, the
discrete model of small-scale fractures was established by the object
method under constraints of coherent volume attributes and
probabilistic volumes (Figure 9G).

According to the well data, a total of 11 development sections
of dissolution caves were identified in 7 wells of fracture-vuggy

units TH12208 and TH12201, among which the development
frequency of those within 30 m from the unconformity surface
was 42% and that within 30 m from the unconformity surface was
58%. The development sections of dissolution caves mainly
developed near 90 m range of the Ordovician unconformity
surface. Based on the statistical results, the depth of the top
unconformity surface and the vertical development probability of
dissolution caves could be obtained (Figure 9A), and a
development probabilistic volume was established accordingly
(Figure 9C). The developmental probabilistic volume (9d) based
on seismic attributes could be established given the high
correlation between the coherent volume attribute in seismic
attributes and the dissolution caves (9b). The above two
probabilistic volumes were subjected to probabilistic fusion to
obtain a comprehensive development probabilistic volume of
dissolution caves (9e).

The relevant parameters in the sequential indicator simulation
modeling were set as follows: the main variation direction of the
variogram function was 330° with a variation range of 2,000 m, the
secondary variation direction was 240° with a variation range of
1,500 m, and the vertical variation range was 10 m. An exponential
model was used as the variogram function model. Then, simulation
was performed using the sequential indicator simulation method
with trends, and a dissolution cave reservoir model was acquired
with the probabilistic volume of dissolution cave development
between wells as the constraint data (Figure 9F). From the
established dissolution cave reservoir model, dissolution cave

FIGURE 10
Fusion process and geological models.
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reservoirs presented a local flaky distribution and mainly developed
within a certain depth range beneath the Ordovician
unconformity surface.

Finally, the dissolution cave model and small-scale fracture
model were superposed to acquire a weathered crust distribution
model in the study area (Figure 9H).

4.5 Model fusion optimization

Because the discrete distribution models of underground rivers,
fault-controlled karsts, and dissolution cave reservoirs and multi-
scale fracture models were established independently, and the
stochastic modeling method was used in both reservoir and
small-scale fracture modeling, the same grid might be used as an
effective grid in different models when all discrete distribution
models were fused, but this was inconsistent with the actual
geological conditions. To solve the conflict among reservoirs
characterized by grids, a certain fusion principle was put forward.

(1) From a reservoir capacity and model uncertainty standpoint,
underground rivers and fault-controlled karst reservoirs

possess robust reservoir capacities, contributing significantly
to cumulative output. However, underground rivers present
greater uncertainty than fault-controlled karst reservoirs,
warranting a higher prioritization. Conversely, weathered
crust reservoirs, characterized by minute fractures and
dissolution caves, exhibit the poorest physical properties and
highest randomness among effective reservoirs, thus receiving
the lowest priority. Regarding fractures, large-scale fractures
(faults) are delineated through deterministic interpretation,
medium-scale fractures via a blend of random extraction
and human-computer interaction, and small-scale fractures
through stochastic simulation. Consequently, the
prioritization for integration is large-scale fractures first,
followed by medium and small-scale fractures, respectively.
In the final stage, small-scale fractures, medium-scale fractures,
large-scale fractures, dissolution caves, fault-controlled karst,
and underground rivers are sequentially incorporated into the
study area’s three-dimensional space. In overlapping zones,
reservoirs assigned later will be preserved.

