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Introduction: In cities, the intensity of integrated development, both above and
below ground, has been continuously increasing. Unfortunately, associated events
such as surface cracking and ground collapse are common, and research into the
susceptibility of urbangroundcollapse (UGC) has consequently, also been increasing.

Methods: In this study, we calculated the spatial probability distribution of historical
UGC events in Hangzhou, China as a case study. To avoid the influence of the
subjectivity of expert opinions on the evaluation results, and to distinguish it from
the first version of the UGC sensitivity map in 2021, collinearity and correlation
analyses based on geo-detector were conducted, and the 11 most representative
factors from 22 candidates were identified. Then, a GIS-based susceptibility
assessment system was established and applied to eastern Hangzhou, China.

Results: The assessment results were divided into three grades. High-
susceptibility areas accounted for 6.08% of the total area and were mainly
distributed in the central area on both sides of the Qiantang River. Medium-
susceptibility areas accounted for 23.92% of the total area and showed an
expanding trend around the central area. Low-susceptibility areas accounted
for 12.42% of the total area and were mainly distributed within the bedrock
mountainous areas on the west side.

Discussion: The assessment model take more urban construction activies into
consideration, which can fits better with the trigger factors of UGC itself, and has
good applicability for other cities in Zhejiang Province to assess the susceptibility
of UGC events.
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1 Introduction

Urban ground collapse (UGC) (Wang and Xu, 2022; Zhang X. et al., 2023) refers to
ground instability or subsidence triggered by the void formation or looseness of geological
bodies below urban ground, and this can be caused by natural or human activities. In
literature, sinkhole is also used to indicate a UGC event that occurs in a range of adverse
geological conditions (Waltham, 2008; Tufano et al., 2022). However, recently UGC events
tend to be caused by urban construction and human activities (Pellicani et al., 2017; Zhang
X. et al., 2023), leading to secondary damages such as the tilting of buildings, road collapses,
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and destruction of pipelines, which can have serious consequences
on a city’s economic development and urban construction (Zhou
et al., 2022; Zhang C. et al., 2023; Liu et al., 2023). With the growing
need for land, the utilization of urban underground areas holds
substantial economic potential (Zerhouny et al., 2018; Lu et al.,
2021). Conversely, the quantity of UGC events exhibits a pattern of
continuous expansion in parallel with urbanization (He et al., 2022;
Tan et al., 2022). Therefore, the growing conflict between the
advancement of underground spaces and urban safety
emphasizes the urgent requirement for the government to
establish a more sophisticated control strategy, which necessitates
conducting a comprehensive susceptibility assessment beforehand
(Gutiérrez et al., 2014; Xie et al., 2021; Zhou and Zhai, 2023).

Assessments for ground collapse can be categorized into
susceptibility, hazard and comprehensive risk mapping.
Susceptibility assessment focuses on determining the likelihood or
probability of a specific area or system. In the context of UGC,
susceptibility assessment would involve identifying and mapping the
geological, hydrological, geotechnical factors and human activities
that contribute to the likelihood of ground collapse in a given area
(Galve et al., 2009; Ciotoli et al., 2012; Subedi et al., 2019; Kim et al.,
2020; Orhan et al., 2020). Hazard assessment involves evaluating the
spatial probability, as well as the temporal and magnitude
characteristics of potential collapse events within the urban
environment. Vulnerability assessment refers to the evaluation of
the potential impact on city when exposed to a hazard. In the context
of UGC, vulnerability assessment would involve assessing the
potential consequences and impacts of a ground collapse event on
human lives, infrastructure, and the environment (Guarino et al.,
2018; Bianchini et al., 2022). Risk assessment encompasses a broader
analysis that integrates information from hazard assessment,
vulnerability assessment, and exposure assessment to provide a
comprehensive understanding of the overall risk associated with
UGC (Buttrick and Van Schalkwyk, 1998; Mostafiz et al., 2021).

