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In mountainous landscapes, the diverse geotechnical conditions amplify
landslide susceptibility. Factors such as precipitation and seismic activity can
trigger landslides, while inherent hazards such as voids, fissures, and compaction
deficits jeopardize long-term slope stability. Detecting and forecasting these
susceptibilities accurately is crucial. In this paper, the time-domain finite-
difference approach and the gprMax software are used to conduct forward
modeling of landslide susceptibility. An electrical model of subsurface
aqueous structures is created, including water-filled and air-filled cavities,
fracture zones, and fault lines. The distinctive radar signal responses within
these environments are examined, and a dataset of B-scan images associated
with their electrical models is constructed. By employing deep learning
algorithms and the robust nonlinear mapping ability of convolutional neural
networks in the Pix2Pix generative adversarial network, we accelerate the
intelligent inversion of the geological radar data on landslide susceptibility.
This innovative approach effectively reconstructs hazard models, offering a
reliable basis for interpretation of radar signals.
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1 Introduction

Mountain landslides, as a typical geological disaster, often pose serious threats to the
lives of people and the socio-economic development. Firstly, mountain landslides directly
endanger human lives; the rapid descent of large amounts of soil and rocks during a
landslide can lead to casualties (Bai et al., 2017; Alcántara-Ayala and Sassa, 2023). Secondly,
mountain landslides can also cause damage to infrastructure such as houses, roads, bridges,
and dams, resulting in significant economic losses (Zhang et al., 2020; Bao et al., 2022; Jiao
et al., 2022). With the intensification of global climate change and the increase in human
activities, the frequency and severity of mountain landslides are likely to rise. The internal
structure and hidden dangers within landslides are major causes of their occurrence.
Therefore, researching and surveying the internal hazardous conditions of landslides is
crucial for preventing the impact of landslide disasters.

Geophysical probing has emerged as a crucial strategy for investigating the profound
structure and material distribution of landslides. However, in complex mountainous
terrain, the geophysical exploration of deep-seated landslide susceptibilities remains
beset by inefficiency and limited accuracy. Ground-penetrating radar (GPR), an
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innovative instrument for geophysical exploration, is a maturing
technology with a broadening application scope.

Compared to traditional methods of geophysical exploration,
GPR has advantages such as a high detection efficiency,
nondestructive probing, high precision, and robust interference
resistance. It has been demonstrated to have an immense
potential in applications such as landslide geological mapping,
fault detection, and lithological identification (Hu and Shan,
2016; Hallal et al., 2019; Duffek et al., 2023). This noninvasive
method can be used to rapidly and economically assess the internal
conditions of landslides.

Moreover, to achieve a more holistic understanding of the
subsurface conditions, GPR can be integrated with other
geophysical methods. For example, as demonstrated by Leucci
(Leucci, 2006), GPR can be combined with other geophysical
methods such as seismic tomography and resistivity tomography.
Such a multifaceted approach can enhance subsurface
characterization and diminish the uncertainty associated with
data interpretation.

The forward modeling of GPR data can be broadly classified into
two categories: numerical simulations and physical model
experiments. Numerical simulations, leveraging computer
programming for direct modeling, have the benefits of
convenience and cost-effectiveness during model adjustments. In
contrast, physical model experiments demand a greater time
investment for material preparation and model construction,
whereas numerical simulations are more efficient and convenient.

There are several numerical simulation techniques for GPR, and
each has its unique advantages and methodology. Ray tracing, a
prominent method, involves plotting the paths of electromagnetic
waves when they encounter interfaces and obstacles. The finite
element method (FEM) is another widely used technique that
discretizes the target area into different segments, permitting
localized analysis of complex structures. The method of moments
is derived from the integral form of functional theory. Moreover, the
finite-difference time-domain (FDTD) method is recognized to have
a good ability to discretize Maxwell’s equations in both space and
time. The strength of the FDTDmethod lies in its ability to elaborate
simulations of intricate subsurface structures and associated wave
propagation phenomena.