(2) The relationship between fractures and caves in reservoir
configurations can generally be categorized into three types:
karst cave-large fracture, karst cave-fracture-karst cave, and

FIGURE 11
(A, B) are comparations of real production oil and model reserves in units TH12201, TH12208. (C-F) are correlation analysis of the simulated oil
production and water cut in TH12201, TH12208 unit.
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dissolution cave-small fracture. Separate models for karst
caves and fractures are developed based on their respective
geological model constraints and statistical laws. However,
during the fusion process, the specific fracture-karst cave
configuration pattern is not taken into account, except for
the statistical law constraint applied to the fracture model. To
address this, the fracture-vuggy relationship is fine-tuned
using the simulated annealing method (Xie et al., 2022).
The simulated annealing method is a probabilistic
technique used for finding an approximate solution to an
optimization problem, particularly those involving a large
search space. It’s inspired by the process of annealing in
metallurgy, a technique involving heating and controlled
cooling of a material to increase the size of its crystals and
reduce their defects. This adjustment involves altering the
orientation and position of fractures (as illustrated in
Figure 10A), which enhances reservoir connectivity in a
manner that aligns with dynamic data. Ultimately, the
fracture model that best conforms to the fracture-vuggy
configuration relationship is preferentially selected.

(3) Probabilistic similarity, in the context of geological modeling,
refers to ensuring that the final reservoir model accurately
represents the statistical characteristics of the actual geological
formations. After initial adjustments to models (as per steps
1 and 2), the original karst or dissolution cave reservoir model
might be significantly altered when fused with other reservoir
models, leading to substantial changes. This can result in the
volume proportions of various reservoirs in the new model not
aligning with the original statistical data.

After the above three operation steps are completed, the fusion
model of karst, fracture, and cave reservoirs in the study area is
finally obtained (Figure 10), in which underground rivers are
continuously distributed, fault-controlled karsts mainly develop
near faults, and dissolution caves and small-scale fractures
(weathered crust) are widely developed as connecting channels.
The development characteristics of fracture-vuggy units are well
reflected by this fusion model.

5 Model test

Based on the final fusion geological model, the oil reservoir
reserves in the study area are calculated as 1,507 × 104 t. Therein, the
reserves of underground rivers, fault-controlled karsts, and
weathered crusts are 417 × 104 t, 479 × 104 t, and 310 × 104 t,
respectively, among which the reserves of dissolution caves, small-
scale fractures, and large and medium-scale fracture models are
302 × 104 t, 8 × 104 t, and 1 × 104 t, respectively. By comparing the
well-controlled reserves and production dynamic reserves of the
model (Figures 11A,B), it can be seen that the calculation results of
reserves of each well in TH12201 and TH12208 fracture-vuggy unit
models basically accord with the actual recalculation results of
single-well dynamic reserves, which indirectly verifies the
effectiveness of the model.

On the basis of the three-dimensional geological model, the
numerical simulation was carried out for the oil reservoirs in
fracture-vuggy units TH12201 and TH12208 (Figures 11C–F),

and the coincidence rate of both the simulated oil production
and water cut was greater than 90%. The model simulation
results showed a high degree of fitting with the actual production
results, proving the high precision of the geological model and
according with the actual underground situation, and the favorable
position of the remaining oil distribution could be determined.
Based on this model, an infill well has been implemented in the unit
TH12201, the average daily oil production reaches 45 t, the
cumulative oil production up to now is 7.167 × 104 t, and only
0.079 t of water is produced.

6 Discussion

In this paper, we introduced a fracture-vuggy modeling method
that leverages multiple geological data points, treating these pieces
of geological information as probability models within our modeling
approach. Probability models enable us to mathematically constrain
the modeling scope, reducing uncertainties in the geological
modeling process. However, it’s important to note that reservoir
behavior is influenced by a multitude of factors. To address this
complexity, our approach fuses these factors using a PR model,
allowing us to overcome the limitations associated with models
controlled by a single probability parameter. Undoubtedly, our
method represents significant progress in improving model
quality. Yet, challenges persist in its practical application. In this
process, all information is utilized as soft data (probability models),
and the accuracy of simulation is constrained by correlation
relationships. When there are insufficient sample points to
establish robust correlation coefficients, our method may
introduce high uncertainty in the soft data. The reservoir is
influenced by many geological factors, for example, the rock
physical property decides the distribution karst, the stronger
fragility of rock, the easier generation of karst or fracture. Thus,
more and more information need to be added in limit factors.
It makes difficult to keep the potential information of so many
data. Maybe we need a better fusion algorithm to solve this problem.
For example, neural network algorithms can get the optional
solution by many times iteration. The solution can extract the
non-linear relation between probability bodies and keep principal
components of multiple factors, which may improve the quality
of fusion.

