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The exploration and comprehensive assessment of fractured-vuggy reservoir
information have perennially constituted focal points and challenges within the
domain of oil and gas reservoir evaluation. The verification of geological
phenomena, identification of various fracture and hole types, and the
quantitative characterization thereof currently present pressing challenges.
This study meticulously examines the deep carbonate reservoirs within the
Dengying Formation in the Penglai gas region of the Sichuan Basin. The Core
Rolling Scan images reveal five discernible features: unfilled holes, filled holes,
filled fractures, open fractures, and algae. The analysis pinpoints three primary
challenges in semantic segmentation recognition: the amalgamation of feature
scales, class imbalance, and the scarcity of datasets with substantial sample sizes.
To address these challenges, this paper introduces a Multi-Scale Feature
Aggregation Pyramid Network model (MFAPNet), achieving a pixel accuracy of
68.04% in recognizing the aforementioned five types. Lastly, the model is
employed in calculating core porosity, exposing a scaling relationship
between wellbore image porosity and core porosity ranging from 1.5 to
3 times. To a certain extent, it reveals the correlation between the wellbore
image logging data and the actual formation of the Dengying Formation in the
Penglai Gas Field of the Sichuan Basin, and also provides a basis for the
subsequent logging evaluation of the formation. The partial code and
CHA355 dataset are publicly available at https://github.com/zyng886/MFAPNet.
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1 Introduction

Due to rising global energy demands and the intensified oil and gas exploration
activities, the exploration of deep carbonate oil and gas reservoirs in Tarim Basin,
Sichuan Basin, and Ordos Basin has witnessed significant achievements since 2010. The
proven reserves were estimated to be approximately 356.63*108 tons of oil equivalent (Zou
et al., 2014; Ma et al., 2019; Ma et al., 2022; Ma et al., 2023). The potential for deep carbonate
rock natural gas exploration in China is promising. Nonetheless, due to the diversity and
strong heterogeneity of storage spaces in deep carbonate rocks, the challenges always exist in
identification of fracture and hole types, parameter extraction, and parameter calibration.
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Traditional machine learning algorithms lack the capacity to
accommodate arbitrary feature functions, such as those found in
deep neural networks, thereby impeding the identification of
multiscale geological features. The acquisition of core data poses
considerable challenges, necessitating exploration into the correlation
between well logging instrument data and core data. This challenge
demands the implementation of a deep learning model with the ability
to assimilate arbitrary geological features, enabling the swift and
accurate prediction of subsurface conditions. The primary
contributions of this study can be summarized as follows.

1. Articulated the three pivotal challenges in core image recognition,
the amalgamation of feature scales, class imbalance, and the
scarcity of datasets with substantial sample sizes.

2. In response to the aforementioned challenges, crafted a
multiscale feature aggregation pyramid network model,
achieving a pixel accuracy of 68.04% for identifying five
distinct types.

3. To mitigate the time-consuming and labor-intensive aspects of
traditional dataset labeling, introduced the ‘segment anything’
model, facilitating semi-automatic dataset annotation with
significantly enhanced efficiency and accuracy.

4. Formulated amethod for calculating core porosity based on the
aforementioned algorithm, revealing the scaling relationship
between them: the electrical imaging porosity is 1.5–3 times
that of the core porosity. It also provides a theoretical
foundation for the subsequent logging evaluation of the
Dengying Formation in the Penglai Gas Field of the
Sichuan Basin.

2 Related work

In traditional characterization methods of fracture and hole
parameters, based on conventional logging curves, wellbore imaging,
and core data, some algorithms such as Canny edge detection, threshold
segmentation, and watershed transformation are employed in standard
image recognition to discern fracture and hole parameters (Tian and
Zhang, 2010; Lai, 2011; Ren et al., 2023). Although the segmentation
results of these methods seem to be consistent with human visual
perception, only basic color differences can be discerned and the
genuine geological significance of fractures or holes are not
considered. Consequently, the complete geological semantic
information cannot be extracted from segmented images. For
example, induced fractures, conductive minerals, clay aggregates, and
calcium clusters in carbonate rock reservoirs are displayed as dark
features in wellbore imaging results. These geological elements can be
visually indistinguishable from fractures and holes, thus leading to
different interpretation results. It is extremely difficult to interpret these
geological data with traditional methods.