gprMax, an open-source software package devised for the
simulation of electromagnetic wave propagation in complex
environments, was specifically designed for use with GPR data.
Originally developed in 1996 by Antonis Gian-nopoulos at the
University of Edinburgh, it employs the FDTD method for
simulating GPR systems (Giannakis et al., 2016). Warren re-
engineered it using Python and Cython to implement more
detailed and complex simulations such as perfect matched layer
(PML), diagonal anisotropic materials, dispersive media, and soil
modeling (Warren et al., 2016). Feng proposed a novel hybrid
algorithm that combines the finite element time-domain (FETD)
and FDTD methods for fine GPR simulation of complex subsurface
engineering defects (Feng et al., 2018). This method has improved
the efficiency and accuracy of simulating electro-magnetic wave
propagation in models with different defects, providing deeper
insights and more precise technical guidance for defect
interpretation and analysis. Lin employed the FDTD method for
forward modeling and back-projection imaging and studied the

rapid, nondestructive detection and assessment of common tunnel
damage using GPR (Lin et al., 2019). GPR imaging effectively
recognizes dielectric changes before and after grouting, providing
valuable alternative solutions for detecting tunnel lining leakage and
reinforcing structural defects in subsurface engineering. Lv
introduced a reverse time migration (RTM) algorithm for GPR,
which can be used to more accurately locate subsurface engineering
cavities compared with traditional methods, and it offers higher
resolution and superior interference suppression capabilities (Lv
et al., 2020). The RTM algorithm has been demonstrated to have
potent anti-interference capabilities, providing accurate radar
section interpretations in high-interference environments. Luo
utilized forward modeling, laboratory experiments, and numerical
simulations to study GPR responses of voids in urban infrastructure,
revealing various patterns in GPR B-scans based on the ratio of the
void size to the signal wavelength and enhancing the accuracy of
void identification in complex subsurface environments (Luo et al.,
2020). Wu suggested a method for detecting voids using GPR and a
forward model based on the FDTDmethod. It was observed that the
response pattern of the voids depends on their width, and water-
filling expands the response range and produces virtual images (Wu
et al., 2022). Despite the interference from rein-forcement bars, the
central location of the voids can still be precisely located using
3-D GPR.

In summary, numerous researchers have made significant
contributions in the field of GPR forward modeling in recent
years, and such modeling has been validated and applied within
the sphere of engineering practice. However, there exists a
conspicuous dearth of research related to the identification of
landslide soil–rock body defects and damage such as fissures and
voids, which are crucial aspects for the assessment of landslide
stability and the implementation of safety measures.

GPR inversion plays a critical role in the detection of defects and
damage in the fields of civil and geological engineering. GPR
inversion techniques have been deployed to detect and monitor
various engineering damage, including voids, cracks, and seepage.
Koch analyzed the status quo of computer vision assessment of
various types of civil infrastructure, including reinforced concrete
bridges, precast concrete tunnels, and underground pipelines (Koch
et al., 2015). Adler proposed a partial learning method to address ill-
posed inverse problems of nonlinear forward operators. This
method combines classic regularization theory and deep learning
and performs better than filtered back projection and total variation
reconstruction in nonlinear tomographic inversion problems (Adler
and Oktem, 2017). Feng introduced a GPR full waveform inversion
method that utilizes a total variation regularization and multi-scale
inversion strategy to accurately reconstruct complex irregular
defects in tunnels under complex geological conditions (Feng
et al., 2019). Lei proposed a deep learning–based ap-proach using
an adaptive target region detection algorithm and a convolutional
neural network-long short-term memory (CNN-LSTM) framework
to identify object diameters in GPR B-scans (Lei et al., 2020). This
method achieved a 99.5% accuracy for simulated datasets and 92.5%
accuracy for field datasets, offering a promising solution for GPR
data interpretation. Qin introduced an automatic identification
method based on deep learning using Mask R-CNN to identify
tunnel reinforcements, voids, and initial lining from GPR images
(Qin et al., 2021). By employing the FDTD method and deep
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convolutional generative adversarial network (DCGAN) for data
augmentation, this method was demonstrated to have a decent
identification accuracy in field GPR investigation experiments.
Liu proposed a deep neural network (DNN) architecture,
GPRInvNet, aimed at mapping GPR B-scan data to complex
permittivity images (Liu et al., 2021). This method effectively
reconstructs subsurface engineering defects with clear boundaries.
Li developed a deep learning algorithm, GR-RCNN, which fuses the
2-D and 3-D features of GPR B-scans and C-scans and can reliably
detect subsurface defects in airport runways even under noisy
conditions (Li et al., 2021). Wang proposed a rebar clutter
elimination-generative adversarial network (RCE-GAN) method
to improve tunnel lining void recognition in GPR data by
eliminating steel bar clutter using generative adversarial networks
(Wang et al., 2022). This method has achieved good results for both
generated and real-world images. Liu presented a method that uses a
deep 3-D convolutional network and multiple mirror encoding to
capture 3-D GPR data (Liu et al., 2023). This method improves the
accuracy of subsurface object classification by capturing the
spatiotemporal features between parallel B-scans, and it
outperforms existing B-scan-based methods. Yang proposed a
defect segmentation method for non-destructive testing of
internal defects in subsurface engineering using GPR data (Yang
et al., 2022). This method leverages a CNN called Segnet and a loss
function to improve the accuracy, automation, and efficiency of
defect recognition. Hou proposed a method for automatically
detecting latent lining damage inside tunnels using GPR data.
This method employs convolutional neural networks to suppress
strong reflections from reinforcement bars and uses a support vector
machine to extract multi-dimensional features in the time,
frequency, and time-frequency domains (Hou et al., 2022). Liu
developed a method for evaluating the overall condition of
tunnel linings using GPR images, which was validated through
numerical simulations, sandbox experiments, and field tests, and
it was found to effectively identify defects and thickness sections
from GPR B-scan images (Liu et al., 2022).

