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Accurately quantifying the relative effects of climate change and human
activities on soil carbon, nitrogen, and phosphorus in alpine grasslands and
their feedback is an important aspect of global change, and high-precision
models are the key to solving this scientific problem with high quality.
Therefore, nine models, the random forest model (RFM), generalized boosted
regression model (GBRM), multiple linear regression model (MLRM), support
vector machinemodel (SVMM), recursive regression treemodel (RRTM), artificial
neural network model (ANNM), generalized linear regression model (GLMR),
conditional inference tree model (CITM), and eXtreme gradient boosting model
(eXGBM), were used for modeling soil organic carbon (SOC), total nitrogen
(TN), total phosphorus (TP), the ratio of SOC to TN (C:N), the ratio of SOC
to TP (C:P), and the ratio of TN to TP (N:P) at depths of 0–10, 10–20,
and 20–30 cm under non-grazing and free-grazing scenarios in the Xizang
grasslands. Annual radiation (ARad), annual precipitation (AP), and annual
temperature (AT) were used as independent variables under non-grazing
scenarios, whereas ARad, AP, AT, and growing season maximum normalized
difference vegetation index (NDVImax) were used as independent variables
under free-grazing scenarios. Overall, the RFM and GBRM were more accurate
than the other seven models. However, the tree numbers of the GBRM were
much larger than those of the RFM, indicating that the GBRM may have
a greater model complexity and lower running speed. Therefore, the RFM
had the best performance among the nine models in modeling SOC, TN,
TP, C:N, C:P, and N:P in the Xizang grasslands. The RFM established in this
study can not only help scientists save time and money on massive sampling
and analysis, but can also be used to construct a database of SOC, TN,
and TP, and their ratios, and further scientific research related to ecological
and environmental issues (e.g., examining whether soil systems intensified
global warming over the past few decades by exploring whether climate

Frontiers in Earth Science 01 frontiersin.org

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2023.1340020
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2023.1340020&domain=pdf&date_stamp=2024-01-31
mailto:fugang@igsnrr.ac.cn
mailto:fugang@igsnrr.ac.cn
mailto:fugang09@126.com
mailto:fugang09@126.com
https://doi.org/10.3389/feart.2023.1340020
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/feart.2023.1340020/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1340020/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1340020/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1340020/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1340020/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1340020/full
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Wang et al. 10.3389/feart.2023.1340020

change and human activities altered soil organic carbon) in the grasslands of
Xizang Plateau.
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1 Introduction

Soils not only provide nutrients such as nitrogen and
phosphorus for various terrestrial plants but also contain a large
amount of organic carbon (Zhao et al., 2022; Niu and Fu, 2024),
which is an important carbon reservoir for regulating global
warming. Soil organic carbon (SOC), total nitrogen (TN), and total
phosphorus (TP), and their ratios (i.e., ratio of SOC to TN, C:N;
ratio of SOC to TP, C:P; and ratio of TN to TP, N:P), are important
soil variables (Yang et al., 2007; Zhang et al., 2007; Feng et al., 2017;
Liu et al., 2019; Kou et al., 2020; Li et al., 2020; Li et al., 2021). At
least one of SOC, TN, TP, C:N, C:P, and N:P is closely correlated
with soil respiration (Yu et al., 2019b; Fu and Shen, 2022), N2O flux
(Zhang et al., 2020; Bahram et al., 2022), forage nutrition quality
and production (Zha et al., 2022; Han et al., 2023b), soil microbial
diversity, and plant diversity (Yu et al., 2019a; Wang et al., 2021b;
Zhang and Fu, 2021). Therefore, modeling SOC, TN, TP, C:N, C:P,
and N:P on multiple space-time scales is an important challenge for
global carbon, nitrogen, and phosphorus cycling. To obtain these
six soil variables, predecessors have acquired various methods,
including direct observation methods (Fu et al., 2012; Han et al.,
2023b), spatial interpolatedmethods (de Melo et al., 2016; Shit et al.,
2016), process models (e.g., CENTURY model) (Mikhailova et al.,
2000; Tornquist et al., 2009; Zhuang et al., 2010), and machine
learning models (e.g., random forest model and eXtreme gradient
boosting model) (Bangelesa et al., 2020; Marcal et al., 2021). These
previous studies can provide very important guidance for our
current and future research but they have the following two
deficiencies. First, of the numerous existing machine learning
methods (Reichstein et al., 2019; Hutson, 2022), there is still
controversy over which is best at quantifying soil carbon, nitrogen,
and phosphorus and their ratios (Bangelesa et al., 2020; Wang et al.,
2021a). Second, there are always a lot of model input variables
for many of these previous studies (Wang et al., 2020). However,
the performance of the model does not always increase with the
increase of input variables due to the data accuracy of input variables
themselves and other potential reasons (Dai et al., 2023; Wang and
Fu, 2023). The number of input variables also affects the speed of
the model, increasing costs such as electricity (Tian and Fu, 2022;
Wang and Fu, 2023). In addition, any input variable depends on raw
observation data, which incurs labor costs and requires resources
(Tian and Fu, 2022; Dai et al., 2023). By contrast, models based on a
smaller number of input variables but with a higher accuracymay be
the potentially optimal model, although this requires further proof.
Therefore, further research about finding the best models of the six
soil variables is necessary.

Alpine soils on the Xizang Plateau are not only important
components of global alpine soils but also a very sensitive reservoir
of soil carbon under the background of global change. Accurate
quantification of soil carbon is an important basis for the accurate
quantification of the carbon sink function of terrestrial ecosystems

under the background of global change on the Xizang Plateau,
and a highly accurate model is an important basis for the accurate
quantification of the soil carbon pool. With the development of
machine learning techniques, an increasing number of tools are
available for us to choose for the modeling of environmental
variables (Tian and Fu, 2022; Dai et al., 2023; Wang and Fu,
2023). Under such a scenario, some studies have tried to find the
best models of α-diversity, forage nutrition quality and storage,
soil moisture, and pH on the Xizang Plateau from a variety of
machine learning methods (Han et al., 2022; Tian and Fu, 2022;
Dai et al., 2023; Wang and Fu, 2023). These studies have confirmed
that the random forest model (RFM) can be the best method
(Han et al., 2022; Tian and Fu, 2022; Dai et al., 2023; Wang and Fu,
2023). However, whether the RFM is better than other methods
at quantifying SOC, TN, TP, C:N, C:P, and N:P for grasslands on
the Xizang Plateau is unclear. On the other hand, although it is
well known that climate change and human activities jointly affect
grassland ecological systems (e.g., SOC) (Ganjurjav et al., 2015;
Wang et al., 2022), it is still controversial whether climate change
or human activities play a dominant role in the change of grassland
ecosystems on the Xizang Plateau. To separate the relative impacts
of climate change and human activities on SOC, TN, TP, C:N, C:P,
and N:P, it is necessary to construct the six variable models driven
by pure climate variables and models jointly affected by climate
change and human activities, respectively. Therefore, further studies
are needed to quantify the six variables by choosing the bestmachine
learning method in grassland areas on the Xizang Plateau.

In this study, we wanted to find the best models of SOC, TN,
TP, C:N, C:P, and N:P at three depths (0–10 cm, 10–20 cm, and
20–30 cm) using only three or four input variables under free-
grazing or non-grazing scenarios in the Xizang grassland ecological
systems from nine models. The nine models included the RFM,
generalized boosted regression model (GBRM), support vector
machine model (SVM), multiple linear regression model (MLRM),
recursive regression tree model (RRTM), artificial neural network
model (ANNM), generalized linear regression model (GLRM),
conditional inference tree model (CITM), and eXtreme gradient
boosting model (eXGBM) (Han et al., 2022; Wang and Fu, 2023).
Previous studies have confirmed that the RFM more accurately
models α-diversity and forage nutrition quality, soil pH, and soil
moisture in the Xizang grasslands (Han et al., 2022; Tian and
Fu, 2022; Dai et al., 2023; Wang and Fu, 2023). Therefore, we
hypothesized that the RFM will more accurately model SOC, TN,
and TP, and their ratios, in this study.