In recent years, deep learning has made significant achievements in
image segmentation and has been applied in the classification and
segmentation of geological images. Delhomme, (1992) proposed an
imaging threshold method to visualize fracture shapes and depths (Hall
et al., 1996). employed Hough transform to calculate sinusoidal fracture
information and geological data and finally yielded effective fracture
results with a sinusoidal distribution pattern. With the DeepLabv3+
semantic image segmentation model based on TensorFlow, Li B T et al.

(2019) segmented and extracted fracture data calibrated with Labelme
tool. Wang et al. (2021) introduced an automatic recognition method
for wellbore imaging fractures and holes based on pathmorphology and
sinusoidal function family matching. The introduced method could
extract the data of single-scale fractures and dissolved holes, but the
adaptive parameter selection for varied shapes or sizes had not been
adopted in the method. Chen et al. (2023) identified main minerals,
organic matters, and holes in shale with deep learning models such as
Mask-RCNN, FCN, and U-Net and compared the runtime and
accuracy of different deep learning models in processing geological
images. Despite the commendable achievements of these methods,
some challenges like mixed feature scales, class imbalance, and the
unique nature of core datasets existed. To address these challenges, this
paper introduced a multi-scale feature aggregation pyramid network
model (MFAPNet).

3 Geology

3.1 Geological overview

The study area is situated in the northern slope of the Central
Sichuan Uplift, displaying a significant northward-dipping monocline
structure. It borders the Anyue gas field in the south and the Deyang-
Anyue Sag in the west and is delimited by Jiulongshan to the north. It
covers an approximate area of 2×104 km2. Penglai Gas Region has
exceptional geological conditions conducive to oil and gas
accumulation. The Cambrian to Permian Maokou Formation serves
as the host for four gas-bearing intervals, namely, Deng II, Deng IV,
Cangchang I, and Maoyi II, arranged from the base to the summit.
These intervals indicated well-developed lithologic reservoirs for oil and
gas set against the backdrop of the monocline structure.

Deng II and Deng IV intervals predominantly comprise high-
quality reservoir rocks, encompassing reef-flat facies such as algal
boundstone dolomite, algal laminated dolomite, and algal sandstone
dolomite. In Deng IV, the upper subinterval is characterized by
dominant algal dolomite, whereas the lower subinterval is
distinguished by powdery to fine-crystalline dolomite and mud-
crystal dolomite. The lower subinterval of Deng IV showcases
underdeveloped reef-flat bodies. The upper subinterval of Deng
IV presents well-developed reef-flat deposits with a stable lateral
distribution and is the principal reservoir in Deng IV interval.

3.2 Feature analysis

Fractures, holes, and algal laminations present distinct
characteristics and often pose challenges in segmentation tasks:

Firstly, feature scales of the above hole types overlap and are
complex. Fractures, algae, and holes exhibit diverse topological
structures with different lengths and widths. Open fractures and
filled fractures have similar macroscopic shapes and different
microscopic details, so do the unfilled and filled dissolved holes.
Conventional convolutional kernels have limited receptive fields and
primarily capture proximate contextual information, so they cannot
simultaneously extract the multi-scale semantic nuances of thin
lines, broad fractures, small holes, and large holes, or distinguish
genuine holes from spurious holes.
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Secondly, class imbalance is serious. Foreground pixels
representing the target area, account for a minor part of the
entire image. Moreover, the classes of pixels within dataset labels
are markedly unbalanced. The utilization of the conventional cross-
entropy loss function would cause the prevalent background and the
identification loss of smaller fractures and holes.

Thirdly, the dataset volume is constrained, but the sample size is
large. Unlike common datasets, oil and gas datasets should be annotated
by experts and the number of related datasets is less. The procured raw
core rolling scan images encompass tens of millions of pixels and
contain assorted obstructions and shaded regions. The difference in the
pixel quantity between the targeted region and the entire sample spans
is about 1–2 orders of magnitude. Excessive image sizes are bounded by
memory limitations, whereas smaller sizes may lead to the ignorance of
small target areas, thus hindering accurate labeling.

We categorize the geological features observed in core rolling
scan images into five distinct classes: unfilled holes, filled holes, filled
fractures, open fractures, and algae.