In conclusion, through the development of numerous
techniques and methodologies, significant advancements have
been made in recent years in GPR inversion research for tunnel
damage detection. The ongoing integration of novel methods and
machine learning technologies promises to foster further progress in
this domain, with potential applications spanning various aspects of
subsurface and geological engineering monitoring. However,
research on landslide hazard damage inversion based on deep
learning remains notably scarce.

In this paper, the TDFD method and the gprMax software were
used to conduct forward modeling to realize the forward simulation
of landslide susceptibility defects. An electrical model for water-
filled and air-filled voids, fissures, and uncompacted areas is
established, and the characteristic responses and patterns of radar
signals within different constructs are researched and analyzed.
Using the gprMax software, the forward simulation of numerous
irregular lining defects is performed, and a dataset that correlates
B-scan images of landslide defects with their corresponding
electrical model imagery is established. Leveraging deep learning
algorithms and utilizing the Pix2Pix generative adversarial network,
we accomplish the intelligent inversion of GPR data. Based on the
nonlinear mapping relationship of deep learning, effective landslide

defect models are generated, providing a reference for the
interpretation of radar signals.

2 Methodology

2.1 Establishment of a GPR numerical model

2.1.1 Forward modeling of rock and soil media
The dimensions and distributions of soil–rock bodies differ

significantly from traditional single target detection or uniform
layered medium detection. In the case of such loose materials,
conducting forward simulations with different parameters may
lead to substantial disparities. The factors influencing the
simulation results include the distance between the transmitting
and receiving antennas, the center frequency of the antenna, and the
step length of the spatial grid.

Given the characteristics of the gprMax software, its command
can only create regular spatial geometric shapes, such as spheres,
cuboids, and cylinders. However, irregular shapes such as soil–rock
mixtures, cracks, and uncompacted areas are challenging to model
directly using gprMax. Forward simulations that substitute regular
shapes for complex shapes often result in excessive errors.

In this paper, we generate irregular rocks by writing Python
scripts, saving them as HDF5 files, and using gprMax to read the
HDF5 files for irregular rock modeling. We can control parameters
such as the number of rock particles and the radius of the rocks
through the script, thereby controlling the pixel occupancy ratio of
the rocks in space. This control allows for the setting of different
soil–rock ratios. The effect of the rock generation is shown
in Figure 1A.

We import the rocks to create the geoelectric model depicted in
Figure 1B to study the typical features of the GPR reflection signal of
the soil-rock mixture with randomly distributed rocks. The upper
layer of this model is air, the middle layer is a 3-m-thick soil–rock
body, and the lower layer is a rock layer. The number and grain size
of the rocks are adjusted to control the soil–rock ratio of the
soil–rock mixture, and the relative permittivity of the soil is
controlled to manage the water content. The model calculation
parameters are listed in Table 1. The rock grain size, ranging from
4 to 50 cm, is arranged randomly.

The excitation source is a point source, and a Ricker wavelet is
selected. The transmitting antenna and receiving antenna are 0.3 m
apart. The computational load of the forward simulation model
increases with enhancement of the grid accuracy. Considering the
calculation accuracy and time, the grid cell length is set to 0.005. The
soil and rocks are nonmagnetic materials, and their magnetic
conductivity is typically assumed to be 1 H/m, with a magnetic
loss factor of 0.