GIS analysis have led to a revolution in hazard and damage
mitigation studies due to their efficiency in spatial data management
and manipulation (Lathrop and Bognar, 1998; Lee et al., 2004; Orhan
et al., 2020). Various GIS-based methods that have been used in other
geological disaster such as landslide (Feizizadeh and Blaschke, 2011;
Michael and Samanta, 2016; Roccati et al., 2021; Merchán et al., 2023),
floods (Lyu et al., 2018; Xiong et al., 2019; Lyu et al., 2020; Sarkar et al.,
2022), earthquake (Liu et al., 2012; Heron et al., 2014; Giovinazzi et al.,
2021), etc., can also be used in susceptibility and vulnerability mapping
can be adopted to develop sinkhole susceptibility and hazard models.
Quantitative modeling approaches combining GIS analysis to UGC
susceptibilitymapping include deterministic, nearest neighbor or density
distribution, and probabilistic methods (Galve et al., 2009; Ciotoli et al.,
2012; Ozdemir, 2016; Pellicani et al., 2017; Yu et al., 2023). Geo-
dectector, as one of the representative spatial analysis methods, is
also brought in to identify indicators that have an impact on UGC
events (Wang et al., 2019; Ding et al., 2021) and to calculate the weight of
each indicator in the susceptibility score, showing its potential to the
application of accuracy improvement of geo-hazards susceptibility
models (Hu et al., 2022; Wang et al., 2022; Zhang X. et al., 2023).

There are three studies carried out on geo-hazard assessment of
UGC of Hangzhou City (Xu et al., 2011; Xu et al., 2012; Xu et al.,
2018). XU Kai (Xu et al., 2011; Xu et al., 2012) established a geo-
environmental suitability evaluation model that is comprised of nine

factors, including geomorphic type, slope, site soil type, stratum
steadiness, Holocene saturated soft soil depth, groundwater
abundance, groundwater salinization, geologic hazard type, and
geologic hazard degree. UGC, categorized into surface collapse,
was regarded as one of the four geological disasters and not dived
deep. XU Ye-Shuang (Xu et al., 2018) explored more on the potential
geohazards in the urban area of Hangzhou, and concluded that karst
strata, soft clay, confined aquifers, and shallow gas are main geological
features related to the safety of underground construction.

In the perspective of an estimation of UGC susceptibility, this paper
presents a preliminary susceptibility assessment for the city of
Hangzhou. Starting from the conclusion by Zhang (Zhang X. et al.,
2023), the influence of socio-economic factors in the occurrence of UGC
events is greater, up to 22 factors are brought in to build a general
assessment model for Zhejiang province. The paper contributes the
UGC susceptibilitymodels in two points: First, we propose an applicable
susceptibility assessment system. Base on the collinearity between
different factors, an 11-out-of-22 representative and easy-to-obtain
factors are screened out, which is more conducive to the promotion
of evaluation models. Secondly, factors are comprehensively screened
from the perspectives of geological background and ground disturbance,
especially human construction activities, so that the evaluation results
are more accurate and can better reflect the actual situation.

2 Materials and methods

2.1 Study area

Hangzhou is in the lower reaches of the Qiantang River and the
southwestern section of the Hangjiahu Plain in China, and its terrain
and landforms are both complex. Since the Quaternary period, the
paleoclimate in this area has undergone drastic changes. Neotectonics
have also led to a wide variety of sedimentary types and significant
changes in thickness during the Quaternary period, and the sediments
have experienced multiple accumulation and erosion alternations. The
soil is mainly composed of sandy silt and is rich in groundwater. The
terrain is characterized by vertical alternations of hard and soft soil
layers, multi-layer combinations, and significant thickness variations.
Furthermore, due to the diversion of the ancient Tiao and Qiantang
Rivers, the urban plain contains multiple ancient river channels. The
material is relatively fine and has a low bearing capacity, making it
prone to subsidence and collapse.

The study area is located at 119°34′45″–120°42′50″ east longitude
and 29°44′47″–30° 33′54″ north latitude and locates in the eastern part of
Hangzhou (Figure 1). This area includes the central urban area and the
vastmajority of urban construction land, including ten districts, which are
Shangcheng, Gongshu, Xihu, Binjiang, Linping, Qiantang, Xiaoshan,
Yuhang, Fuyang, and Linan. The study area has a concentrated
population distribution and intensive urban construction activities.

2.2 Data sources and pre-processing

A historical UGC event database sourced from the Geological
Environment Institute of Zhejiang Institute of Geosciences was used
in this study; it included the location, time, and scale of 13 events
that occurred from April 2016 to May 2021. Case studies showed
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that the majority of these UGC events is a fuction of suffosion, the
leakage of silty sand soil caused water and soil erosion, leading the
ground collapse (Zhang X. et al., 2023). The main data source of
evaluation indicators are the geological hazard assessment atlas
based on the 2019 urban geological survey. Statistical information
from relevant government departments are also used.