Among all samples, unfilled dissolved holes and bitumen-filled
dissolved holes were the dominant hole types. The two hole types had
the similar characteristics. In the darker parts in the images, the
bitumen-filled dissolved holes were obviously partly filled with or
enriched with bitumen (Figure 1A). In contrast, dissolved holes
without bitumen were displayed as separated or interconnected
voids of different dimensions (Figures 1A, F). The fractures in the
core rolling scan images were identified based on their morphology,
size, and color. Those fractures with uneven contours, broader spans,
and more saturated hues, which suggested the existence of bitumen,
were classified as filled fractures (Figure 1C). Linear, elongated, and
slender unfilled fractures were labeled as open fractures (Figure 1D).
The assessment of algal laminations involved hue, texture, and

geological conditions. Algal laminations were displayed as color
gradients in rocks. Stratified or undulating textures accompanied by
noticeable color transitions in the images could be identified as algal
laminations (Figure 1E).

3.3 Dataset creation

Core images present diverse types of fractures and holes with
different characteristics. Traditional manual labeling methods are
limited by subjectivity, extended duration, and high expertise. By
incorporating the segment anything model (SAM) (Kirillov et al.,
2023) into dedicated geological annotation software, a semi-
automatic segmentation of target regions (i.e., fractures and
holes) from the image background can be realized. A unique
technology named “segment anything” empowers SAM to
execute zero-shot generalization on previously unseen objects and
imagery without the prerequisite of further training. With the
conventional polygon approximation technique, a multi-point
polygon is marked around the target circle for approximation.
However, with SAM, a singular point is marked within the target
circle for automate the annotation. In comparison to conventional
methods, the SAM has demonstrated a substantial improvement,
achieving significantly enhanced levels of both speed and accuracy.

4 Methods

To address the three major challenges in traditional core rolling
scan images datasets, we have constructed a multiscale feature
aggregation pyramid network model:

FIGURE 1
Typical fracture and hole types in core rolling scan images: (A) Bitumen-filled dissolved hole; (B) Unfilled dissolved hole; (C) Filled fracture; (D)Open
fracture; (E) Algae; (F) Unfilled honeycomb-like dissolved hole.
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The architecture ofMFAPNetmodel is shown in Figure 2. Based on
the encoder-decoder framework of U-Net (Ronneberger et al., 2015), an
intermediate feature layer, termed “Bottleneck”, is introduced. With the
model, through a series of ResNet (He et al., 2016) convolutional
operations, the dimensions of the feature map is gradually decreased
based on the input image and then a tiered set of hierarchical feature
maps are extracted. Subsequently, with a feature pyramid pooling
module and an array of differently sized kernels, the feature maps
with multi-scale semantic insights are obtained. In the decoding phase,
Low resolution feature maps are subjected to upsampling and then
integrated with high resolution maps. The subsequent convolution
processes yield pyramid feature maps corresponding to those in the
encoding phase. The semantic features drawn from the upper three
mid-high layers and the lower three mid-low layers converge through
primary and secondary decoding heads to produce high- andmid-layer
semantic feature maps. Finally, these maps are juxtaposed against
annotated versions to compute both primary and auxiliary loss

metrics and the predictive image mask is ultimately generated
through backpropagation and iteration.

4.1 Multi-level feature extraction

The extraction of multi-level features enables the model to
extract high-order attributes from raw data, including edges,
textures, shapes, and object components. The in-depth analysis
and representation of intricate data structures empower the
model to comprehend and depict detailed elements contained in
input images. Through the extraction of multi-level features, the
model can discern complex and abstract attributes and grasp data
variances and non-linear interrelationships.

FIGURE 2
Framework of MFAPNet.

FIGURE 3
Residual module.

FIGURE 4
Segment from PS3J.X750.07-X750.22m.
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For deep neural networks, key challenges like the gradient vanishing
and exploding problem are solved through the incorporation of
regularized initialization and intermediary regularization layers,
notably, Batch Normalization (Ioffe and Szegedy, 2015). Degradation
quandaries inherent to deep networks are addressed with residual
modules. As illustrated in Figure 3, with an input denoted by x and
its corresponding residual function F(x), the output generated by the
residual module is defined as x + F(x). With this module, the input x is
subjected to the transformation F and then the residual information is
extracted to augment the foundational input x. This addition process
indicates skip connections, namely, the integration of residual data with
the original input, and can ensure refinement and adjustment. Such an
architecture empowers neural networks to internalize the identity
function I(x) = x throughout the training process. If it is the
optimal solution, the module can discern an almost null residual,
thereby retaining the integrity of the initial input. Conversely, in the
presence of substantial discrepancies, the module can ascertain a more
pronounced residual to refine the input data.