2.1.2 Solution stability and dispersion
According to the principles of electromagnetism, the phase

velocity of electromagnetic waves in a loss medium is a function
of the frequency. The phase velocity of the electromagnetic pulse
wave changes with the temporal discretization interval and the
spatial discretization interval, and numerical dispersion can occur
as the number of iterations increases. To ensure the stability of the
numerical solution, the temporal discretization interval and spatial
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discretization interval are not arbitrarily selected. They must meet
certain conditions to limit the numerical dispersion to the minimum
range. Talflove (Umashankar and Taflove, 1982) conducted an in-
depth study and research on the differential grid algorithm and
provided the limiting conditions for the temporal discretization
interval Δt and the spatial discretization intervals Δx, Δy, and Δz:

Δt≤ 1

c
���������������

1
Δx( )2 + 1

Δy( )2 +
1
Δz( )2

√ (1)

where c is the speed of light in vacuum (m/s).
Eq. 1 represents the Courant stability condition, which indicates

the corresponding relationship between the spatial discretization
and temporal discretization when the numerical dispersion is
limited to the minimum range.

Generally, we divide the Yee grid evenly to simplify the
calculations and select a discrete spatial step length. Eq. 1 can be
simplified as follows:

Δt≤ Δl
c

�
3

√ (2)

The discretization of the continuous Maxwell’s equations
inevitably results in electromagnetic pulse wave dispersion,
leading to calculation errors or even divergence. To reduce the
impact of the numerical dispersion, we typically select a spatial
discretization step length of less than λ/10 of the electromagnetic
wavelength to enhance the stability of the numerical solution.

2.1.3 Selection of excitation sources
In performing TDFD simulations of GPR data, the selection of

an appropriate excitation source is critical. The Ricker wavelet is a

pulse signal that is widely used in seismology and is suitable for
detecting underground media with different permittivities. The
Ricker wavelet is a broadband, nonperiodic pulse signal
commonly employed in seismic prospecting and geological
detection. The mathematical expression of the Ricker wavelet is
as follows:

s t( ) � 1 − 2π2f2
0 t − t0( )2( )e −π2f2

0 t−t0( )2( ) (3)
where f0 is the dominant frequency, and t0 is the central moment of
the waveform. After Fourier transformation, it is as follows:

F f( ) � 2f2��
π

√
f2
m

e
− f2

f2m (4)

2.1.4 Absorbing boundary conditions
In the TDFD simulation of GPR data, absorbing boundary

conditions (ABCs) are a technique used to handle reflections at
the boundaries of the computational domain. Since the field
values at the boundaries of the computational domain
inevitably reflect back during the computation, if these
reflected waves are not treated, they can lead to bias and
instability in the simulation results. The PML is currently the
most widely used ABC, and it is capable of effectively absorbing
waves with all angles and frequencies and is suitable for various
computational conditions and models.

In actual computations, the PML absorption boundary
condition usually consumes more computational resources than
other ABCs, but it can effectively reduce the size of the
computational area while ensuring computational accuracy,
thereby improving the computational efficiency. In this paper,

FIGURE 1
Schematic diagram of soil-rock mixed medium modeling: (A) Diagram of randomly generated rock fragments, (B) soil-rock medium model.

TABLE 1 Parameters for forward modeling of the model.

Medium Relative permittivity Conductivity (s/m) Magnetic permeability μr (h/m)

Air 1 0 1

Soil 25 0.001 1

Water 81 0.00001 1

Stone block 7 0.001 1
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the PML absorbing boundary condition is used in the numerical
simulations.

2.2 Pix2Pix neural network

2.2.1 Basic principles of Pix2Pix
Pix2Pix is a type of conditional generative adversarial

network (cGAN) primarily aimed at learning the mapping
relationship from input images to output images. The Pix2Pix
network consists of two main components: a generator and a
discriminator. These components work in coordination during
the learning process to achieve the desired image-to-image
transformation.

The objective in training the generator, denoted as G, is to
produce outputs indistinguishable from real images for a
discriminator, denoted as D, that has been trained adversarially.
The discriminator, D, is tasked with maximizing its proficiency in

identifying the fake images from the generator. This training process
is illustrated in Figure 2.

The learning process in Pix2Pix involves training the generator
and the discriminator in an adversarial manner. This learning
process can be summarized as follows. The generator receives an
input image and generates an output image. The discriminator
handles the input image paired with the generated output image
or the real output image. The generator is trained to minimize the
likelihood that the discriminator can correctly identify its generated
output image as a fake image. The discriminator is trained to
maximize the probability of correctly classifying real and fake
output images. This adversarial training process continues until a
state of equilibrium is reached, at which point the output image
generated by the generator is highly similar to the real output image,
and the discriminator can no longer accurately distinguish between
real and fake output images.

In the application of GPR image inversion, the Pix2Pix deep
learning framework shown in Figure 3 can provide an effective

FIGURE 2
Training procedure.

FIGURE 3
Pix2Pix network architecture.
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means of learning the nonlinear mapping between the GPR data and
the corresponding dielectric constant model, potentially enhancing
the accuracy and efficiency of the inversion process.