The reservoir is influenced by numerous geological factors. For
instance, the physical properties of the rock determine the distribution
of karst; the more fragile the rock, the more susceptible it is to the
formation of karst or fractures. Consequently, there is a growing need to
include additional limiting factors, which poses challenges in preserving
the potential information contained in this wealth of data. Perhaps a
more effective fusion algorithm is required to address this issue. For
example, neural network algorithms can iteratively generate an optimal
solution (Dorrington and Link, 2004; Li et al., 2019). The solution have
the capacity to extract nonlinear relationships among probability
models and retain the principal components of multiple factors,
potentially enhancing the quality of fusion.

Fracture-vuggy reservoirs exhibit pronounced heterogeneity and
non-stationarity. In this context, we generate karst reservoirs using
the MPS modeling method. MPS modeling involves pattern
extraction from scanned data events, essentially reproducing
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patterns by copying and pasting (Song et al., 2021b; Wang L. et al.,
2022; Chen et al., 2022). Clearly, characterizing the non-stationarity
of fracture-vuggy reservoirs through MPS modeling is challenging.
To capture global information, we must explore methods for
extracting potential data from the training image. Machine
learning methods have proven to be at the forefront of pattern
recognition, making machine learning algorithms a viable solution
for uncovering abstract geological features. This approach
represents a novel way to incorporate abstract geological
knowledge into the modeling process. For instance, geologists
(Mosser et al., 2018; Zhang et al., 2019; Song et al., 2022; Liao
et al., 2023) have successfully applied generative adversarial
networks (GANs), a generative model algorithm, to learn
geological patterns and reproduce them in geological modeling.
Researchers have used seismic data and sand fraction data to control
channel geometry and the number of channels. By combining the
strengths of seismic inversion and machine learning methods, we can
harness abstract geological knowledge to characterize the structure
of underground rivers and fault-controlled karst formations. When
apply themachine learningmethod tomodeling works, the challenges
we may face include enough and convincing training data, the
computing hardware and computer knowledge.

7 Conclusion

The modeling of carbonate reservoirs with fracture-vuggy
structures, characterized by diverse storage types with varied
origins, shapes, and sizes, requires a nuanced approach. Initially,
the modeling process involves categorizing and classifying the
different storage types. Based on the characteristics of each storage
type, suitable methods are selected: object or multipoint statistical
methods for storage bodies with specific forms and random
distributions, sequential indicator simulation methods for those
with non-specific forms and random distributions, and
deterministic methods for specific geological bodies. The
integration of geological and geophysical information through
multi-probability body fusion maximizes the contributions of
different data types to the model, enhancing multi-information
driving, reducing uncertainty, and resulting in a refined 3D
geological model. This model adheres to three fusion principles:
isotope priority for hierarchical fusion based on causal
relationships, fracture relationship configuration with iterative
correction using simulated annealing, and probability similarity for
volume adjustments to match statistical patterns. Validated through
numerical simulation and drilling tests, this model effectively informs
adjustments in development plans for such complex reservoirs.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary material, further inquiries can be directed
to the corresponding author.

Author contributions

YW: Writing–review and editing, Funding acquisition. PX:
Writing–original draft, Writing–review and editing. HZ: Data
curation, Formal Analysis, Writing–review and editing. YL:
Funding acquisition, Writing–review and editing. AY:
Visualization, Writing–review and editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This research
was funded by Sinopec Key Laboratory Open Fund Project for
Enhancing Recovery in Fractured Reservoirs, grant number
34400000-22-ZC0607-0002. This research was supported by Key
Laboratory for EOR of Fractured-Vuggy Carbonate Reservoir and
National Natural Science Foundation of China (No. 42172154).