2 Materials and methods

The study area was located in the grassland areas of the Xizang
(Supplementary Figure S1). From west to east, there is a successive
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distribution of alpine desert steppes, alpine steppes, and alpine
meadows (Supplementary Figure S1). All soils were obtained using
a soil auger, immediately put in the car refrigerator, and were then
transferred to a lab freezer (−20°C) for storage before soil analyses.
Soil samples at a depth of 0–10 cm (elevation, 4,279 m to 5,261 m;
longitude, 79.46°E to 92.01°E; and latitude 29.28°N to 33.23°N)
under non-grazing scenarios were collected in 2011 and 2013–2020.
Soil samples at a depth of 10–20 cm (elevation, 4,279 m to 5,261 m;
longitude, 79.46°E to 92.01°E; and latitude 29.28 °N to 33.23°N)
under non-grazing scenarios were collected in 2011, 2013, 2015,
2017–2018, and 2020. Soil samples at a depth of 20–30 cm (elevation,
4,279 m to 5,261 m; longitude, 84.82°E to 91.07°E; and latitude 29.28
°N to 32.00°N) under non-grazing scenarios were collected in 2011
and 2020. Soil samples at a depth of 0–10 cm (elevation, 2,785 m
to 5,330 m; longitude, 79.46°E to 95.68°E; and latitude 28.37°N to
33.23°N) under free-grazing scenarios were collected in 2013 and
2015–2020. Soil samples at a depth of 10–20 cm (elevation, 2,785 m
to 5,330 m; longitude: 79.46°E to 95.68°E; and latitude 28.37°N to
33.23°N) under free-grazing scenarios were collected in 2013, 2015,
and 2017–2020. Soil samples at a depth of 20–30 cm (elevation,
4,300 m to 5,330 m; longitude, 84.82°E to 91.07°E; and latitude
29.22°N to 32.15°N) under free-grazing scenarios were collected
in 2019–2020.

We measured soil organic carbon (SOC), total nitrogen (TN),
and total phosphorus (TP) based on the soil samples mentioned
above, and then calculated the ratio of SOC to TN (C:N), ratio
of SOC to TP (C:P), and ratio of TN to TP (N:P) (Sun et al.,
2021; Zha et al., 2022). The potassium dichromate method, Kjeldahl
method, andmolybdenumantimony resistance colorimetrymethod
were used to analyze SOC, TN, and TP, respectively (Sun et al.,
2021). The SOC under non-grazing scenarios at 0–10, 10–20, and
20–30 cm was labeled by SOCp_0–10, SOCp_10–20, and SOCp_20–30,
but the SOC under free-grazing scenarios at 0–10, 10–20, and
20–30 cm was labeled by SOCa_0–10, SOCa_10–20, and SOCa_20–30,
respectively. Similarly, we labeled TNp_0–10, TNp_10–20, TNp_20–30,
TNa_0–10, TNa_10–20, TNa_20–30, TPp_0–10, TPp_10–20, TPp_20–30,
TPa_0–10, TPa_10–20, TPa_20–30, C:Np_0–10, C:Np_10–20, C:Np_20–30,
C:Na_0–10, C:Na_10–20, C:Na_20–30, C:Pp_0–10, C:Pp_10–20, C:Pp_20–30,
C:Pa_0–10, C:Pa_10–20, C:Pa_20–30, N:Pp_0–10, N:Pp_10–20, N:Pp_20–30,
N:Pa_0–10, N:Pa_10–20, and N:Pa_20–30.

The observed SOCa_0–10, TNa_0–10, TPa_0–10, C:Na_0–10,
C:Pa_0–10, and N:Pa_0–10 was 1.27–206.28 g kg−1, 0.10–10.30 g kg−1,
0.11–5.44 g kg−1, 4.37–21.30, 2.75–262.65, and 0.34–13.46,
respectively. The observed SOCa_10–20, TNa_10–20, TPa_10–20,
C:Na_10–20, C:Pa_10–20, and N:Pa_10–20 was 1.41–117.09 g kg−1,
0.13–8.87 g kg−1, 0.14–4.27 g kg−1, 0.66–22.08, 3.18–249.60,
and 0.38–16.69, respectively. The observed SOCa_20–30,
TNa_20–30, TPa_20–30, C:Na_20–30, C:Pa_20–30, and N:Pa_20–30 was
1.51–58.47 g kg−1, 0.27–4.92 g kg−1, 0.18–0.96 g kg−1, 3.61–16.42,
2.98–158.50, and 0.68–10.33, respectively. The observed SOCp_0–10,
TNp_0–10, TPp_0–10, C:Np_0–10, C:Pp_0–10, and N:Pp_0–10 was
1.89–80.23 g kg−1, 0.30–5.57 g kg−1, 0.18–0.75 g kg−1, 3.47–21.37,
6.16–147.40, and 0.98–11.39, respectively.The observed SOCp_10–20,
TNp_10–20, TPp_10–20, C:Np_10–20, C:Pp_10–20, and N:Pp_10–20 was
1.76–43.59 g kg−1, 0.37–4.20 g kg−1, 0.15–0.85 g kg−1, 2.60–14.83,
4.86–152.20, and 1.02–11.44, respectively.The observed SOCp_20–30,
TNp_20–30, TPp_20–30, C:Np_20–30, C:Pp_20–30, and N:Pp_20–30 was
1.16–32.74 g kg−1, 0.34–3.32 g kg−1, 0.11–0.85 g kg−1, 2.04–13.13,

3.18–56.23, and 1.00–7.50, respectively. Referring to previous
studies (Dai et al., 2023; Wang and Fu, 2023), these soil carbon,
nitrogen, and phosphorus datasets were randomly divided into
two parts using the sample function of the R software, one of
which contains 30 observations for model accuracy testing and
the remaining observations for model construction.

Previous studies found that only three climate variables (air
temperature, precipitation, and radiation) can obtain high-precision
random forest models of soil moisture and pH under fencing
conditions, while combining the three climate variables and
normalized difference vegetation index (NDVI) can obtain high-
precision random forest models of soil moisture and pH under
grazing conditions (Dai et al., 2023; Wang and Fu, 2023). In
addition, these four input variables are relatively easy to obtain, and
the model accuracy does not necessarily improve with more input
variables (Dai et al., 2023; Wang and Fu, 2023). In this study, only
these four independent variables were used to model soil carbon,
nitrogen, and phosphorus.

Referring to previous studies (Tian and Fu, 2022; Dai et al.,
2023), we modeled SOC, TN, TP, C:N, C:P, and N:P at 0–10,
10–20, and 20–30 cm under non-grazing scenarios using annual
temperature (AT), annual precipitation (AP), and annual radiation
(ARad) from the nine models. Although the default number of trees
in the random forest model is 500, this may not be the optimal value;
therefore, this default value was not adopted in this study. This may
improve the accuracy of the model. The AT, AP, and ARad data
were based on monthly air temperature, precipitation and radiation,
respectively (Fu et al., 2022; Wang and Fu, 2023). Monthly climate
data with high accuracies were spatial interpolation data from 145
weather stations, and their spatial resolution was 1 km × 1 km
(Wang and Fu, 2023).

All the nine models were performed using R.4.1.2. The
RFM, RRTM, MLRM, GBRM, and SVMM were based on the
randomForest, rpart, stats, gbm, and e1071 packages, respectively
(Han et al., 2022; Han et al., 2023a; Dai et al., 2023). The other
four models were based on the rminer package (Han et al., 2022;
Dai et al., 2023). For the RFM, except ntree and mtry, parameters of
the randomForest function were set to default values. To obtain the
optimal combination of the ntree and mtry, first we set the range of
mtry to 1–3 or 1–4 under fencing or grazing conditions, and thentree
to 1,000, and ran 300 or 400 random forests to filter out the optimal
ntree.Thenwe ran 300 or 400 random forest operations based on the
mtry (1–3 or 1–4) and optimal ntree and selected the combination
of ntree and mtry based on the largest R2 value and the smallest
mean square errors as the final random forest model. For the GBM,
first the gbm and gbm.perf functions together were used to find the
optimal n.trees. The cv.folds and n.trees of the gbm function were set
as 2 and 10,000, respectively, and all the other parameters were set
to be default values. Themethod of the gbm.perf function was set as
cv, and all the other parameters were set to default values. Then, we
used the gbm function to obtain the final gbm model based on the
cv.folds of 2 andoptimaln.trees. For theMLRM,RRTM, and SVM, all
the parameters of the lm function, rpart function, and svm function
were set to default values, respectively. For the ANNM, GLRM,
CITM, and eXGBM, the search and scale parameters of fit function
were set as heuristic5 and none, and the model parameter was set as
mlp, cv.glmnet, ctree, and xgboost, respectively. In addition, all the
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other parameters were set to default values for the ANNM, GLRM,
CITM, and eXGBM.

Similarly, we modeled SOC, TN, TP, C:N, C:P, and N:P at
0–10, 10–20, and 20–30 cm under free-grazing scenarios using AT,
AP, ARad, and growing-season maximum normalized difference
vegetation index (NDVImax) from the nine models mentioned
above (Tian and Fu, 2022; Dai et al., 2023). The NDVImax data
were maximum monthly NDVI for each year. Monthly NDVI data
were obtained from the MOD13A3 NDVI (1 km × 1 km, 1 month)
(Ma et al., 2022; Shen et al., 2022).