The evaluation factors were selected considering the following two
aspects: 1) geological background factors that can reflect the adverse
geological conditions, such as urban hydrogeological conditions and
groundwater; and 2) social and economic factors related to urban
population, economy, and construction developments that may be
affected by the susceptibility of UGC. Ultimately, 22 evaluation
indicators were selected, which were as follows: distance from
hidden rivers and creeks (C1), thickness of the saturated silt layer
(C2), thickness of the top fill layer (C3), groundwater type (C4),
cumulative subsidence from 2017 to 2020 (C5), distribution of the
first soft soil layer (C6), distribution of the second soft soil layer (C7),
distribution of the third soft soil layer (C8), distribution of the limestone
(C9), distribution of the shallow gas (C10), burial depth of the saturated
silt (sand) roof (C11), burial depth of the underground confined water
level (C12), shallow groundwater level variations (C13), density of
major linear projects (C14), population density (C15), gross domestic
product (GDP) per unit area (C16), proportion of construction land
(C17), investment in disaster prevention and reduction (C18), density
of underground pipelines (C19), density of water supply pipelines
(C20), density of drainage pipelines (C21), and density of major
linear projects under construction (C22).

The evaluation indicators were divided into grade, classification,
and numerical factors based on the properties of their values. Grade
factors were determined by grading the numerical variables, and
there was a specific order between the different grades, which could
not be disrupted. However, different classification factor categories
did not have sequential attributes. Common classification factors
included binary and multi-classifications. The evaluation factors

that were used in this study, including their values and the criteria by
which they were considered, are summarized in Table 1.

After preprocessing and superimposing the data in the
Geological Safety Risk Evaluation Atlas, values were obtained for
each factor, as shown in Figure 2.

2.3 Construction of the evaluation model

2.3.1 Kernel density estimation
Kernel density analysis was used to calculate spatial distribution

probabilities, with each point representing a UGC event (Galve et al.,
2009). The weight of each element was determined using the
diameter of the UGC range in the UGC event. The kernel
density estimation method is a widely used non-parametric test
method in geospatial analysis, that can accurately identify the spatial
distribution characteristics of point or line elements. The basic
calculation is as Eq. 1:

fn x( ) � 1
nhd

∑
n

i�1
K

x − xi

h
( ) (1)

Where, fn(x) is the kernel density of the estimated element, x is
the value of the estimated element; xi is the value of any element in
the threshold range; K is the kernel density equation, and a Gaussian
kernel density was used in this study; n is the number of elements in
the threshold range; d is the number of dimensions for the data; and
x − xi is the distance from the estimated element to any element in
the threshold range.

2.3.2 Evaluation factor diagnostics
2.3.2.1 Factor collinearity analysis

Generally, the correlation analysis between continuous
variables can be carried out using the Pearson correlation

FIGURE 1
Map of the city of Eastern Hangzhou, China.
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TABLE 1 Evaluation indicators of the UGC susceptibility assessment.

Id Indicator Value Criteria for taking the value Indicator type

C1 Distance from hidden rivers and creeks L-Low 10 m beyond the boundary within the scope Grade factor

M-Medium 10 m around the boundary

H-High Within the boundary

C2 Thickness of saturated silt layer L-Low Thickness 0–10 m Grade factor

M-Medium Thickness 10–20 m

H-High Thickness >20 m

C3 Thickness of top fill layer L-Low Fill thickness <1.5 m Grade factor

M-Medium Fill thickness 1.5–3 m

H-High Fill thickness >3 m

C4 Groundwater abundance LXS Bedrock fissure water Multi-classification
factor

CYS1 Confined water in pores—Group I < 100 m3/d

CYS2 Confined water in pores—Group I 100–1,000 m3/d

CYS3 Confined water in pores—Group I
1,000–3,000 m3/d

CYS4 Confined water in pores—Group I > 3,000 m3/d

QS Phreatic water in pores

YRS Karst water

C5 Cumulative subsidence from 2017 to 2020 None Areas where subsidence is unlikely to occur Grade factor

CJ1 Cumulative subsidence <5 mm

CJ2 Cumulative subsidence 5–10 mm

CJ3 Cumulative subsidence 10–15 mm

CJ4 Cumulative subsidence 15–20 mm

CJ5 Cumulative subsidence >20 mm

C6 Distribution of the first soft soil layer L-Low Thickness 0–5 m Grade factor

M-Medium Thickness 5–10 m

H-High Thickness >10 m

C7 Distribution of the second soft soil layer L-Low Thickness 0–10 m Grade factor