As depicted in Figure 2; Figure 4, a segment from PS3J.X750.07-
X750.22 is selected. With the input data of 1024×1024×3 (C1 =
1024×1024), based on the ResNet primary feature extraction
network, through 7x7 convolution, the feature map C2 with a
quarter of its original size is obtained and its channels is increased
to 256. Subsequently, the image undergoes a series of three analogous
operations employing three 3x3 residual convolution to produce three
distinct feature maps labeled as C3, C4, and C5. Their sizes respectively
decrease to 1/8, 1/16, and 1/32 of the original size, whereas their channel
increases to 512, 1024, and 2048.

4.2 Multi-scale feature extraction

In the fields of deep learning and computer vision, multi-scale
feature extraction refers to capturing features from the data at
different scales for the comprehensive information acquisition.
The feature extraction approach performs well in handling the
data at different scales, such as images, videos, and texts. The

data at different scales correspond to structures and features with
spatial or temporal scales. Harnessing multi-scale features allows
models to encompass both granular and macroscopic characteristics
and obtain a more profound comprehension of the data.

In deep convolutional networks, the realized receptive field is
often far shorter than theoretical expectations. To counteract this
discrepancy, the pyramid pooling module from PSPNet (Zhao et al.,
2017) is incorporated into the terminal layer of the primary network.
This integration ensures pyramid-style multi-scale feature
extraction, as illustrated in Figure 5 and expressed as:

P5 � Conv3×3 ∑Upsample、Concat

i�1 × 1、2 × 2、3 × 3、6 × 6

AvgPooli + Conv1×1 C5( )⎡⎣ ⎤⎦ (1)

Through average pooling (AvgPool) with four distinct sizes, the
C5 layer captures multi-scale semantic feature insights.
Subsequently, through the 1x1 convolution, the channels are
reduced to a quarter of their initial size. After these features are
upsampled to their original dimensions, they are concatenated and
processed with the 3x3 convolution so as to integrate the multi-scale
features into P5 and obtain comprehensive global information.

4.3 Restoration of multi-level features

To acquire multi-level semantic information with minimal
interference, high-level features are realigned to the spatial
resolution of the low-level features. This realignment, as
expressed in Eq. 2, facilitates the restoration of features.

Pi � Conv1×1 Upsample Pi−1( ) + Ci( ), i � 4, 3, 2 (2)

The feature layer P5 is upsampled to match the resolution of
the C4 feature layer. Subsequently, it is concatenated and
convolved with the C4 feature map to yield P3. This operation
is reiterated twice to obtain the feature maps across various
semantic levels: P5, P4, P3, and P2. By integrating high-level
semantic information with low-level features, the details and

FIGURE 5
Pyramid pooling module (PPM).
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semantics in high-resolution images are captured. This
integration enhances the performance of the model in intricate
tasks like object detection and image segmentation through a
robust and precise feature representation.

4.4 Aggregation of upper and lower
semantic information

As the depth of a convolutional neural network increases, the
semantic information extracted at each layer becomes increasingly rich,
so that more global features are obtained. Analogously, the human
visual system operates in a comparable way, in which global features as
initial features are progressively refined for precise decision-making.
Such a hierarchical processing way of features allows the sequential
consideration of various levels of abstract features during data
processing so as to facilitate a more comprehensive understanding
and representation of intricate data, as expressed in Eqs 3, 4:

F � Conv3×3 ∑Upsample、Concat

i�2、3、4、5

Pi
⎛⎝ ⎞⎠ (3)

F2 � Conv3×3 Upsample P4( )[ ] (4)

The main decoding head receives (P5, P4, P3) as the input,
whereas the auxiliary decoding head processes (P4, P3, P2). After the
obtained feature maps are restored to their original dimensions
through upsampling, these features are concatenated into coherent
feature maps. A subsequent 3x3 convolutional operation is
performed to modulate the channel count so as to obtain the
main and auxiliary feature segmentation maps, respectively
denoted as F and F2. F is then superimposed onto the original
image to generate the final prediction. The primary and auxiliary
losses are amalgamated through weighted summation and applied in
backpropagation for model optimization.