We combined the ggscatter function of the ggpubr package, the
geom_smooth function of the ggplot2 package, the stat_poly_eq
function of the ggpmisc package, and the ggarrange function of the
ggpubr package to obtain the figures of the linear regression between
observed andmodeled SOC, TN, TP, C:N, C:P, andN:P, respectively.
All statistical analyses were performed using R.4.1.2. In addition, the
linear slope and R2 value, relative bias, and root-mean-square error
(RMSE)were used to test the accuracy of the variousmodels adopted
in this study (Fu et al., 2011; Tian and Fu, 2022).

3 Results

3.1 Training results

Climate trivariate (i.e., AT, AP, and ARad) explained
47.63%–93.20%, 11%–51%, and 35%–89% of the variations in
potential soil variables based on the RFM, MLRM, and RRTM,
respectively (Supplementary Tables S1–S3). Climate trivariate and
NDVImax together explained 62.00%–92.71%, 11%–63%, and
39%–69% of the variations in actual soil variables based on the RFM,
MLRM, and RRTM, respectively (Supplementary Tables S1–S3).
The ntree and mtry values of the RFM were 294–865 and 1–3
for potential soil variables, and 365–863 and 1–4 for actual soil
variables, respectively (Supplementary Table S1). The trees values
of the GBRM were 134–4,860 and 1,032–5,787 of the potential
and actual soil variables, respectively (Supplementary Table S4).
The support vector numbers were 113–198 and 89–207 for the
SVMM of the potential and actual soil variables, respectively
(Supplementary Table S5). In addition, error values varied among
the ANNM, GLRM, CITM, and eXGBM, and the eXGBM had the
greatest error values in most cases (Supplementary Table S6).

3.2 Testing results

The RFM and GBRM were more accurate than the other seven
models for the observed SOCp_0–10 and SOCp_10–20, whereas the
RFM, GBRM, and SVMM were more accurate than the other
six models for observed SOCp_20–30 (Figure 1; Tables 1, 2). The
linear slopes and RMSEs between the observed SOC and modeled
SOC from the RFM and GBRM at 0–10 cm and 10–20 cm were
≥0.91 and ≤3.43 g kg−1, respectively, but those from the other
seven models were ≤0.80 and ≥5.30 g kg−1 (Figure 1; Table 2). The
modeled SOCp_0–10 from the RFM and GBRM explained ≥98%
(≥94%) of the variation in the observed SOCp_0–10 (SOCp_10–20), but
those from the other seven models only explained ≤95% (≤89%)
of the variation in the observed SOCp_0–10 (SOCp_10–20) (Figure 1).

FIGURE 1
Comparison of the modeled and observed potential SOC (g kg−1) for
(A–C) RFM, (D–F) GBRM, (G–I) MLRM, (J–L) SVMM, (M–O) RRTM,
(P–R) ANNM, (S–U) GLRM, (V–X) CITM, and (Y–AA) eXGBM. The solid
lines are the linear regression lines between the modeled and
observed potential SOC. RFM, random forest models; GBRM,
generalized boosted regression; MLRM, multiple linear regression
model; SVMM, support vector machine model; RRTM, recursive
regression tree model; ANNM, artificial neural network; GLRM,
generalized linear regression model; CITM, conditional inference tree;
eXGBM, eXtreme gradient boosting.
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The absolute values of relative bias between the observed SOCp_0–10
and modeled SOCp_0–10 from the RFM, GBRM, SVMM, RRTM,
and CITM were ≤6.05%, but those from the other four models
were ≥6.53% (Table 1). The absolute values of relative bias between
the observed SOCp_10–20 and modeled SOCp_10–20 from the RFM
and GBRM were ≤1.70%, but those from the other seven models
were ≥5.34% (Table 1). The RMSEs and absolute values of relative
bias between the observed SOCp_20–30 and modeled SOCp_20–30
from the RFM, GBRM, and SVMM were ≤1.55 g kg−1 and ≤2.31%,
respectively, but those from the other six models were ≥2.36 g kg−1

and ≥4.55% (Tables 1, 2). The linear slopes between the observed
SOCp_20–30 and modeled SOCp_20–30 from the GLRM and eXGBM
were ≤0.74, but those from the other seven models were ≥0.92
(Figure 1).Themodeled SOCp_20–30 from the RFM, GBRM, SVMM,
and eXGBM explained ≥95% of the variation in the observed
SOCp_20–30, but those from the other five models only explained
≤88% of the variation in the observed SOCp_20–30 (Figure 1).

The RFM had the first highest accuracy among the nine
models for the observed SOCa_0–10 and SOCa_10–20, whereas the
GBRM had the second highest accuracy among the nine models

for observed SOCa_0–10 and SOCa_10–20 (Figure 2; Tables 1, 2).
By contrast, the RFM and GBRM were the second and first
most accurate among the nine models for observed SOCa_20–30,
respectively (Figure 2; Tables 1, 2). The linear slopes between
the observed SOCa_0–10 (SOCa_10–20) and modeled SOCa_0–10
(SOCa_10–20) from the RFM and GBRM were 0.98 (≥0.91), but those
from the other seven models were 1.10 or ≤0.84 (≤0.77) (Figure 2).
The RMSEs between the observed SOCa_0–10 (SOCa_10–20) and
modeled SOCa_0–10 (SOCa_10–20) from the RFM and GBRM were
≤7.01 g kg−1 (≤3.90 g kg−1), but those from the other seven models
were ≥11.05 g kg−1 (≥6.79 g kg−1) (Table 2). The absolute values
of relative bias between the observed SOCa_0–10 and modeled
SOCa_0–10 from the RFM and GBRM were ≤1.07%, but those from
the other seven models were ≥4.31% (Table 1). Modeled SOCa_0–10
from the RFM, GBRM, and eXGBM explained (R2=0.94) most of
the variation in the observed SOCa_0–10, but that from the other
six models only explained ≤84% of the variation in the observed
SOCa_0–10 (Figure 2). The absolute values of relative bias between
the observed SOCa_10–20 and modeled SOCa_10–20 from the CITM,
GBRM, and RFM were the first (2.02%), second (2.92%), and third

TABLE 1 The relative bias (unit, %) between modeled and observed soil carbon, nitrogen, and phosphorus and their ratios.

Scene Variables Soil
depth
(cm)

RFM GBRM MLRM SVMM RRTM ANNM GLRM CITM eXGBM

Potential

SOCp

0–10 5.87 6.05 6.53 −0.51 −0.50 6.53 12.51 −0.60 −48.32

10–20 −1.70 0.13 −12.10 −21.93 −5.34 −12.10 −9.91 −6.00 −53.69

20–30 −2.31 −0.03 15.50 −2.12 4.55 15.50 7.28 20.66 −46.78

TNp

0–10 −6.17 −5.66 −14.77 −20.59 −9.68 −14.77 −12.45 −10.01 −42.86

10–20 −2.68 −3.72 −6.89 −13.76 −4.62 −6.89 −6.07 −9.25 −34.17

20–30 8.20 9.36 8.54 2.10 12.49 8.54 13.77 12.51 −18.73

TPp

0–10 0.75 −0.27 −1.64 0.56 −1.00 −1.64 −4.95 0.05 11.17

10–20 −3.68 −3.20 0.57 −3.53 0.71 0.57 1.67 −0.10 23.98

20–30 0.29 1.68 −10.66 −8.77 −6.16 −10.66 −10.01 −8.38 22.36

C:Np

0–10 2.38 1.82 3.75 3.43 1.74 3.75 1.54 0.51 −46.79

10–20 −1.62 −0.44 5.13 −1.26 0.82 5.13 6.75 0.82 −46.49

20–30 −1.63 −1.07 −3.59 −3.47 −2.00 −3.79 −3.79 −1.64 −49.33

C:Pp

0–10 0.18 0.42 −12.53 −11.60 −0.71 −12.53 −12.54 −1.66 −51.48

10–20 3.66 2.08 0.05 0.71 3.99 0.05 −8.83 5.78 −48.85

20–30 3.12 4.30 2.16 −0.45 2.12 2.16 −0.11 3.69 −48.54

N:Pp

0–10 −2.67 −2.22 −1.11 −1.79 −4.60 −1.11 2.69 −3.96 −45.48

10–20 6.51 6.90 12.63 5.10 11.11 12.63 17.34 6.38 −40.36

20–30 9.49 7.60 9.12 3.63 7.21 9.12 9.86 12.37 −39.22

(Continued on the following page)
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TABLE 1 (Continued) The relative bias (unit, %) between modeled and observed soil carbon, nitrogen, and phosphorus and their ratios.