M-Medium Thickness 10–20 m

H-High Thickness >20 m

C8 Distribution of the third soft soil layer L-Low Thickness 0–5 m Grade factor

M-Medium Thickness 5–10 m

H-High Thickness >10 m

C9 Stratigraphic age of limestone EDX Permian Multi-classification
factor

STX Carboniferous

ATX Ordovician

HWX Cambrian

ZDX Sinian

None Limestone free zone

(Continued on following page)
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coefficient. When r = 0, it indicates that there is no linear
relationship between the two variables X and Y (note that it
does not mean that X and Y are necessarily independent of each
other, and there may be other relationships such as non-
linearity); but when 0 < r < 1, it indicates that there is a
positive correlation between the two variables and when −1 <
r < 0, it indicates a negative correlation.

However, the candidate factors in this study also included
sequential grade and multi-classification variables in addition to
the continuous variables. Sequential grade variables are obtained
by transforming continuous variables, and there is an implicit
order between the grades. For example, the three grades of
distance from the dark rivers and creeks (C1) correspond to
“Grade I—within the boundary,” “Grade II—10 m around the
boundary,” and “Grade III—10 m beyond the boundary within
the scope.” In contrast, there is no implicit order for multi-
classification variables, and there is no way to conduct
comparisons between the different classifications. For example,
the stratigraphic age of limestone (C9) includes Permian,
Carboniferous, Ordovician, Cambrian, Sinian, and limestone-
free zones.

For sequential grade variables, the Spearman correlation
coefficient can be used to test for the existence of monotonic
correlations between variables, thus eliminating redundant
evaluation factors. The correlation coefficient calculation equation
is as Eq. 2:

ρ � 1 − ∑n
i�1Di

2

n n2 − 1( ) (2)

The correlation coefficient (ρ) calculated using this equation
has a value range of [−1,1]. When a variable decreases
monotonically with another, ρ = −1; but when a variable

increases monotonically with another, ρ = 1. The correlation
analysis results are interpreted as follows: 0.9 < ρ < 1, high
correlation; 0.7 < ρ < 0.9, strong correlation; 0.5 < ρ < 0.7,
moderate correlation; 0.2 < ρ < 0.5, weak correlation; and 0 < ρ <
0.2, very weak correlation or uncorrelated.

2.3.2.2 Factor detection based on geo-detectors
The geo-detectors used in this study had four main

components, as follows: 1) A risk detector that compares the
mean value of risk event attributes (dependent variables) between
different sub-areas, and the more significant the difference in
mean, the greater the risk for the sub-area; 2) An impact factor
detector that compares the cumulative variance of each sub-area
with that of the entire study area, and the smaller the ratio, the
greater the impact of the factor on the risk event; 3) An ecological
detector to calculate the cumulative variance of different sub-
areas for different factors that compares the effects of different
factors on the spatial distribution of event Y, and observes
whether there is a significant difference. 4) An
interaction detector that compares the determining power of
the two independent factors (X1 andX2) on the risk event and the
determining power of the two factors together (X1 ⋂ X2) on the
event occurrence. This detector should also assess whether the
composite factors will strengthen or weaken the explanatory
power of event Y when they act together.

The indicators data layer will be used to form a susceptibility
score assessment after the correlation analysis. Regarding to the
vitality to improving the acurrarcy of UGC susceptibility
mapping, indicators with significant statistical results of risk
detector and greater influence of impact factor detector will be
selected as assessement indicators and jointly used to calculate
the final score. In our study, we assume that the greater the

TABLE 1 (Continued) Evaluation indicators of the UGC susceptibility assessment.