4.5 Class balance and pixel-level matching
mixed loss

To deal with the unequal class distribution and ensure the
matching between prediction results and actual labels, a class-
balanced and pixel-level matched hybrid loss function is used in
the study. The mixed loss function considering class-balanced cross-
entropy loss and Dice Loss (Li X et al., 2019) is adopted:

CBCED LOSS � α*CBCE Loss + β*Dice Loss (5)

where CBCE_Loss denotes the class-balanced cross-entropy loss;
Dice_Loss indicates Dice loss; CBCED_LOSS considers both class
imbalance and pixel-level matching; α and β can be tuned according
to the properties of tasks and datasets for the balance between the
two loss types. In our work, a large weight is assigned to Dice Loss for
pixel-level matching. A ratio of 1:3 (α=1 and β=3) is adopted. For
CBCE_LOSS, it is assumed that C distinct classes exist and a weight,
wi, is assigned to a class and indicates its significance (i is the class
index). Given a collection of samples, each sample has a true label Y
and a predicted probability distribution P from the model. Then, the
class-balanced cross-entropy loss is expressed as:

CBCE P, Y( ) � −∑C

i�1wi × Yi × log Pi( ) (6)

whereYi is the i-th element of the true label; Pi is the i-th element from
the predicted probability distribution; wi is the weight associated with
the class. These weights can be modulated according to the
importance of different classes so as to further address class
imbalances. The ultimate loss is the mean loss across all samples:

CBCE P, Y( ) � 1
N

∑N
n�1

CBCE P sn( ), Yn( ) (7)

where N indicates the total number of samples. The class-balanced
cross-entropy loss allows different importance levels for different
classes and can be used to deal with many computer vision tasks,
especially class-imbalanced problems.

For Dice Loss, two sets (A and B) are considered. The size of
their intersection is represented by |A ∩ B| and the size of their
union is depicted as |A ∪ B| Then, Dice Loss can be defined as:

DiceLoss � 1 − 2* A| | ∩ B| |
A| | + B| | (8)

where |A| and |B| respectively indicate the sizes of sets A and B;
|A ∩ B| represents the size of their intersection. Dice Loss value is
between 0 and 1. The smaller the value is, the less the consistency
between the predicted and actual segmentation results is.

In tasks involving semantic segmentation, Dice Loss is often
used to indicate the resemblance between predicted and actual
segmentation outcomes. Unlike cross-entropy loss, Dice Loss is
focuses on pixel-level matching and performs better in dealing
with class imbalances.

The gradient data from both primary and auxiliary losses calculated
from F and F2 can be used to update network parameters through
backpropagation. During backpropagation, the gradient information
from the loss function flows backwards through network layers so as to
guide weight adjustment. In this way, the model is adapted to training
data and yields precise predictions for new data.

5 Experiments

5.1 Experimental parameter setting

To guarantee the precision of experimental results, the control
variates method was used. In this method, all parameters remained
constant except that the test variable was changed. Our experiments
were executed on Windows 11 22H2 Professional Edition system
and NVIDIA RTX A6000 48G GPU was used for training. The size
of input images was 1024×1024 (Table 1).

The principal evaluation metric was mIoU. Additionally,
Accuracy (Acc) and F-score (Wang et al., 2020) were used to
indicate the performance of the network model in defect
segmentation. mIoU is the average IoU value of all images or
segmentation results. IoU (Intersection over Union) quantifies
the relationship between the intersection and union areas of
segmentation results and actual results as follows:

IoU � Intersection

Union
(9)
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Accuracy is the ratio of the number of the pixels correctly
classified by the model to the total number of pixels:

Accuracy � Number of Correctly Classified Pixels

Total Number of Pixels
(10)

F-Score is the weighted average of precision and recall and can
be used to evaluate the comprehensive efficacy of the classification

model. F-Score indicates the balance between model precision and
recall and can be expressed as:

Fscore � 2 · Precision · Recall
Precision + Recall

(11)

5.2 Experimental dataset setting

In this study, the data of the core samples from the deep carbonate
rock reservoir of the Dengying Formation located in Penglai Gas Area
of Sichuan Basin. After screening the core data from various wells,
FracturesHoleAlgae Dataset (CHA355) was derived. This dataset
contained 266 training images, 71 validation images, and 18 testing
images. As shown in Figure 6, the name of an image is composed of well
sequence, depth range, and core number. The dimension of each image
is 1024×1024 pixels and the sections indicate the representative areas
from the initial core rolling scan images.

Figure 7 shows various colors for segmentation. Green indicates
unfilled dissolved holes; cyan indicates filled dissolved holes; red
indicates open fractures; yellow denotes filled fractures; purple
indicates algae; black indicates the background. These annotated
images are displayed in VOC format.