Scene Variables Soil
depth
(cm)

RFM GBRM MLRM SVMM RRTM ANNM GLRM CITM eXGBM

Actual

SOCa

0–10 −0.07 −1.07 −8.37 −11.92 9.41 −8.37 −4.31 7.06 −50.57

10–20 −3.37 −2.92 −8.46 −20.41 −9.44 −8.46 −7.21 −2.02 −53.43

20–30 4.33 3.78 32.65 12.55 8.91 32.65 25.03 12.55 −50.29

TNa

0–10 5.26 3.63 6.15 −2.56 13.99 6.15 21.00 12.54 −29.28

10–20 0.93 2.37 −0.91 −6.22 3.61 −0.91 4.13 0.45 −31.18

20–30 −4.69 −4.17 4.72 −9.49 −0.75 4.72 9.71 7.33 −30.28

TPa

0–10 0.54 2.23 4.87 −1.74 1.31 4.87 3.03 −0.11 9.60

10–20 2.31 1.03 7.17 0.91 5.33 5.01 5.94 6.68 15.06

20–30 4.60 3.95 6.52 2.12 6.77 4.80 5.63 6.67 14.82

C:Na

0–10 3.18 2.70 5.39 5.81 6.33 5.39 8.59 6.23 −43.53

10–20 1.40 2.74 3.73 5.54 4.24 4.10 4.08 7.40 −44.89

20–30 −0.15 −0.30 1.37 2.30 2.11 1.37 −0.58 1.50 −47.58

C:Pa

0–10 1.44 1.08 −0.24 −4.36 2.40 −7.62 −7.67 −2.68 −52.97

10–20 −3.03 −4.00 3.36 −8.43 4.43 10.35 3.09 7.02 −52.46

20–30 −5.12 −7.58 0.56 −7.67 3.32 −4.74 −10.25 −6.94 −55.86

N:Pa

0–10 4.62 4.70 2.44 5.44 5.57 2.44 1.70 2.18 −40.69

10–20 −1.80 −2.78 −8.79 −10.54 −8.43 −13.32 −12.10 −13.28 −44.83

20–30 4.30 3.42 21.26 13.60 19.99 26.00 24.72 16.36 −37.35

RFM, random forest model; GBRM, generalized boosted regression; MLRM, multiple linear regression model; SVMM, support vector machine model; RRTM, recursive regression tree model;
ANNM, artificial neural network; GLRM, generalized linear regression model; CITM, conditional inference tree; eXGBM, eXtreme gradient boosting.

(3.37%)minimums, respectively, but those from the other sixmodels
were ≥7.21% (Table 1). However, the modeled SOCa_10–20 from
the CITM, GBRM, and RFM explained 81%, 94%, and 100% of
the variation in the observed SOCa_10–20, respectively (Figure 2).
The linear slopes between the observed SOCa_20–30 and modeled
SOCa_20–30 from the RFM, GBRM, MLRM, SVMM, and ANNM
were ≥0.94, but those from the other four models were ≤0.84
(Figure 2). However, the RMSE and absolute values of relative bias
between the observed SOCa_20–30 and modeled SOCa_20–30 from the
RFM and GBRM were ≤4.07 g kg−1 and ≤4.33%, respectively, but
those from the other seven models were ≥5.40 g kg−1 and ≥8.90%,
respectively (Tables 1, 2). Modeled SOCa_20–30 from the RFM and
GBRM explained 91% of the variation in the observed SOCa_20–30
but that from the other seven models only explained ≤88% of the
variation (Figure 2).

The RFM and GBRM were the second and first most accurate
of the nine models for observed TNp_0–10, respectively (Figure 3;
Tables 1, 2). By contrast, the RFM was the most accurate of the
nine models for observed TNp_10–20 and TNp_20–30, whereas the

GBRM was the second most accurate for observed TNp_10–20 and
TNp_20–30 (Figure 3; Tables 1, 2). Modeled TNp_0–10, TNp_10–20, and
TNp_20–30 from the RFM and GBRM explained 98%, 93%, and 93%
of the variation in the observed TNp_0–10, TNp_10–20, and TNp_20–30,
but those from the other seven models explained ≤96%, ≤92%,
and ≤92% of the variation in the observed TNp_0–10, TNp_10–20,
and TNp_20–30, respectively (Figure 3). The linear slopes between
the observed TNp_0–10 and TNp_10–20 and modeled TNp_0–10 and
TNp_10–20 from the RFM and GBRM were ≥0.89, but those from
the other seven models were ≤0.85 (Figure 3). The absolute values
of relative bias between the observed TNp_0–10 (TNp_10–20) and
modeled TNp_0–10 (TNp_10–20) from the RFM and GBRM were
≤6.17% (≤3.72%), but those from the other seven models were
≥9.68% (≥4.62%) (Table 1). The RMSEs between the observed
TNp_0–10 and TNp_10–20 and modeled TNp_0–10 and TNp_10–20 from
the RFM andGBRM, respectively, were ≤0.41 g kg−1, but those from
the other seven models were ≥0.55 g kg−1 (Table 2). The absolute
value of relative bias between the observed TNp_20–30 and modeled
TNp_20–30 from the RFM, GBRM, MLRM, SVMM, and ANNM was
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≤9.36%, but that from the other four models was ≥12.49% (Table 1).
However, the RMSEs between the observed TNp_20–30 and modeled
TNp_20–30 from the RFM, GBRM, and SVMM were ≤0.27 g kg−1,
and those from the other six models were ≥0.32 g kg−1 (Table 2).
Moreover, the linear slopes between the observed TNp_20–30 and
modeled TNp_20–30 from the RFM, GBRM, and RRTM were 1.00,
but those from the other six models were ≤0.98 (Figure 3).

The RFM and GBRM were more accurate than the other
seven models for the observed TNa_0–10, TNa_10–20, and TNa_20–30
(Figure 4; Tables 1, 2). The linear slopes between the observed
TNa_0–10 and modeled TNa_0–10 from the RFM, GBRM, and RRTM
were ≥0.94, but those from the other six models were ≤0.92
(Figure 4). However, the modeled TNa_0–10 from the RFM, GBRM,
and RRTM explained ≥91% of the variation in the observed
TNa_0–10, and those from the other six models explained ≤89%
of the variation in the observed TNa_0–10 (Figure 4). The RMSEs
between the observed TNa_0–10 and modeled TNa_0–10 from the
RFM, GBRM, and RRTM were ≤0.56 g kg−1, but those from the
other six models were ≥0.68 g kg−1 (Table 2). The absolute values
of relative bias between the observed TNa_0–10 and modeled

TNa_0–10 from the RFM, GBRM, and RRTM were 5.26%, 3.63%,
and 13.99%, respectively (Table 1). The linear slopes between the
observed TNa_10–20 and modeled TNa_10–20 from the RFM and
GBRM were ≥0.91, but those from the other seven models were
≤0.86 (Figure 4). The modeled TNa_10–20 from the RFM and GBRM
explained ≥92% of the variation in the observed TNa_10–20, and
those from the other seven models explained ≤86% of the variation
in the observed TNa_10–20 (Figure 4). The RMSE value between
the observed TNa_10–20/TNa_20–30 andmodeled TNa_10–20/TNa_20–30
from the RFM and GBRM was ≤0.43 g kg−1, but that from the other
seven models was ≥0.49 g kg−1 (Table 2). The absolute values of
relative bias between the observed TNa_10–20 andmodeled TNa_10–20
from the RFM and GBRM were ≤2.37% (Table 1). The absolute
values of relative bias between the observed TNa_20–30 and modeled
TNa_20–30 from the RFM, GBRM, and RRTM were 4.69%, 4.17%,
and 0.75%, respectively, but those from the other six models was
≥4.72% (Table 1). The modeled TNa_20–30 from the RFM, GBRM,
and eXGBMcould explain 89%, 88%, and 88% of the variation in the
observedTNa_20–30, respectively, but those from the other sixmodels
explained ≤86% of the variation in the TNa_20–30 (Figure 4).

TABLE 2 The RMSE (unit, g kg−1 for SOC, TN, and TP) between modeled and observed soil carbon, nitrogen, and phosphorus and their ratios.