Id Indicator Value Criteria for taking the value Indicator type

C10 Shallow gas distribution QCQ Shallow gas distribution Binary classification
factor

None Bedrock mountainous area

C11 Burial depth of saturated silt (sand) roof Unit: meter [0, 22.55] Numerical factor

C12 Burial depth of confined underground water level Unit: meter [0, 16.7] Numerical factor

C13 Shallow groundwater level variation Unit: meter [0, 3.9] Numerical factor

C14 Density of major linear projects Unit: m/km2 [0, 23.8] Numerical factor

C15 Population density Unit: 10 thousand
persons/km2

[0, 5.67] Numerical factor

C16 GDP per unit area Unit: 100 million/km2 [0, 4.07] Numerical factor

C17 Proportion of construction land Unit: % [0, 80%] Numerical factor

C18 Investment in disaster prevention and reduction Unit: 10 thousand yuan/km2 [0, 13.8] Numerical factor

C19 Density of underground pipelines Unit: km/km2 [0, 106,995.58] Numerical factor

C20 Density of water supply pipelines Unit: km/km2 [0, 63,524.51] Numerical factor

C21 Density of drainage pipelines Unit: km/km2 [0, 61,075.85] Numerical factor

C22 Density of major linear projects under
construction

Unit: m/km2 [0, 3.77] Numerical factor
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impact of indicator on the spatial probability of UGC events, the
more similar their spatial distribution between the kernal
density map of UGC and the indicator values in Figure 2 will
be. Q-value of the results of impact factor is used to measure the
spatial distribution similarity.

3 Results and analysis

3.1 Urban ground collapse evaluation system

3.1.1 Distribution of historical urban ground
collapse events

The probability density for historical UGC events was calculated
using search radius values of 3 and 5 km, and 100 m as the
calculation unit (Figure 3). The comparisons showed that the
probability density distribution map with a search radius of 5 km
could provide a better synthesis of the spatiotemporal relationship of
historical time for likelihood classification, and it was thus linked to
the kilometer grid for the evaluation area to enable value assignment.
These values were then used as the dependent variables when
screening evaluation factors.

3.1.2 Factor collinearity analysis
The GIS analysis is applied to the grid units of Eastern

Hangzhou, which has a spatial scale of 1 km × 1 km. There are
5,982 grids in total, 3,444 of which are bedrock mountainous area
and are not participated in analysis.

The Pearson correlation coefficient (r) was calculated for the
numerical factors, and the results obtained are shown in Table 2. The
calculated correlation coefficients included a pair of highly
correlated factors among the 12 numerical factors in the
collinearity analysis, namely the density of underground pipelines
(C19) and the density of water supply pipelines (C20). There were
two pairs of strongly correlated factors, namely the density of
underground pipelines (C19) and the density of drainage
pipelines (C21) as well as the population density (C15) and the
proportion of construction land (C17).

Similarly, the Spearman correlation coefficient (ρ) was calculated
for the grade variables, and the results obtained are shown in Table 3.
Referring to the Pearson correlation coefficients for the grade
classifications, 7 grade factors were calculated and tested using the
correlation coefficient calculation, and 3 pairs of strongly correlated
factor pairs were obtained, namely the saturated silt layer thickness (C2)
and distribution of the second soft soil layer (C7), the saturated silt layer
thickness (C2) and distribution of the third soft soil layer (C8), and
finally, the distribution of the second soft soil layer (C7) and distribution
of the third soft soil layer (C8).

During susceptibility evaluations for UGC, it is necessary to
eliminate the factors with a high degree of collinearity, to ensure that
the evaluation value is not biased due to the superposition of factors.
First, the screening method used should try to retain factors with
strong data availability, to facilitate the promotion of the evaluation
system. Second, factors with high levels of overlapping collinearity
should be selected to ensure that the number of evaluation factors
has a higher level of representativeness. In this study, six pairs of
strongly or highly correlated factor pairs were obtained. There was a
strong correlation among the density of the underground pipelines
(C19), the density of the water supply pipelines (C20) and the
density of drainage pipelines (C19). Therefore, it can be considered
to directly use C19 instead of the other two factors to participate in
the construction of the evaluation system. Similarly, the thickness of
the saturated silt layer had a strong correlation with the distribution
of the second and third soft soil layers and was considered to directly
replace C7 and C8 with C2. In addition, the construction land factor

FIGURE 2
Spatial distributions of the indicator values.
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was also highly correlated with GDP per unit area (C16) and disaster
prevention and reduction investment (C18). Therefore, it was also
recommended to use C17 instead of C15, C16, and C18 in the
evaluation model.

In summary, from the perspectives of representativeness and
redundancy, 15 evaluation indicators were selected for the next steps
in risk-detector testing, including the distance from hidden rivers
and creeks (C1), thickness of the saturated silt layer (C2), thickness
of the top fill layer (C3), groundwater type (C4), cumulative
settlement from 2017 to 2020 (C5), distribution of the first soft
soil layer (C6), distribution of the limestone (C9), distribution of the
shallow gas (C10), burial depth of the saturated silt (sand) roof
(C11), burial depth of the underground confined water level (C12),

underground shallow water level variations (C13), density of major
linear projects (C14), proportions of the construction land (C17),
density of underground pipelines (C19), and density of linear
projects under construction (C22).