Conflict of interest

The authors YW and HZ were employed by the company
Sinopec. The author AY was employed by the Petro China
Huabei Oilfield Company.

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

The study received funding from Sinopec Key Laboratory Open
Fund Project for Enhancing Recovery in Fractured Reservoirs. The
funder had the following involvement in the study: study design.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Allard, D., Comunian, A., and Renard, P. (2012). Probability aggregation methods in
geoscience. Math. Geosci. 44 (5), 545–581. doi:10.1007/s11004-012-9396-3

Changcheng, H., Chengyan, L., Xinbian, L., Lihua, R., Ting, W., Xianguo, Z., et al.
(2016). Characterization and genesis of fault-controlled karst reservoirs in ordovician
carbonate karst slope of tahe oilfield, tarim basin. Oil Gas Geol. 37 (5), 644–652. doi:10.
11743/ogg20160504

Chen, M., Wu, S., and Bedle, H. (2022). Modeling of subsurface sedimentary facies using
self-attention generative adversarial networks (SAGANs). J. Petroleum Sci. Eng., 214. doi:10.
1016/j.petrol.2022.110470

Deutsch, C. (2002). Geostatistical reservoir modeling, 376.

Dorrington, K. P., and Link, C. A. (2004). Genetic-algorithm/neural-network
approach to seismic attribute selection for well-log prediction. GEOPHYSICS 69 (1),
212–221. doi:10.1190/1.1649389

Fairchild, I. J., and Andy, B. (2012). Carbonate and karst cave geology, 28–72.

He, X. L., Sonnenborg, T. O., Jørgensen, F., and Jensen, K. H. (2014). The effect of
training image and secondary data integration with multiple-point geostatistics in
groundwater modelling. Hydrology earth Syst. Sci. 18 (8), 2943–2954. doi:10.5194/hess-
18-2943-2014

Frontiers in Earth Science frontiersin.org14

Wang et al. 10.3389/feart.2023.1345028

https://doi.org/10.1007/s11004-012-9396-3
https://doi.org/10.11743/ogg20160504
https://doi.org/10.11743/ogg20160504
https://doi.org/10.1016/j.petrol.2022.110470
https://doi.org/10.1016/j.petrol.2022.110470
https://doi.org/10.1190/1.1649389
https://doi.org/10.5194/hess-18-2943-2014
https://doi.org/10.5194/hess-18-2943-2014
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1345028


Hou, J.-G., Jiang, X. M., and Yu, m. (2012). Modeling of carbonate fracture-vuggy
reservoir, a case study of Ordovician reservoir of 4th Block in Tahe Oilfield. Earth Sci.
Front. 19 (02), 59–66.

Li, S., Kang, Z., Feng, X. T., Pan, Z., Huang, X., and Zhang, D. (2020). Three
dimensional hydrochemical model for dissolutional growth of fractures in karst
aquifers. Water Resour. Res. 56 (3), e2019WR025631. doi:10.1029/2019wr025631

Li, W., Yue, D., Wang, W., Wang, W., Wu, S., Li, J., et al. (2019). Fusing multiple
frequency-decomposed seismic attributes with machine learning for thickness
prediction and sedimentary facies interpretation in fluvial reservoirs. J. Petroleum
Sci. Eng. 177, 1087–1102. doi:10.1016/j.petrol.2019.03.017

Li, Y. (2013). The theory and method for development of carbonate fracture-cavity
reservoir in Tahe oilfield. Acta pet. Sin. 34 (01), 115–121. doi:10.7623/syxb201301013

Li, Y., Hou, J., and Ma, X. (2016). Data integration in characterizing a fracture-cavity
reservoir, Tahe oilfield, Tarim basin, China. Arabian J. Geosciences 9 (8), 532. doi:10.
1007/s12517-016-2562-z