Scene Variables Soil
depth
(cm)

RFM GBRM MLRM SVMM RRTM ANNM GLRM CITM eXGBM

Potential

SOCp

0–10 2.49 2.20 11.81 6.93 9.08 11.81 12.27 9.09 11.09

10–20 3.36 3.43 7.92 7.68 5.54 7.92 8.91 5.30 9.06

20–30 1.54 1.55 2.75 1.28 2.36 2.75 3.82 3.72 3.54

TNp

0–10 0.38 0.37 1.04 0.88 0.57 1.04 1.08 0.67 1.16

10–20 0.41 0.41 0.60 0.57 0.57 0.60 0.59 0.55 0.67

20–30 0.26 0.27 0.35 0.26 0.32 0.35 0.39 0.36 0.33

TPp

0–10 0.04 0.04 0.12 0.08 0.06 0.12 0.13 0.07 0.10

10–20 0.06 0.06 0.10 0.08 0.09 0.10 0.11 0.07 0.11

20–30 0.06 0.06 0.09 0.07 0.07 0.09 0.10 0.08 0.10

C:Np

0–10 1.00 1.00 1.69 1.10 1.06 1.69 1.72 1.33 4.29

10–20 0.67 0.73 1.18 0.97 0.83 1.18 1.47 0.83 3.40

20–30 0.74 0.86 1.83 1.15 1.23 1.99 1.99 1.11 3.32

C:Pp

0–10 8.84 8.88 22.80 16.61 10.66 22.80 24.67 9.94 29.03

10–20 9.58 9.09 13.37 9.10 12.03 13.37 15.95 12.27 20.12

20–30 6.08 5.27 6.29 4.13 5.91 6.29 6.30 5.91 9.87

N:Pp

0–10 0.64 0.63 1.57 1.25 0.82 1.57 1.85 0.98 2.48

10–20 0.95 0.94 1.25 0.87 0.92 1.25 1.50 1.13 1.63

20–30 0.77 0.68 1.00 0.63 0.76 1.00 1.11 1.04 1.36

(Continued on the following page)
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TABLE 2 (Continued) The RMSE (unit, g kg−1 for SOC, TN, and TP) betweenmodeled and observed soil carbon, nitrogen, and phosphorus and their ratios.

Scene Variables Soil
depth
(cm)

RFM GBRM MLRM SVMM RRTM ANNM GLRM CITM eXGBM

Actual

SOCa

0–10 6.87 7.01 11.05 12.52 14.55 11.05 15.84 14.61 14.85

10–20 3.83 3.90 8.04 8.39 6.79 8.04 8.91 7.18 9.53

20–30 4.07 4.01 6.99 5.41 8.24 6.99 7.71 7.12 7.94

TNa

0–10 0.46 0.48 1.21 0.83 0.56 1.21 1.18 0.68 0.90

10–20 0.41 0.40 0.78 0.74 0.66 0.78 0.75 0.74 0.72

20–30 0.43 0.43 0.53 0.49 0.56 0.53 0.56 0.54 0.59

TPa

0–10 0.06 0.07 0.13 0.12 0.08 0.13 0.14 0.12 0.10

10–20 0.06 0.07 0.15 0.15 0.12 0.15 0.15 0.14 0.13

20–30 0.09 0.10 0.15 0.13 0.10 0.16 0.15 0.16 0.13

C:Na

0–10 1.22 1.25 2.14 1.70 1.66 2.14 2.00 2.01 4.29

10–20 1.05 1.17 1.60 1.36 1.60 1.60 1.65 1.58 4.15

20–30 1.53 1.50 1.73 1.76 1.60 1.73 1.75 1.78 4.63

C:Pa

0–10 11.14 11.10 32.70 24.32 31.40 35.82 37.55 32.99 40.57

10–20 11.39 11.76 13.86 13.45 19.32 22.04 17.37 19.15 21.62

20–30 7.81 8.10 16.70 12.43 17.96 14.29 21.13 18.47 22.25

N:Pa

0–10 1.18 1.14 2.01 1.81 1.34 2.01 2.35 1.33 2.53

10–20 0.74 0.75 1.85 1.58 1.40 1.58 2.03 1.42 2.25

20–30 0.57 0.57 1.20 0.84 1.03 1.24 1.11 0.99 1.11

RFM, random forest models; GBRM, generalized boosted regression; MLRM, multiple linear regression model; SVMM, support vector machine model; RRTM, recursive regression tree model;
ANNM, artificial neural network; GLRM, generalized linear regression model; CITM, conditional inference tree; eXGBM, eXtreme gradient boosting.

The RFM and GBRM were more accurate than the other seven
models for observed TPp_0–10, TPp_10–20, and TPp_20–30 (Figure 5;
Tables 1, 2). The RMSEs between the observed TPp_0–10, TPp_10–20,
and TPp_20–30 and modeled TPp_0–10 (TPp_10–20) from the RFM
and GBRM were 0.04, 0.06, and 0.06 g kg−1, respectively, but those
from the other seven models were ≥0.06, 0.07, and 0.07 g kg−1

(Table 2). The modeled TPp_0–10 (TPp_10–20) from the RFM and
GBRM explained 99% (≥97%) of the variation in the observed
TPp_0–10 (TPp_10–20), but that from the other sevenmodels explained
≤98% (≤96%) of the variation in the observed TPp_0–10 (TPp_10–20)
(Figure 5). The modeled TPp_20–30 from the RFM, GBRM, and
SVMM explained 97% of the variation in the observed TPp_20–30,
but that from the other six models explained ≤96% of the variation
in the observed TPp_20–30 (Figure 5). The absolute value of relative
bias between the observed TPp_0–10 and modeled TPp_0–10 from
the RFM, GBRM, SVMM, and CITM was ≤0.75%, but that from
the other five models was ≥1.00% (Table 1). The absolute values of
relative bias between the observed TPp_10–20 and modeled TPp_10–20
from the RFM, GBRM, MLRM, SVMM, RRTM, ANNM, GLRM,

CITM, and eXGBMwere 3.68%, 3.20%, 0.57%, 3.53%, 0.71%, 0.57%,
1.67%, 0.10%, and 23.98%, respectively (Table 1). The absolute
values of relative bias between the observed TPp_20–30 and modeled
TPp_20–30 from the RFM and GBRM were 0.29% and 1.68%,
respectively, but that from the other seven models was ≥6.16%
(Table 1). The linear slopes between the observed TPp_20–30 and
modeled TPp_20–30 from the RFM and GBRM were 0.99 and 1.00,
respectively, but those from the other seven models were 1.20 or
≤0.91 (Figure 5).

The RFM and GBRM were more accurate than the other seven
models at predicting TPa_0–10, TPa_10–20, and TPa_20–30 (Figure 6;
Tables 1, 2). The absolute values of relative bias between the
observed TPa_0–10, TPa_10–20, or TPa_20–30 and modeled TPa_0–10,
TPa_10–20, or TPa_20–30 from the eXGBM were much greater than
those of the other eight models (Table 1). There was an obvious
phenomenon in which several observed TPa_0–10, TPa_10–20, or
TPa_20–30 values corresponded to one modeled TPa_0–10, TPa_10–20,
or TPa_20–30 value from the CITM, respectively (Figure 6). There
was an obvious phenomenon in which several observed TPa_10–20
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FIGURE 2
Comparison of the modeled and observed actual SOC (g kg−1) for
(A–C) RFM, (D–F) GBRM, (G–I) MLRM, (J–L) SVMM, (M–O) RRTM,
(P–R) ANNM, (S–U) GLRM, (V–X) CITM, and (Y–AA) eXGBM. The solid
lines are the linear regression lines between the modeled and
observed actual SOC. The abbreviations are the same as in Figure 1.

FIGURE 3
Comparison of the modeled and observed potential TN (g kg−1) for
(A–C) RFM, (D–F) GBRM, (G–I) MLRM, (J–L) SVMM, (M–O) RRTM,
(P–R) ANNM, (S–U) GLRM, (V–X) CITM, and (Y–AA) eXGBM. The solid
lines are the linear regression lines between the modeled and
observed potential TN. The abbreviations are the same as in Figure 1.
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FIGURE 4
Comparison of the modeled and observed actual TN (g kg−1) for (A–C)
RFM, (D–F) GBRM, (G–I) MLRM, (J–L) SVMM, (M–O) RRTM, (P–R)
ANNM, (S–U) GLRM, (V–X) CITM, and (Y–AA) eXGBM. The solid lines
are the linear regression lines between the modeled and observed
actual TN. The abbreviations are the same as in Figure 1.