3.1.3 Risk factor detection
Geo-detector was deployed to detect 5,982 grid points within the

research area. The factors retained after collinearity analysis were
taken as independent variables, and the probability densities of the
historical UGC events were used as dependent variables. The impact
factor detector was used to calculate the individual evaluation
indicators. The results from the impact factor detector
calculations are shown in Table 4.

FIGURE 3
Probability density distribution for historical UGC events. (A) Search radius = 3 km. (B) Search radius = 5 km.

TABLE 2 Results of the correlation analysis between continuous variables.

r C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22

C11 1 — — — — — — — — — — —

C12 0.541 1 — — — — — — — — — —

C13 0.599 0.407 1 — — — — — — — — —

C14 0.333 0.389 0.362 1 — — — — — — — —

C15 0.005 0.253 −0.111 0.286 1 — — — — — — —

C16 0.408 0.235 0.415 0.317 0.117 1 — — — — — —

C17 0.281 0.393 0.214 0.463 0.759 0.557 1 — — — — —

C18 0.470 0.527 0.492 0.533 0.384 0.349 0.543 1 — — — —

C19 0.285 0.412 0.318 0.381 0.456 0.196 0.458 0.558 1 — — —

C20 0.269 0.388 0.328 0.358 0.389 0.119 0.392 0.532 0.942 1 — —

C21 0.251 0.363 0.242 0.338 0.459 0.266 0.459 0.484 0.881 0.670 1 —

C22 0.135 0.161 0.072 0.261 0.209 0.070 0.216 0.214 0.220 0.201 0.202 1
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The p-values for all factors were less than 0.001. This indicates that
the detection results have statistical significance for the current set of
indicators. In terms of explanatory power score (q-value), the highest
four scores were for the proportion of construction land (C17), which is
0.244, the density of underground pipelines (C19), which is 0.225, the
density of major linear projects (C14), which is 0.184, and the buried
depth of underground confined water level (C12), which is 0.128.While
the lowest four scores were for the distribution of limestone (C9), which
is 0.007, the density of major linear projects under construction (C22),
which is 0.037, the distribution of shallow gas (C10), which is 0.050, and
the groundwater abundance (C4), which is 0.052. These results
indicated that there was a close relationship between urban
construction activities (including construction land, underground
pipelines, and major linear projects), burial depth of the
underground confined water, and UGC event. It also coincides with
the facts that increased rates of suffosion are largely caused by increased
drainage input or by a decline of the water table (Waltham, 2008).
However, the types of limestone, the distribution of shallow gas, the

groundwater type, as well as the density of major linear projects under
construction, had a relatively small impact on the susceptibility of UGC.

Based on the above conclusions and by excluding four indicators
with lower explanatory power, 11 factors with higher q-values were
selected to construct a UGC susceptibility evaluation indicator
system (Table 5).

When grading the indicators of sequential factors, they were
divided into three grades, and the scores were taken as 1, 3, and
5 respectively; if divided into five grades, the scores were 1, 2, 3, 4,
and 5 respectively. During the specific evaluation calculation, each
indicator adopted the value after the min-max normalization to
[0,1]. The score with q-value standardization was used as the
evaluation weight. Eventually, the score values were weighted
and summed.

3.2 Results of model evaluation

According to the indicator weights and corresponding values in
the UGC susceptibility evaluation indicator system (Table 5), the
weighted sum of the indicators in the study area was calculated using
a grid as a unit to obtain susceptibility evaluations. A thematic map
of the susceptibility score was produced using the natural breaks
method to categorize the score into three grades (Figure 4). The
number and proportion of grids in the probability density
susceptibility evaluation results were based on high-, medium-
and low-susceptibility, and bedrock mountainous areas (Table 6).

3.2.1 Single center clustering characteristics of the
distribution

The proportion of high-susceptibility areas was the lowest
(6.08% of the research area), and these areas were distributed on

TABLE 3 Results of the correlation analysis between level variables.