2.2.2 Pix2Pix structure in GPR inversion
As depicted in Figure 4, the generator in Pix2Pix employs U-Net

(Ronneberger et al., 2015), a network structure extensively used in
the field of image segmentation. The principal advantage of U-Net
lies in its capability to fully incorporate features. This is achieved
through its unique skip connections, which allow the model to
capture both local and global context information. The utilization of
U-Net within the Pix2Pix model enhances the image transformation
capability as the generator can better retain the fundamental features
and structures in the translated images.

The discriminator within the Pix2Pix model employs the
PatchGAN architecture. In contrast to traditional discriminators that
evaluate the authenticity of the entire input image, PatchGAN operates
on a per-pixel basis and predicts the probability values for each N×N
sized region of the input image (Figure 5). The primary advantage of
PatchGAN is its ability to capture more detailed image nuances and
maintain the local structures in the image. By assessing the authenticity
of smaller image pixels, the discriminator can effectively enforce a
higher level of consistency within the generated images while
maintaining a computationally efficient architecture. This approach
enables better differentiation between real and fake images, enhances
the training stability, and increases the convergence speed.

2.3 Hardware and software configuration

The production of the forward simulation dataset and the
configuration of the relevant inversion learning training
environment are depicted in Table 2. The performance of the
graphics card significantly impacts the GPR forward simulation
based on gprMax, the production of the related dataset, and the
inversion of landslide hazard structure targets based on Pix2Pix.
By employing the appropriate configuration for graphics
processing unit (GPU) acceleration, the computational time
can be substantially reduced.

3 Results

3.1 Data processing

3.1.1 Time gain processing
The characteristics of GPR signals, particularly their

amplitude, tend to decrease rapidly when penetrating the
ground, which can negatively affect the visibility of deep and
shallow reflections. Therefore, it is crucial to calibrate or apply
time gain to these signals to maintain their visibility at various
depths. Time-gain calibration methods based on models are
essential for ensuring the fidelity of GPR data and minimizing
potential signal confusion. After undergoing nonlinear time

FIGURE 4
U-net network architecture.
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gain processing, the form of the signal significantly changes
(Figure 6). Generally, the energy variation of electromagnetic
waves obeys an exponential law. Therefore, the time gain
function is chosen in the form of exponential gain:

y � ax − 0.5 (5)
where x is the sampling rate or time.

Generally, an upper limit is set for the maximum value of the
time gain function, which should not increase indefinitely.

Figure 6 illustrates a case where the maximum gain is
limited to 40.

As illustrated in Figure 6, the original radar signal waveform
appeared relatively flat, with minimal variation in color, indicating a
fairly uniform signal intensity across the entire detection range.
However, after the application of time gain adjustments, the
waveform exhibits more detailed and varied structural changes.
The color variation becomes more pronounced, indicating
significant changes in signal intensity. Moreover, the color scale
of this image displays a signal intensity range from −1,000 to 1,500,
which is broader than that of the original image, suggesting that the
revised image offers greater signal contrast.

3.1.2 Removal of direct arrival wave
A common problem when analyzing GPR data is the presence of

a direct wave. The direct wave is a signal that propagates directly
from the transmitting antenna to the receiving antenna without
interacting with the ground. The direct wave is usually the largest
and strongest signal in the GPR data, and it masks other signals from
underground features. To accurately analyze underground features
using GPR, the direct wave must be deleted from or minimized in
the GPR data. In this paper, the direct wave is physically eliminated
by modifying the GPR system (Figure 7).

FIGURE 5
Schematic diagram of PatchGAN.

TABLE 2 Configuration of the experimental environment.

Software System Win11

Dependency Cv2, Numpy, Torch

Language Python

Deep learning framework PyTorch

Hardware Processor Intel core i9-12900H

Graphics card NVIDIA GEFORCE GTX3060M

RAM 32G

Hard disk 1T
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As can be seen from Figure 7, by eliminating the direct wave, the
signals from underground features become clearer and easier to
identify, which leads to a more accurate and reliable interpretation.
In addition, removing the direct wave helps reduce the noise and
improve the signal-to-noise ratio of the GPR data, thereby
enhancing the sensitivity of the GPR to subtle underground
features. Overall, the removal of the direct wave is an important
step in GPR data processing and can significantly improve the
accuracy and reliability of underground surveys.