Liao, B., Wang, J., Sun, J., Lv, K., Liu, L., Wang, Q., et al. (2023). Microscopic insights into
synergism effect of different hydrate inhibitors on methane hydrate formation: experiments
and molecular dynamics simulations. Fuel 340, 127488. doi:10.1016/j.fuel.2023.127488

Liu, Y., Hou, J., Li, Y., Dong, Y., Ma, X., and Wang, X. (2018b). Characterization of
architectural elements of ordovician fractured-cavernous carbonate reservoirs, Tahe
oilfield, China. J. Geol. Soc. India 91 (3), 315–322. doi:10.1007/s12594-018-0856-3

Liu, Y. M., Hou, J. G., and Li, Y. Q. (2018a). Amulti-constrained modeling method for
paleokarst carbonate reservoirs: an application to the Ordovician reservoir in the Tahe
Oilfield. Petroleum Sci. Bull. 3 (02), 125–133.

Lu, X. R., Sun, J. F., and Wu, X. W. (2021). Internal architecture characterization of
fractured-vuggy carbonate reservoirs: a case study on the Ordovician reservoirs, Tahe
Unit S67, Tarim Basin. OIL GAS Geol. 42 (03), 728–737.

Ma, L. J., Kong, Q. Y., and Liu, K. Y. (2014). Weak reflection characteristics and its
formation mechanism of rdovician reservoir in Tahe Oilfield. OPG 49 (02), 338–343 222.

Mariethoz, G., and Caers, J. (2014). Multiple-point geostatistics: stochastic modeling
with training images.

Mariethoz, G., Renard, P., and Straubhaar, J. (2010). The Direct Sampling method to
perform multiple-point geostatistical simulations. Water Resour. Res. - WATER
RESOUR RES 46 (11). doi:10.1029/2008wr007621

Mosser, L., Olivier, D., and Martin, J. B. (2018). Conditioning of three-dimensional
generative adversarial networks for pore and reservoir-scale models. 80th EAGE
Conference and Exhibition 2018, 1–5. doi:10.3997/2214-4609.201800774

Popov, P., Qin, G., Bi, L., Enfendiev, Y., Kang, Z., Li, J., et al. (2009). Multiphysics and
Multiscale Methods for Modeling Fluid Flow Through Naturally Fractured Carbonate Karst
Reservoirs. Spe Technical Conference and Exhibition 12, 218–231. doi:10.2118/105378-MS

Qi, L., and Lu, Y. (2010). Development characteristics and main controlling factors of
the Ordovician carbonate karst in Tahe oilfield.Oil Gas Geol. 31 (1), 1–12. doi:10.11743/
ogg20100101

Qiang, J., and Fei, T. (2013). Investigation of fracture-cave constructions of karsted
cabonate reservoirs of ordovician in Tahe oilfield, Tarim Basin. J. China Univ. Petroleum
Ed. Nat. Sci. 37 (5), 15–21. doi:10.3969/j.issn.1673-5005.2013.05.003

Qiang, J., Fei, T., andHongfang, Z. (2015). Comprehensive evaluation of fracture-cave units
in karst carbonates in Tahe Oilfield, Tarim Basin. Petroleum Geol. Exp. 37 (3), 272–279.
doi:10.7603/s40972-015-0042-2

Qinghua, C., Ming, C., and Du, H. (2019). Application of 3D digital outcrop
characterization technology based on laser scanning in modern karst research.
Henan Sci. 37 (3), 422–428. doi:10.3969/j.issn.1004-3918.2019.03.017

Shang, X. F., Duan, T. Z., and Zhang, W. B. (2020). Characterization of dissolution
facies belt in fracture-cavity carbonate rocks mainly controlled by fault-controlling
karst: a case study of Ordovician reservoirs in the Block 10 of Tahe oilfield. ACTA PET.
SIN. 41 (03), 329–341. doi:10.7623/syxb202003007