ρ C1 C2 C3 C5 C6 C7 C8

C1 1 — — — — — —

C2 0.106 1 — — — — —

C3 0.265 0.481 1 — — — —

C5 −0.051 0.586 0.243 1 — — —

C6 0.296 0.051 0.576 −0.090 1 — —

C7 0.265 0.795 0.590 0.585 0.330 1 —

C8 0.260 0.761 0.521 0.611 0.262 0.860 1

TABLE 4 Impact factor detection results for the evaluation indicator pool (high to low).

Id Evaluation indicator q-value p-value

C17 Proportion of construction land 0.244 0

C19 Density of underground pipelines 0.225 0

C14 Density of major linear projects 0.184 0

C12 Burial depth of the confined underground water level 0.128 0

C3 Thickness of the top fill layer 0.078 0

C5 Cumulative subsidence from 2017 to 2020 0.073 0

C11 Burial depth of the saturated silt (sand) roof 0.072 0

C13 Shallow groundwater level variations 0.071 0

C1 Distance from hidden rivers and creeks 0.068 0

C6 Distribution of the first soft soil layer 0.067 0

C2 Thickness of the saturated silt layer 0.056 0

C4 Groundwater type 0.052 0

C10 Shallow gas distribution 0.05 0

C22 Density of the major linear projects under construction 0.037 0

C9 Stratigraphic age of the limestone 0.007 0
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both sides of the Qiantang River in the east and in the Dajiangdong
area, while a small number were distributed on the north side. The
proportion of medium-susceptibility areas was the highest (23.92%
of the study area), and these areas were found to be expanding
outwards around the downtown area. Finally, the proportion of low-
susceptibility areas was low (12.42% of the study area), and these
areas were mainly located between the medium-susceptibility areas
and the bedrock mountainous areas, and extended along the water
system around the periphery of the medium-susceptibility areas. A
small number of low-susceptibility areas were found to be
distributed inside the medium-susceptibility area on the east side.
The susceptibility-free areas were mainly located in the bedrock
mountainous areas on the west side.

These results indicated that the distribution of the UGC
susceptibility exhibited a single center clustering feature, with the
susceptibility level decreasing from the city center outwards. High-
susceptibility areas were mainly concentrated in the city center,
medium-susceptibility areas in the eastern periphery of the city, and
low-susceptibility areas in the western and southern areas
dominated by bedrock mountainous areas.

3.2.2 Large variations in the UGC susceptibility
between different administrative districts

The susceptibility map showed huge differences in the distribution
patterns of the susceptibility areas between different administrative
districts. Gongshu District, Binjiang District, most of Shangcheng
District, as well as the northern part of Xihu District and the
western part of Xiaoshan District were high-susceptibility areas.
Most historical UGC events were also concentrated within these five
areas. Linping District, Qiantang District, and most of the eastern part
of Yuhang District were medium-susceptibility areas, with only a small
number of high-susceptibility areas. FuyangDistrict and Lin’anDistrict,
as well as the western part of Yuhang District and the southern part of
Xiaoshan District, were predominantly low-susceptibility areas, except
for the bedrock mountainous areas. The large differences in the
distribution patterns of the UGC susceptibility between different
administrative districts is mainly related to their geographical
distribution. Administrative districts in the city center are mainly
covered by high-susceptibility areas. In the Yuhang and Xiaoshan
Districts with high-, medium-, and low-susceptibility areas at the
same time, the high-susceptibility areas are also mainly distributed

TABLE 5 UGC susceptibility evaluation indicator system.

# Indicator Id Indicator name Weight Indicator value The score value

1 C1 Distance from hidden rivers and creeks 0.05 L 1

M 3

H 5

2 C2 Thickness of the saturated silt layer 0.04 L 1

M 3

H 5

3 C3 Thickness of the top fill layer 0.06 L 1

M 3

H 5

4 C5 Cumulative subsidence from 2017 to 2020 0.06 None 0

CJ1 1

CJ2 2

CJ3 3

CJ4 4

CJ5 5

5 C6 Distribution of the first soft soil layer 0.05 L 1

M 3

H 5

6 C11 Burial depth of the saturated silt (sand) roof 0.06 [0,1]

7 C12 Burial depth of confined underground water levels 0.10

8 C13 Shallow groundwater level variations 0.06

9 C14 Density of major linear projects 0.15

10 C17 Proportion of construction land 0.19

11 C19 Density of underground pipelines 0.18
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in the areas close to the city center. The administrative districts on the
east side are mainly covered by medium-susceptibility areas, while the
administrative areas on the west and south sides mainly have low-
susceptibility areas.