FIGURE 5
Comparison of modeled and observed potential TP (g kg−1) for (A–C)
RFM, (D–F) GBRM, (G–I) MLRM, (J–L) SVMM, (M–O) RRTM, (P–R)
ANNM, (S–U) GLRM, (V–X) CITM, and (Y–AA) eXGBM. The solid lines
are the linear regression lines between the modeled and observed
potential TP. The abbreviations are the same as in Figure 1.
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FIGURE 6
Comparison of the modeled and observed actual TP (g kg−1) for (A–C)
RFM, (D–F) GBRM, (G–I) MLRM, (J–L) SVMM, (M–O) RRTM, (P–R)
ANNM, (S–U) GLRM, (V–X) CITM, and (Y–AA) eXGBM. The solid lines
are the linear regression lines between the modeled and observed
actual TP. The abbreviations are the same as in Figure 1.

or TPa_20–30 values corresponded to one modeled TPa_10–20 or
TPa_20–30 value from the ANNM, respectively (Figure 6). There was
an obvious phenomenon in which several observed TPa_10–20 values
corresponded to one modeled TPa_10–20 value from the GLRM,
respectively (Figure 6). The RMSEs between the observed TPa_0–10
or TPa_10–20 and modeled TPa_0–10 or TPa_10–20 from the RFM and
GBRM were ≤0.07 g kg−1, but those from the other seven models
were ≥0.08 g kg−1 (Table 2). The modeled TPa_0–10 from the RFM,
GBRM, and RRTM explained ≥97% of the variation in the observed
TPa_0–10, but those from the other six models explained ≥95% of the
variation in the observed TPa_0–10 (Figure 6). The linear slope and
absolute value of relative bias between the observed TPa_0–10 and
modeled TPa_0–10 from the RFM, GBRM, and RRTM were ≥0.98
and ≤2.23%, respectively (Figure 6; Table 1). The modeled TPa_10–20
from the RFM and GBRM explained 98% of the variation in the
TPa_10–20, but those from the other seven models only explained
≤93% of the variation in TPa_10–20 (Figure 2). The relative bias and
linear slope between the observed TPa_10–20 and modeled TPa_10–20
from the RFM and GBRM were 2.31% and 0.99, and 1.03% and
0.97, respectively (Table 1). The linear slope between the observed
TPa_20–30 and modeled TPa_20–30 from the RFM, GBRM, RRTM,
and eXGBM was 1.00, but that from the other five models was
≤0.95 (Figure 6).Themodeled TPa_20–30 from the RFM, GBRM, and
RRTM explained ≥95% of the variation in the observed TPa_20–30,
but that from the other six models could only explain ≤92% of the
variation in the observed TPa_20–30 (Figure 6). The RMSE between
the observed TPa_20–30 and modeled TPa_20–30 from the RFM,
GBRM, and RRTM was ≤0.10 g kg−1, but that from the other six
models was ≥0.13 g kg−1 (Table 2).The absolute value of relative bias
between the observed TPa_20–30 and modeled TPa_20–30 from the
RFM, GBRM, and SVMM was ≤4.60%, but that from the other six
models was ≥4.80% (Table 1).

The RFM and GBRM were more accurate than the other seven
models at predicting the C:Np_0–10, C:Np_10–20, and C:Np_20–30
(Figure 7; Tables 1, 2). The absolute values of relative bias between
the observed C:Np_0–10, C:Np_10–20, or C:Np_20–30 and modeled
C:Np_0–10, C:Np_10–20, or C:Np_20–30 from the eXGBM were much
greater than those from the other eight models (Table 1). There
was an obvious phenomenon in which several observed C:Np_0–10,
C:Np_10–20, or C:Np_20–30 values corresponded to one modeled
C:Np_0–10, C:Np_10–20, or C:Np_20–30 value from the RRTM, ANNM,
and GLRM, respectively (Figure 7). Additionally, there was an
obvious phenomenon in which several observed C:Np_0–10 or
C:Np_10–20 values corresponded to one modeled C:Np_0–10 or
C:Np_10–20 value from theCITM, respectively (Figure 7).TheRMSEs
between the observed C:N and modeled C:N from the RFM and
GBRM at 0–10, 10–20, and 20–30 cm were 1.00, ≤0.73, and ≤0.86,
but those from the other sevenmodels were ≥1.06, ≥0.83, and ≥1.11,
respectively (Table 2). The relative biases between the observed
C:Np_0–10 and modeled C:Np_0–10 from the RFM, GBRM, MLRM,
and SVMM were 2.38%, 1.82%, 3.75%, and 3.43%, respectively
(Table 1). The relative biases between the observed C:Np_10–20 and
modeled C:Np_10–20 from the RFM, GBRM, MLRM and SVMM
were −1.62%, −0.44%, 5.13%, and −1.26%, respectively (Table 1).
The absolute values of relative bias between the observed C:Np_20–30
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FIGURE 7
Comparison of the modeled and observed potential C:N for (A–C)
RFM, (D–F) GBRM, (G–I) MLRM, (J–L) SVMM, (M–O) RRTM, (P–R)
ANNM, (S–U) GLRM, (V–X) CITM, and (Y–AA) eXGBM. The solid lines
are the linear regression lines between the modeled and observed
potential C:N. The abbreviations are the same as in Figure 1.

andmodeledC:Np_20–30 from theRFMandGBRMwere ≤1.63%, but
those from the other seven models w ≥1.64% (Table 1). The linear
slope between the observedC:Np_20–30 andmodeledC:Np_20–30 from
the RFM and GBRM was 0.97, but that from the other seven models
was ≤0.94 (Figure 7). The modeled C:Np_20–30 from the RFM and
GBRM explained ≥98% of the variation in the observed C:Np_20–30,
but that from the other seven models only explained ≤97% of the
variation in C:Np_20–30 (Figure 7).

The RFM was more accurate than the other eight models
in predicting the C:Na_10–20 (Figure 8; Tables 1, 2). The RFM
and GBRM were more accurate than the other seven models
at predicting the C:Na_0–10 and C:Na_20–30 (Figure 8; Tables 1,
2). The absolute values of relative bias between the observed
C:Na_0–10, C:Na_10–20, or C:Na_20–30 and modeled C:Na_0–10,
C:Na_10–20, or C:Na_20–30, respectively, from the eXGBM were
much greater than those from the other eight models (Table 1).
There was an obvious phenomenon in which several observed
C:Na_0–10, C:Na_10–20, or C:Na_20–30 values corresponded to one
modeled C:Na_0–10, C:Na_10–20, or C:Na_20–30 value from the RRTM
and CITM, respectively (Figure 8). Additionally, there was an
obvious phenomenon in which several observed C:Na_10–20 values
corresponded to one modeled C:Na_10–20 value from the ANNM
(Figure 8). The absolute values of relative bias between the observed
C:Na and modeled C:Na from the RFM and GBRM at 0–10, 10–20,
and 20–30 cmwere ≤3.18%, ≤2.74%, and≤0.30%, but those from the
other seven models were ≥5.39%, ≥3.73%, and ≥0.58%, respectively
(Table 1). The RMSEs between the observed C:Na and modeled
C:Na from the RFM and GBRM at 0–10, 10–20, and 20–30 cm were
≤1.25, ≤1.17, and ≤1.53, but those from the other sevenmodels were
≥1.66, ≥1.36, and ≥1.60, respectively (Table 2).

The RFM and GBRM were more accurate than the other
seven models in predicting the C:Pp_0–10, C:Pp_10–20, and C:Pp_20–30
(Figure 9; Tables 1, 2).The absolute value of relative bias between the
observed C:Pp_0–10, C:Pp_10–20, or C:Pp_20–30 and modeled C:Pp_0–10,
C:Pp_10–20, or C:Pp_20–30, respectively, from the eXGBM was much
greater than those from the other eight models (Table 1). There
was an obvious phenomenon in which several observed C:Pp_0–10,
C:Pp_10–20, or C:Pp_20–30 values corresponded to one modeled
C:Pp_0–10, C:Pp_10–20, or C:Pp_20–30 value from theGLRMandCITM,
respectively (Figure 9). Both the linear slope and R2 values between
the observed C:Pp_0–10 or C:Pp_10–20 and modeled C:Pp_0–10 or
C:Pp_10–20 from the MLRM and ANNM were lower than 0.90,
respectively (Figure 9). The RMSEs between the observed C:Pp_0–10
and modeled C:Pp_0–10 from the RFM and GBRM were ≤8.88,
but those from the other seven models were ≥9.91 (Table 2). The
absolute values of relative bias between the observed C:Pp_0–10 and
modeled C:Pp_0–10 from the RFM and GBRM were ≤0.42%, but
those from the other seven models were ≥0.71% (Table 1). The
RMSEs between the observed C:Pp_10–20 and modeled C:Pp_10–20
from the RFM, GBRM, and SVMM were ≤9.58, but those from
the other six models were ≥12.03 (Table 2). The linear slopes and
R2 values between the observed C:Pp_10–20 and modeled C:Pp_10–20
from the RFM, GBRM, and SVMM were 1.00 and 0.94, 1.00 and
0.95, and 0.95 and 0.95, respectively (Figure 9). The RMSEs between
the observed C:Pp_20–30 and modeled C:Pp_20–30 from the RFM,
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FIGURE 8
Comparison of the modeled and observed actual C:N for (A–C) RFM,
(D–F) GBRM, (G–I) MLRM, (J–L) SVMM, (M–O) RRTM, (P–R) ANNM,
(S–U) GLRM, (V–X) CITM, and (Y–AA) eXGBM. The solid lines are the
linear regression lines between the modeled and observed actual C:N.
The abbreviations are the same as in Figure 1.