Song, S., Mukerji, T., and Hou, J. (2021a). GANSim: conditional facies simulation
using an improved progressive growing of generative adversarial networks (GANs).
Math. Geosci. 53 (7), 1413–1444. doi:10.1007/s11004-021-09934-0

Song, S., Mukerji, T., and Hou, J. (2021b). Geological Facies modeling based on
progressive growing of generative adversarial networks (GANs). Comput. Geosci. 25 (3),
1251–1273. doi:10.1007/s10596-021-10059-w

Song, S., Zhang, D., and Mukerji, T. (2022). GANSim-surrogate: an integrated
framework for conditional geomodelling and uncertainty analysis. J. Hydrology
620B, 129493. doi:10.1016/j.jhydrol.2023.129493

Strebelle, S. (2002). Conditional simulation of complex geological structures
using multiple-point statistics. Math. Geol. 34, 1–21. doi:10.1023/a:
1014009426274

Suihong, S., Yanqing, S., and Jiagen, H. (2020). Review of a generative adversarial
networks (GANs)-based geomodel-ling method. Petroleum Sci. Bull. 7 (1), 34–49.
doi:10.3969/j.issn.2096-1693.2022.01.004

Wang, L., Yin, Y., Zhang, C., Feng, W., Li, G., Chen, Q., et al. (2022b). A MPS-
based novel method of reconstructing 3D reservoir models from 2D images using
seismic constraints. J. Petroleum Sci. Eng. 209, 109974. doi:10.1016/j.petrol.2021.
109974

Wang, X., Yu, S., Li, S., and Zhang, N. (2022a). Two parameter optimization methods
of multi-point geostatistics. J. Petroleum Sci-ence Eng. 208, 109724. doi:10.1016/j.petrol.
2021.109724

Xie, P., Hou, J., Yin, Y., Chen, Z., Chen, M., and Wang, L. (2022). Seismic inverse
modeling method based on generative adversarial networks. J. Petroleum Sci. Eng. 215,
110652. doi:10.1016/j.petrol.2022.110652

Xie, P. F., Hou, J. G., and Wang, Y. (2023). Application of multi-information fusion
modeling of fracture-vuggy reservoir in Ordovician reservoir of 12th block in Tahe
Oilfield. J. China Univ. Petroleum Ed. Nat. Sci. 47 (03), 1–14. doi:10.3969/j.issn.1673-
5005.2023.03.001

Xinbian, L., Chengjiang, H., and Guangxiao, D. (2014). Development features of karst
ancient river system in Ordovician reservoirs, Tahe Oil Field. Petroleum Geol. Exp. 3,
268–274. doi:10.11781/sysydz201403268

Yan-feng, L., Wen-biao, Z., Tai-zhong, D., and Hua-wei, Z. (2021). Numerical
simulation method for the formation of fault-karst carbonate reservoir process
based on cellular automaton. Sci. Technol. Eng. 21 (9), 3550–3555. doi:10.3969/j.
issn.1671-1815.2021.09.017

Yang, L., and Qiang, J. (2016). Karst zonings and fracture-cave structure
characteristics of Ordovician reservoirs in Tahe oilfieid, Tarim Basin. Acta Pet. Sin.
37 (3), 289–298. doi:10.7623/syxb201603001

Yang, L. I. (2012). Ordovician carbonate fracture-cavity reservoirs identification and
quantitative characterization in Tahe Oilfield. J. China Univ. Petroleum Ed. Nat. Sci. 36
(1), 1–7. doi:10.3969/j.issn.1673-5005.2012.01.001

Yang, L. I., Jiagen, H., and Yongqiang, L. I. (2016). Features and hierarchical
modeling of carbonate fracture-cavity reservoirs. Petroleum Explor. Dev. 43 (4),
600–606. doi:10.11698/PED.2016.04.12

Zhang, S., Jin, Q., and Cheng, F. Q. (2020). Genesis relation of surface and
underground rivers and reservoir charac⁃ teristics in paleokarst drainage systems:A
case study of Ordovician karst in the Tahe oilfield. CARSOLOGICA Sin. 39 (06),
900–910. doi:10.11932/karst2020y37