3.2 Simulation results of landslide hazard
forward modeling

3.2.1 Void forward simulation
Void damage in landslides refers to the cavities or open

spaces formed within the soil–rock mixture. The formation of
voids in landslide is typically attributed to several factors:
groundwater, excessive rainfall and snowmelt, and plant
roots penetrating the rocks and soil. Differences in the
inducing factors and environmental conditions lead to
variations in the size, shape, and distribution of voids, the
presence of which jeopardizes the structural stability and
safety of landslides.

The forward model of the void is defined with dimensions of
2 m×1 m, a grid division of 0.002 m×0.002 m, a PML absorption
boundary of 10 grids, and a time window of 20 ns The Ricker wavelet
is selected, the antenna frequency is set to 800 MHz, the coordinates
of the transmitting antenna are (0.02, 0.95), and the coordinates of
the receiving antenna are (0.10, 0.95). The antenna movement step is
0.01 m, and the time step is 0.01 ns Two irregular circular voids area
separately filled with air and water. The background soil material
properties are ε=9 and σ=10−6; the air parameters are ε=1 and σ=0;
and the stone parameters are ε=7 and σ=0.001. As previously
discussed, the stone modeling method for soil–rock mixtures was
leveraged for the stone modeling. The geoelectric model is depicted
in Figure 8A.

Figure 8B shows that in the corresponding GPR scan images, the
forward simulation of the landslide cavities invariably manifests as
hyperbolic waveforms that open downward. The apex of the
hyperbolic waveform corresponds to the peak of the reflected
amplitude, and the amplitude on both sides is relatively subdued.
Owing to the disparities in the electromagnetic characteristics,
different filling media result in significant differences in the
cavity imaging results. For the cavities filled with air, the
hyperbolic feature of the imaging and the echo feature
corresponding to the upper and lower boundaries of the cavity
are fairly conspicuous. This is because the relative permittivity of the

FIGURE 6
Comparison of signal before and after time gain application: (A) Before gain application, (B) before gain application.

FIGURE 7
Comparison of the signal before and after the removal of the direct wavefront: (A) Before removal of the direct arrival wave, (B) After removal of the
direct arrival wave.
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air-filled target is relatively close to that of the soil and rock, resulting
in a relatively weak reflection of the electromagnetic waves and thus
a relatively low intensity on the B-scan echo graph. However, the
water-filled cavities exhibit prominent imaging hyperbolic features
and multiple wave reflections. This is because the vast difference in
the dielectric properties of water and the geological environment
lead to a stronger ability to reflect electromagnetic waves, which is
manifested as prominent high intensity features in the radar
cross-section.

Regarding the two types of cavities filled with different media,
the reflection wave amplitude of the water-filled cavities is larger,
and the reflection wave amplitude of the air-filled cavities is smaller.
Moreover, when comparing the reflection waves of the water-filled
cavities and air-filled cavities, a phase reversal occurs. It can also be
observed that waveform trailing occurs after the cavity reflection
wave. This is due to the scattering coherence caused by the defect’s

edges, coupled with multiple reflections of the radar wave within the
defect and their superposition.

By examining these amplitude and phase changes, we can assess
the electrical differences and determine the nature of the
cavity damage.

3.2.2 Loose material forward simulation
The loosening or nonadherence between disparate layers of

lithic materials defines the lack of compactness within the slope,
which jeopardizes the structural integrity of the landslide, thereby
instigating potential safety hazards. The defects caused by non-
compactness are epitomized by the creation of multiple randomly
arrayed diminutive cuboidal cavities, which are areas filled with
water or air. The associated geoelectric model is illustrated in
Figure 9A, and the forward model and material parameters are
the same as those of the cavity forward parameters. The resultant

FIGURE 8
Schematic of landslide slope cavity model and B-scan: (A) Electrical model diagram of cavity, (B) B-scan grayscale image of cavity.

FIGURE 9
Schematic diagram of uncompacted electrical model and corresponding B-scan grayscale image of radar signal: (A) Electrical model of water-filled
uncom-pacted zone, (B) B-scan grayscale image of wa-ter-filled uncompacted zone, (C) electrical model of air-filled uncom-pacted zone, (D) B-scan
grayscale image of air-filled uncompacted zone.
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radar signal B-scan image after forward modelling is depicted
in Figure 9B.

The basic model parameters are set to the same values used for
the previous looseness damage filled with water. The looseness
damage was randomly imported and the filling medium was
replaced with air. The corresponding geoelectric model is shown
in Figure 9C, and the B-Scan image of the radar signal after forward
modeling is shown in Figure 9D.