FIGURE 9
Comparison of the modeled and observed potential C:P for (A–C)
RFM, (D–F) GBRM, (G–I) MLRM, (J–L) SVMM, (M–O) RRTM, (P–R)
ANNM, (S–U) GLRM, (V–X) CITM, and (Y–AA) eXGBM. The solid lines
are the linear regression lines between the modeled and observed
potential C:P. The abbreviations are the same as in Figure 1.
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GBRM, SVMM, RRTM, and CITM were ≤6.08, but those from the
other four models were ≥6.29 (Table 2). The linear slopes between
the observed C:Pp_20–30 and modeled C:Pp_20–30 from the RFM,
GBRM, SVMM, RRTM, and CITM were 0.98, 0.99, 0.95, 0.96, and
0.94, respectively (Figure 9).

The RFM was more accurate than the other eight models
at predicting the C:Pa_10–20 (Figure 10; Tables 1, 2). The RFM
and GBRM were more accurate than the other seven models at
predicting the C:Pa_0–10 and C:Pa_20–30 (Figure 10; Tables 1, 2). The
absolute values of relative bias between the observed C:Pa_0–10,
C:Pa_10–20, or C:Pa_20–30 and modeled C:Pa_0–10, C:Pa_10–20, or
C:Pa_20–30, respectively, from the eXGBM were much greater than
those from the other eight models (Table 1). There was an obvious
phenomenon in which several observed C:Pa_0–10, C:Pa_10–20, or
C:Pa_20–30 values corresponded to onemodeled C:Pa_0–10, C:Pa_10–20,
or C:Pa_20–30 value from the RRTM,ANNM, andCITM, respectively
(Figure 10). Linear slopes and R2 values between the observed
C:Pa_0–10, C:Pa_10–20, orC:Pa_20–30 andmodeledC:Pa_0–10, C:Pa_10–20,
or C:Pa_20–30 from the GLRM were lower than 0.80 (Figure 10).
Linear slopes between the observed C:Pa_0–10 or C:Pa_20–30 and
modeled C:Pa_0–10 or C:Pa_20–30 from the MLRM and SVMM were
also lower than 0.80, but those from the RFM andGBRMwere ≥0.93
(Figure 10). The RMSEs between the observed C:Pa and modeled
C:Pa from the RFM and GBRM were ≤11.76, but those from the
other seven models were ≥12.43 (Table 2).

The accuracy of the N:Pp_0–10, N:Pp_10–20, and N:Pp_20–30 also
changed with different models (Figure 11; Tables 1, 2). The absolute
values of relative bias between the observed N:Pp_0–10, N:Pp_10–20,
or N:Pp_20–30 and modeled N:Pp_0–10, N:Pp_10–20, or N:Pp_20–30,
respectively, from the eXGBM were much greater than those from
the other eightmodels (Table 1).There was an obvious phenomenon
in which several observed N:Pp_0–10, N:Pp_10–20, or N:Pp_20–30 values
corresponded to one modeled N:Pp_0–10, N:Pp_10–20, or N:Pp_20–30
value from the GLRM and CITM, respectively (Figure 11). The
RMSEs between the observedN:Pp_0–10 andmodeledN:Pp_0–10 from
the RFM and GBRM were ≤0.64, but those from the other seven
models were ≥0.82 (Table 2). The RMSEs between the observed
N:P and modeled N:P from the RFM, GBRM, SVMM, and RRTM
at 10–20 cm and 20–30 cm were ≤0.95 and ≤0.77, but those from
the other five models were ≥1.13 and ≥1.00, respectively (Table 2).
However, the linear slopes between the observed N:Pp_10–20 and
modeledN:Pp_10–20 from theRFM,GBRM, SVMM, andRRTMwere
1.00, 1.00, 0.98, and 1.10, respectively (Figure 11).

The RFM was more accurate than the other eight models in
predicting N:Pa_10–20 (Figure 12; Tables 1, 2). The RFM and GBRM
were more accurate than the other seven models at predicting
N:Pa_0–10 and N:Pa_20–30 (Figure 12; Tables 1, 2). The absolute
values of relative bias between the observed N:Pa_0–10, N:Pa_10–20,
or N:Pa_20–30 and modeled N:Pa_0–10, N:Pa_10–20, or N:Pa_20–30,
respectively, from the eXGBM were much greater than the other
eight models, respectively (Table 1). The absolute values of relative
bias between the observed N:Pa_0–10 and modeled N:Pa_0–10 from
the MLRM, ANNM, GLRM, and CITM were lower than those
from the RFM and GBRM (Table 1). However, there was an
obvious phenomenon in which several observed N:Pa_0–10 values
corresponded to onemodeled N:Pa_0–10 from the CITM (Figure 12).

FIGURE 10
Comparison of the modeled and observed actual C:P for (A–C) RFM,
(D–F) GBRM, (G–I) MLRM, (J–L) SVMM, (M–O) RRTM, (P–R) ANNM,
(S–U) GLRM, (V–X) CITM, and (Y–AA) eXGBM. The solid lines are the
linear regression lines between the modeled and observed actual C:P.
The abbreviations are the same as in Figure 1.
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FIGURE 11
Comparison of modeled and observed potential N:P for (A–C) RFM,
(D–F) GBRM, (G–I) MLRM, (J–L) SVMM, (M–O) RRTM, (P–R) ANNM,
(S–U) GLRM, (V–X) CITM, and (Y–AA) eXGBM. The solid lines are the
linear regression lines between the modeled and observed potential
N:P. The abbreviations are the same as in Figure 1.

FIGURE 12
Comparison of the modeled and observed actual N:P for (A–C) RFM,
(D–F) GBRM, (G–I) MLRM, (J–L) SVMM, (M–O) RRTM, (P–R) ANNM,
(S–U) GLRM, (V–X) CITM, and (Y–AA) eXGBM. The solid lines are the
linear regression lines between the modeled and observed actual N:P.
The abbreviations are the same as in Figure 1.
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The RMSEs between the observed N:Pa and modeled N:Pa from
the RFM and GBRM at 0–10 cm, 10–20 cm, and 20–30 cm were
≤1.18, ≤0.75, and 0.57, but those from the other seven models were
≥1.33, ≥1.40, and ≥0.84, respectively (Table 2). The modeled N:Pa
from the RFM and GBRM explained ≥94%, 97%, and 95% of the
variation in the observedN:Pa at 0–10 cm, 10–20 cm, and 20–30 cm,
respectively, but those from the other seven models only explained
≤93%, ≤94%, and ≤93% of the variation in the observed N:Pa
(Figure 12). The slopes between the observed N:Pa and modeled
N:Pa from the RF and GBRM at 0–10 cm and 10–20 cm were ≥0.95,
but those from the other seven models were ≤0.93 (Figure 12).
The slopes between the observed N:Pa_20–30 and modeled N:Pa_20–30
from the RF andGBRMwere 1.00 and 0.99, respectively (Figure 12).
The absolute values of relative bias between the observed N:Pa
and modeled N:Pa from the RFM and GBRM at 10–20 cm and
20–30 cm were ≤4.30%, but those from the other seven models were
≥8.43% (Table 1).

4 Discussion

Overall, the ARad, AP and AT based on the RFM explained
the most variation in SOC, TN, TP, C:N, C:P, and N:P, those
based on the RRTM explained the second most variation, and
those based on the MLRM explained the least variation under
the non-grazing scenarios (Supplementary Tables S1, S3, S5). The
ARad, AP, AT, and NDVImax based on the RFM explained the
most variation in SOC, TN, TP, C:N, C:P, and N:P, those based on
the RRTM explained the second most variation, and those based
on the MLRM explained the least variation under the free-grazing
scenarios (Supplementary Tables S1, S3, S5). That is, the RFM had
a greater ability to explain the six soil variables than the RRTM
and MLRM, whereas the RRTM had a greater ability to explain
the six soil variables than the MLRM. This finding supported some
previous studies that demonstrated that the RFM had a greater
ability to explain soil moisture and pH, plant species α-diversity,
forage nutrition quality, and storage (Han et al., 2022; Tian and Fu,
2022; Dai et al., 2023; Wang and Fu, 2023). Moreover, the prediction
accuracy of RFM was also higher than that of RRTM and MLRM
(Tables 1, 2). This finding also supported some previous studies that
demonstrated that the RFM had a higher prediction accuracy of soil
moisture and pH, plant species α-diversity, forage nutrition quality,
and storage than the RRTMandMLRM in grasslands on the Tibetan
Plateau (Han et al., 2022; Tian and Fu, 2022; Dai et al., 2023; Wang
and Fu, 2023). Therefore, the performance of the RFM was better
than the RRTM and MLRM, at least for the grassland areas on the
Xizang Plateau.