Zhang, T. F., Peter, T., Dupont, E., Zhu, L. C., Liang, L., and Bailey, W. (2019).
Generating geologically realistic 3D reservoir facies models using deep learning of
sedimentary architecture with generative adversarial networks. Petroleum Sci. 16 (3),
541–549. doi:10.1007/s12182-019-0328-4

Zhang, X. M., Yang, J., and Yang, Q. L. (2004). Reservoir description and
reserves estimation technique for fracture-cave type carbonate reservoir in
Tahe Oilfield. ACTA PET. SIN. 25 (1), 13–18. doi:10.3321/j.issn:0253-2697.2004.
01.003

Frontiers in Earth Science frontiersin.org15

Wang et al. 10.3389/feart.2023.1345028

https://doi.org/10.1029/2019wr025631
https://doi.org/10.1016/j.petrol.2019.03.017
https://doi.org/10.7623/syxb201301013
https://doi.org/10.1007/s12517-016-2562-z
https://doi.org/10.1007/s12517-016-2562-z
https://doi.org/10.1016/j.fuel.2023.127488
https://doi.org/10.1007/s12594-018-0856-3
https://doi.org/10.1029/2008wr007621
https://doi.org/10.3997/2214-4609.201800774
https://doi.org/10.2118/105378-MS
https://doi.org/10.11743/ogg20100101
https://doi.org/10.11743/ogg20100101
https://doi.org/10.3969/j.issn.1673-5005.2013.05.003
https://doi.org/10.7603/s40972-015-0042-2
https://doi.org/10.3969/j.issn.1004-3918.2019.03.017
https://doi.org/10.7623/syxb202003007
https://doi.org/10.1007/s11004-021-09934-0
https://doi.org/10.1007/s10596-021-10059-w
https://doi.org/10.1016/j.jhydrol.2023.129493
https://doi.org/10.1023/a:1014009426274
https://doi.org/10.1023/a:1014009426274
https://doi.org/10.3969/j.issn.2096-1693.2022.01.004
https://doi.org/10.1016/j.petrol.2021.109974
https://doi.org/10.1016/j.petrol.2021.109974
https://doi.org/10.1016/j.petrol.2021.109724
https://doi.org/10.1016/j.petrol.2021.109724
https://doi.org/10.1016/j.petrol.2022.110652
https://doi.org/10.3969/j.issn.1673-5005.2023.03.001
https://doi.org/10.3969/j.issn.1673-5005.2023.03.001
https://doi.org/10.11781/sysydz201403268
https://doi.org/10.3969/j.issn.1671-1815.2021.09.017
https://doi.org/10.3969/j.issn.1671-1815.2021.09.017
https://doi.org/10.7623/syxb201603001
https://doi.org/10.3969/j.issn.1673-5005.2012.01.001
https://doi.org/10.11698/PED.2016.04.12
https://doi.org/10.11932/karst2020y37
https://doi.org/10.1007/s12182-019-0328-4
https://doi.org/10.3321/j.issn:0253-2697.2004.01.003
https://doi.org/10.3321/j.issn:0253-2697.2004.01.003
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1345028

	Fracture-vuggy carbonate reservoir characterization based on multiple geological information fusion
	1 Introduction
	2 Geological setting
	3 Multi-information fusion modeling method
	3.1 Large-medium fracture models
	3.2 Underground river reservoirs
	3.3 Fault-controlled karst reservoirs
	3.4 Weathered crust reservoirs

	4 Modeling of different types of karst reservoirs
	4.1 Large and medium-scale fracture modeling
	4.2 Modeling of underground river reservoirs
	4.3 Modeling of fault-controlled karst reservoirs
	4.4 Modeling of weathered crust reservoirs
	4.5 Model fusion optimization

	5 Model test
	6 Discussion
	7 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