The high-susceptibility areas for UGC in the eastern part of
Hangzhou accounted for the smallest proportion of the total area

(6.08%) and were mainly distributed in the central area of the city on
both sides of the Qiantang River. The proportion of medium
susceptibility areas was not significantly different from that of the
low-susceptibility areas, both of which were approximately 20%.
These areas showed an expanding trend outwards around the central
area of the city. The model exhibits good rationality and applicability
and can provide reference for other cities in Zhejiang Province to
help evaluate UGC susceptibility.

4 Discussion

4.1 Comparison with the
2021 evaluation results

The susceptibility evaluation results from this study (Figure 4A)
and the 2021 version (Figure 4B) were generally similar. The
susceptibility areas in both studies were mainly concentrated on
the east side, and the high-susceptibility areas were concentrated on
the two sides of the Qiantang River and the Dajiangdong area. The
distribution of the low-susceptibility areas on the west side and the
north side was also similar between the studies. The difference
between this study and the 2021 version is that the susceptibility
evaluation results from this study, the proportion of medium- and
high-susceptibility areas, were found to be relatively high, while in
the 2021 study the proportion of low-susceptibility areas was
relatively high. Some high-susceptibility areas in the city center
were evaluated as medium-susceptibility areas in the 2021 study,
while certain medium-susceptibility areas on the east side were
evaluated as low-susceptibility areas in the 2021 study. Notably,
although the susceptibility levels of Yuhang District and Xihu
District in the 2021 study were relatively low, UGC events have
still occurred, especially in the northern plain area of Xihu District,
where there have been two UGC events caused by subway
construction. The comparisons show that the evaluation results
of this study are more objective and reasonable than the 2021 study,
and the constructed model has reference value.

4.2 Applicability issues when promoting
evaluation indicators

Among the numerical factors in this study, the proportion of
construction land (C17) was highly correlated with population
density (C15), GDP per unit area (C16), and investment in
disaster prevention and reduction (C18). This means that when it
is difficult to obtain factors such as population distribution and

FIGURE 4
Susceptibility mapping results. (A) UGC Zoning results. (B) UGC
Zoning map in the 2021 evaluation maps.

TABLE 6 Susceptibility zoning of UGC events.

Zone area Score range Number of grids Proportion (%)

High susceptibility area [0.31, 0.55) 364 6.08

Medium susceptibility area [0.16, 0.31) 1,431 23.92

Low susceptibility area [0, 0.16) 743 12.42

Bedrock mountainous area Non-participation in evaluation 3,444 57.57
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investment in disaster prevention and reduction, the proportion of
construction land (C17) can to some extent represent the other three
factors. For the grade factors, the thickness of the saturated silt layer
(C2) was highly correlated with the distributions of the second and
third soft soil layers ((C7 and C8, respectively). Similarly, when data
are limited, the thickness of the saturated silt layer (C2) can be
prioritized to ensure that the factors in the evaluation process have
better representation.

5 Conclusion

The environmental and geological conditions of the study
area, when combined with the historical UGC event inventory,
were used to establish a susceptibility evaluation system for UGC
using 11 evaluation indicators. The susceptibility for the study
area was divided into three grades. The results showed that the
UGC events in the study area in recent years had occurred in the
high- and medium-susceptibility areas. The evaluation results
were relatively objective and reasonable, consistent with
historical events.

In the study area, the proportion of medium- and high-
susceptibility areas was moderate (accounting for 30% of the
study area); however, these areas were relatively concentrated in
their spatial distributions. In other words, they were distributed on
both sides of the Qiantang River in the east and in the Dajiangdong
area. Thus, this information should be carefully considered and
taken into account during urban construction.

For high-susceptibility areas, it is recommended to regularly
monitor the surface and use tools such as the geological radar to
monitor the development of underground soil caves. Timely
intervention measures should also be taken to reduce the
damage from UGC on the lives, properties, and safety of
urban residents.

The geological patterns and triggering dynamic factors of the
cities in Zhejiang Province were the same as those in this study area.
The evaluation system established in this study should be applicable
to other cities in the province with frequent construction activities
and historical UGC events, such as Shaoxing and Jiaxing. The only
modifications required are appropriate adjustments for the weights
of the different factors and assignment intervals according to the
different regional geological conditions and the main controlling
factors of UGC. This study should thus be of widespread interest and
stimulate related studies to further develop the method.
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