It was found that strong reflection signals appear in the loose
areas of the slope body. Due to the differences in the electro-
magnetic properties, the imaging results for the different filling
media are significantly different. For the looseness area filled with
air, the reflection effect of the electromagnetic waves is relatively
weak, and the intensity displayed in the Bscan echo image is
relatively weak. This is because the relative permittivity of the
target body of the air is relatively small compared to the
permittivity of the concrete. It was found that in the radar echo
signal of the air-filled loose area, the signal intensity on both sides
gradually decreases. In addition, the water-filled loose area exhibits
more pronounced echo characteristics. The image is overall
intertwined and chaotic, the damage distribution is irregular, e.g.,
resembling a honeycomb, and the reflection in the middle position is
relatively strong. This is because in the dense bubble area, each air
coordinate position produces diffraction and reflection in different
directions, and the bubble position is irregular. The reflected signal
undergoes several superpositions, and the area with more overlaps
has more complex signals. At this time, the reflection coefficient of
the electromagnetic waves passing through the water medium is less
than 0, and the attenuation of the electromagnetic waves is
more serious.

3.2.3 Crack forward simulation
Landslide fractures, fissures, and interlayer separations

within lithic materials pose potential threats to the landslide’s
structural integrity and safety. The random distributions of the
fracture width, length, and direction enable the categorization of
such landslide fractures into distinct types based on their
underlying causes. Irregular fractures are arbitrarily generated,
filled with water, and depicted in the corresponding geoelectric
model in Figure 10A. The forward model and material
parameters are the same as those for the cavity forward
parameters.

The model’s fundamental parameters are consistent with
those of the fractures filled with water, as detailed previously.
Irregular fractures are introduced randomly, but the filling
medium is now air, as portrayed in the corresponding
geoelectric model in Figure 10C. The radar signal’s B-scan
image is depicted in Figure 10D.

Figures 10B, D illustrate the radar forward projection maps
corresponding to fractures filled with water and air, respectively.
Both models exhibit distinct reflection waves at 8 ns The phase
characteristics manifest as continuous cophase axes with trends
consistent with the primary horizontal fractures in the center of
the fractures. The upper and lower interfaces of the fractures
correspond to the strong reflection signals, and hyperbolic
diffraction waves appear at both ends of the fractures,
indicating conspicuous diffraction phenomena. The reflection
wave amplitude of the water-filled fractures is larger, producing a
strong radar signal, and the phase of the reflection wave from the
water-filled fracture is inverted compared to that of the air-
filled fracture.

FIGURE 10
Schematic diagrams of fracture electrical model and corresponding B-scan grayscale images of radar signal: (A) Electrical model of air-filled
fracture, (B) B-scan grayscale image of air-filled fracture, (C) electrical model of water-filled fracture, (D) electrical model of water filled fracture.
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3.3 Dataset creation

In this study, we employed the GprMax software to simulate the
response of Ground Penetrating Radar (GPR) to various subsurface
anomalies. The process of dataset creation involved using Python to

generate batch input files for GprMax and to execute these
simulations in bulk. This method efficiently produced a
comprehensive dataset, which can be utilized for training and
validating machine learning models for landslide anomaly
detection and characterization. The dataset comprises 700 models

FIGURE 11
Examples from dataset. (A) Selection of examples from the cavity dataset, (B) Selection of examples from the fracture dataset, (C) Selection of
examples from the fracture dataset.
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of different cavity shapes, 300 randomly generated models of
unconsolidated anomalies, and 300 models of irregular fractures.
Each model was processed accordingly, and pairs of model images
and their corresponding echo maps were fed into the Pix2Pix
network structure for training.

It is noteworthy that upon completion of batch simulation
calculations for the corresponding damage models, synthesized
radar data files were retrieved and subjected to pertinent pre-
processing, such as the removal of direct waves, time gain, and
contrast enhancement. As depicted in Figures 11–13, the red filling
medium represents water, and the blue signifies air.

Upon completion of all of the simulations and the
corresponding processing, the GPR data and associated damage
parameters were compiled into a dataset for subsequent analysis,
training, and validation of the machine learning model. By
employing this method, we effectively generated an integrated
dataset comprising various landslide hazards and their
corresponding GPR responses. This dataset is a valuable resource
for developing and evaluating advanced signal processing and

inversion techniques and can be utilized for GPR-based detection
and characterization of landslide hazards.

3.4 Simulation results of landslide hazard
inverse modeling

3.4.1 Void inversion
In this study, the Pix2Pix model was utilized to reconstruct voids

of various shapes, thereby achieving our goal of inverse
reconstruction pertaining to landslide cavity damage.