The R2 values under the non-grazing scenarios were not
always lower than those under the free-grazing scenarios
when we constructed the models of the six soil variables
(Supplementary Tables S1, S3, S5). Moreover, the model accuracies
under the non-grazing scenarios were not always lower than those
under the free-grazing scenarios (Tables 1, 2). This finding implied
that the increase in the number of independent variables cannot
always improve the accuracy of the models. This finding was similar
to several previous studies conducted on (Han et al., 2022; Tian
and Fu, 2022; Dai et al., 2023; Wang and Fu, 2023) and outside
the Qinghai-Xizang Plateau (Veloso et al., 2022). These previous

studies found that the numbers of the input variables were not
always positively related to themodel accuracies of soil moisture and
pH, plant species α-diversity, forage nutrition quality, and storage
(Han et al., 2022; Tian and Fu, 2022; Dai et al., 2023; Wang and Fu,
2023). Moreover, a previous study found that the R2 value (<0.86)
between the observed and modeled SOC pool in a previous study
(Liu et al., 2023) was lower than that between the observed and
modeled SOC in this study, but the input variables numbers (>=12)
of the previous study (Liu et al., 2023) were much greater than those
in this study. Therefore, an increase in the input variables of the
model does not always lead to a better model of plant and soil
variables, at least for the grasslands of the Xizang Plateau. Moreover,
instead of focusing on increasing the number of input variables
and how to obtain more accurate input variable data, it is better to
focus on how to find the optimal model to better help solve related
ecological and environmental problems.

Similar to some previous studies (Dai et al., 2023; Wang and Fu,
2023), the predicted accuracies of the six soil variables based on the
RFM were dependent on soil depth. This finding may be due to the
followingmechanisms. First, soil moisture and pH can regulate their
responses of SOC, TN, TP, C:N, C:P andN:P to external disturbance
(e.g., warming) (Yu et al., 2019a). The predicted accuracies of the
six soil variables should be related to those of soil moisture and
soil pH. In addition, soil moisture and pH can generally change
with soil depth. Second, solar radiation and precipitation first reach
the surface of soils and then gradually reach the deep layer of
soils through energy conduction or infiltration. The normalized
difference vegetation index is calculated by the spectral information
reflected by land surface, and the energy source of air temperature is
mainly the long-wave radiation of the land surface. All of these may
lead to closer relationships between the six topsoil variables and the
four input variables than deeper soil variables.

The RFM and GBRM achieved a greater accuracy for the
six soil variables than the other seven models. However, the tree
numbers of the GBRM were much greater than those of the
RFM for most cases (Supplementary Tables S1, S2). The model
complexity can be generally positively correlated with the tree
numbers, whereas the calculation speed can be generally negatively
correlated with the tree numbers (Han et al., 2022; Tian and Fu,
2022). Therefore, the RFM should be the best model among the
nine models when all things are considered in this study, which
was in line with the hypothesis. This phenomenon was similar to
some previous studies that demonstrated that the RFM performed
better than the other models at modeling soil moisture and pH,
plant species α-diversity, forage nutrition quality, and storage in
grassland ecological systems on (Han et al., 2022; Tian and Fu,
2022; Dai et al., 2023; Wang and Fu, 2023) and outside the Qinghai-
Xizang Plateau (Fernandez-Delgado et al., 2014; Nussbaum et al.,
2018). All these findings further support the advantage of the
RFM in modeling soil and plant variables in grasslands on the
Qinghai-Xizang Plateau.

The prediction accuracy of the six variables based on the RFM
was greater than those in some previous studies (Yang et al., 2008;
Yang et al., 2009; Yang et al., 2010; Shangguan et al., 2013; Kou et al.,
2019; Wang et al., 2020; Wang et al., 2021a; Liu et al., 2023). For
example, the modeled TN could only explain 34%–41% of the
variation in the observed TN, and the RMSEs and relative bias were
1.15–1.20 g kg−1 and 49.17% in China, respectively (Zhou et al.,
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2020). Moreover, compared with some previous studies (Kou et al.,
2019; Wang et al., 2021a; Liu et al., 2023), although the number of
independent variables used in the models constructed in this study
was small, the accuracy was not reduced. This phenomenon may
be due to the introduction of more independent variables that
may introduce new uncertainties, considering that any independent
variable can have its own data quality. Therefore, the RFM of SOC,
TN, TP, C:N, C:P and N:P at the three depths in this study can
have relative accuracies and can be used for related studies (e.g., the
spatial distribution of these six variables) in grassland areas on the
Xizang Plateau.

It is well known that climate change and human activities
together affect these soil variables (Yu et al., 2019a; Zhang and Fu,
2021; Zha et al., 2022), but their relative contributions are unclear.
Many previous studies only modeled actual soil organic carbon,
total nitrogen, total phosphorus, and their ratios (Yang et al., 2009;
Kou et al., 2019), so it was difficult to disentangle the relative
effects of climate change and human activity on these soil variables.
However, in this study, the potential and actual random forest
models of these soil variables were constructed respectively, so it was
relatively easy to separate the relative contributions of climate change
and human activities to these soil variables.

There are some uncertainties or limitations in this study. First,
as the NDVI comes from optical remote sensing, it is often affected
by the conditions of satellite itself (such as instrument failure), the
angle between the satellite remote sensing and the surface, weather
conditions, and land surface conditions. The Xizang Plateau became
dimming, which coincided with the increase in precipitation during
2000–2020 (Huang and Fu, 2023). During the rainy season on the
Xizang Plateau, it is often rainy or cloudy for several consecutive
days, which may prevent the collection of near infrared and red
band data of plants and the calculation of the NDVI. On the Xizang
Plateau, grassland productivity tends to decline from southeast
to northwest. The NDVI is easy to saturate in areas with high
vegetation productivity, while it is affected by soil interference in
areas with low vegetation productivity (Ma et al., 2022; Shen et al.,
2022). Second, many grassland areas on the Xizang Plateau have
steep slopes, and the soil samples weremainly collected in areas with
relatively shallow slopes. This may affect the relationships between
these soil variables and climate data or NDVI data. Third, although
climate and NDVI data are based on the corresponding year, soil
variables are not entirely derived from observations in the same
year, and climate change and human activities may alter these soil
variables (Zhang et al., 2015; Fu and Shen, 2017). This phenomenon
may also interfere with the model accuracy. Fourth, although the
climate data used in this study can be highly accurate, there is
some uncertainty associated with them. Fifth, only random forest
models with soil variables at depths of 0–10, 10–20, and 20–30 cm
were built in this study; therefore, future studies may consider
building optimal models of soil variables at greater depths. Sixth,
the data in this study were all obtained from the Xizang Plateau;
therefore, it may be necessary to further test the accuracy of the
models constructed in this study when extrapolating them to other
regions of the Qinghai-Xizang Plateau. We can consider additional
soil sampling in other areas of the plateau to build the optimal
model of soil variables in the entire Qinghai-Xizang Plateau region
in the future. Finally, only random forest models of the contents of
these soil variables were constructed in this study, and the densities

of soil organic carbon, total nitrogen, and total phosphorus could
better reflect the changes in these soil variables. Therefore, the
construction of optimal models of soil organic carbon density, total
nitrogen density, and total phosphorus density should be considered
in the future.

5 Conclusion

This study is the first to model SOC, TN, TP, C:N, C:P, and
N:P at depths of 0–10, 10–20, and 20–30 cm under non-grazing
and free-grazing scenarios based on nine methods. We can build
a database of soil carbon, nitrogen, and phosphorus and their
ratios over the past few decades or for the future across the
whole grasslands of the Xizang Plateau under fencing and free-
grazing conditions using the RFM established in this study. This
database can be used to solve some of ecological, environmental,
and soil management problems in grassland ecosystems in the
Xizang Plateau. For example, the relative effects of climate change
and human activities on soil organic carbon during the past
decades can be distinguished and quantified, thus providing data
support for improving soil carbon sequestration and mitigating
climate warming.
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