Figure 12 illustrates the void damage, manifesting the ongoing
optimization of the learning process during training. It is discernible
that at epoch = 1, even for singular void damage, the images
generated remain relatively indistinct and significantly deviate
from the model images. With increasing training iterations, the
images produced by Pix2Pix begin to increasingly converge with the
images used for the training, ultimately tending towards consistency,
and they still yield a relatively precise outcome for dual void damage.

FIGURE 12
Schematic diagram of the training optimization process: (A) Epoch1, (B) Epoch50, (C) Epoch100, (D) Epoch200.
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The inversion results for the landslide void damage are displayed
in Figure 13. The corresponding model images of the landslide void
damage are shown in Figure 13B, and the echo conditions of the void
damage acquired through respective forward simulation using
gprMax are illustrated in Figure 13A. Figure 13C depicts the
inversion results derived from feeding the images in Figure 13A
into the well-trained network. After 200 training iterations, it is
evident that the Pix2Pix network model can precisely invert the
target structure of the void damage while accurately inverting both
the water and air within the voids. Nonetheless, it is not difficult to
discern that the inversion effects of the irregular void damage are
relatively subpar compared to those of regular voids, such as circular

and rectangular shapes, and the inversion results exhibit more
pronounced discrepancies from the original model. However, the
overall inversion effect is commendable and effectively distinguishes
the corresponding target structures and substance properties
represented by the radar echo characteristics of the void damage.

3.4.2 Loose material inversion
The inversion results pertaining to unconsolidated damage are

depicted in Figure 14. Figure 14B presents the model image of the
unconsolidated damage, Figure 14A shows the echo characteristics
of the unconsolidated damage obtained after forward simulation,
and Figure 14C displays the inversion results. After 200 training

FIGURE 13
Cavity inversion results (epoch = 200): (A) B-scan images, (B) model images, (C) inversion results.
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iterations, it is apparent that the Pix2Pix network model can, with
reasonable precision, invert the target structure of the landslide
unconsolidated damage under water-rich conditions. However, the
overall effect is not as satisfactory as the previously discussed results
for the void damage, and the cause of such a discrepancy may lie in
the relative complexity and irregular shape of the
unconsolidated damage.

3.4.3 Crack inversion
The inversion results pertaining to the fissure damage are

presented in Figure 15. Figure 15B presents the model images of
the inflated fissure damage, Figure 15A displays the corresponding
B-scan radar echo characteristics of the fissures obtained after
forward simulation, and Figure 15C shows the inversion results.
After 200 training iterations, the Pix2Pix network model yields a
notable inversion effect for the target structure of the landslide

fissure damage. The fissure locations in the inversion images
essentially coincide with those in the original images, and the
shape structure of the obtained fissures also fundamentally aligns
with the original model, yielding satisfactory inversion results.

4 Conclusion

In this study, we addressed the detection of landslide damage via
GPR, constructed geoelectrical models of landslide soil and rock
mass damage, such as voids, unconsolidated materials, and fissures,
based on heterogeneous media, and analyzed the forward radar
signals under diverse working conditions. By employing deep
learning techniques, the Pix2Pix generative adversarial network
was utilized to intelligently invert the GPR data. The echo
characteristics of the voids were manifested as downward-

FIGURE 14
Uncompacted zone inversion result (epoch = 200): (A) B-scan images, (B) model images, (C) inversion results.

FIGURE 15
Fracture inversion result (epoch = 200): (A) B-scan images, (B) model images, (C) inversion results.
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opening hyperbolas, with the water-filled voids reflected larger wave
amplitudes and the air-filled voids exhibited smaller wave
amplitudes. The phase of the reflection wave from the water-
filled voids was inverted compared to that from the air-filled
voids. The radar reflection waveforms of the unconsolidated
damage crossed and disrupted, with cophase axes appearing
discontinuously and being misaligned and deformed. The
cophase axes of the fissure radar signals were continuous and
exhibited a trend similar to that of the primary fissures, with
strong reflections corresponding to the upper and lower
boundaries and evident diffraction phenomenon occurring at
both ends in the form of hyperbolic diffraction waves. The
Pix2Pix network model was applied to investigate the
correspondence between the landslide damage radar echo signals
and the damage model structures, and the abstract radar echo signal
images were translated into intuitive and vivid images of the damage
model structures. The inversion effect was optimal for simple
regularly shaped voids, while for more complex irregular voids,
unconsolidated material, and fissure damage, certain discrepancies
occurred between the inversion results and the model structures.

Nevertheless, this research has ample room for refinement in the
future, such as the inclusion of additional damage types and the
inversion of various combinations of damage. Furthermore,
augmenting the dataset size, optimizing the network architecture,
and incorporating a more extensive set of empirical data would
enhance its practical applicability.
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