5.3 Comparison of experimental results
obtained with different algorithms

In the section, the proposed MFAPNet was compared with
renowned segmentation techniques such as FCN (Long et al., 2015),

TABLE 1 Experimental parameter setting.

Experimental parameters Values

System Platform Windows 11 22H2

Python 3.10.12

CPU I9 13900 KF

GPU NVIDIA RTX A6000

Pytorch 2.0.1+cu118

CUDA 11.8

CuDNN 8.7

Optimizer Adam

Learning_rate 0.0006

Batch_Size 4

Train_P 0.75 (266 photos)

Val_P 0.20 (71 photos)

Test_P 0.05 (18 photos)

FIGURE 6
Partial original images in the dataset.
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UNet, PSPNet, DeepLabV3 (Chen et al., 2017), and UperNet (Xiao
et al., 2018). In FCN, the fully connected layer is replaced with a
convolutional one so that it is feasible to input an image in any size.
In UNet with an encoder-decoder design, an encoder is used to grasp
image information, whereas the decoder is used to generate pixel-
level segmentation results. In PSPNet, with a pyramid pooling
module, the data at different scales are extracted. In DeepLabV3,
dilated convolution is used to widen the receptive field and thus
grasp more information. UperNet integrates UNet with pyramid
structure and can enhance the multi-scale performance.

The segmentation results from CHA355 dataset are
presented in Table 2. The mIoU value of MFAPNet was

14.49%, 7.53%, 5.03%, 6.85%, and 0.65% larger than that of
FCN, UNet, PSPNet, DeepLabV3, and UperNet, respectively.
Similarly, its mAcc was the mentioned models by 19.99%,
13.38%, 5.14%, 12.19%, and 3.06% larger than that of FCN,
UNet, PSPNet, DeepLabV3, and UperNet, respectively. The
mFscore of MFAPNet was 16.45%, 7.85%, 4.6%, 8.1%, and
0.65% larger than that of FCN, UNet, PSPNet, DeepLabV3,
and UperNet, respectively. The mPrecision, of MFAPNet was
2.3% larger than that of FCN, equal to that of UNet, and reached
99.93%, 91.77%, and 97.30% of that of PSPNet, DeepLabV3, and
UperNet, respectively. In conclusion, although MFAPNet lagged
behind PSPNet, DeepLabV3, and UperNet in terms of

FIGURE 7
Partial labeled images in the dataset.

TABLE 2 Comparison of the results obtained with different algorithms from CHA355 dataset.

Method Backbone mIoU/% mAcc/% mFscore/% mPrecision/%

FCN ResNet-50 39.85 48.05 51.55 68.42

Unet Unet 46.81 54.66 60.15 70.72

PSPNet ResNet-50 49.31 62.90 63.40 70.77

DeepLabV3 ResNet-50 47.49 55.85 59.90 77.06

UperNet ResNet-50 53.69 64.98 67.35 72.68

MFAPNet ResNet-50 54.34 68.04 68.00 70.72

Note: Underlined numbers indicate the best result in terms of corresponding metric.
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mPrecision, its overall performance was better than that of the
other five models in image segmentation.

The segmentation results obtained with various algorithms from
VOC2012 dataset are shown in Table 3. ThemIoU value of MFAPNet

was 7.62%, 4.57%, 2.71%, 3.30%, and 0.04% larger than that of FCN,
UNet, PSPNet, DeepLabV3, and UperNet, respectively. The mAcc
value of MFAPNet was respectively 4.35%, 0.58%, and 0.63% larger
than that of FCN, PSPNet, and DeepLabV3 and 1.62% and 0.57%

TABLE 3 Comparison of the results obtained with different algorithms from VOC2012 dataset.

Method Backbone mIoU/% mAcc/% mFscore/% mPrecision/%

FCN ResNet-50 66.27 77.61 82.67 83.37

Unet Unet 69.32 83.31 86.00 81.43

PSPNet ResNet-50 71.18 81.38 86.88 85.46

DeepLabV3 ResNet-50 70.59 81.33 86.52 84.72

UperNet ResNet-50 73.85 82.43 88.66 88.05

MFAPNet ResNet-50 73.89 81.96 88.73 88.62

Note: Underlined numbers indicate the best result in terms of corresponding metric.

FIGURE 8
Training process.

TABLE 4 Comparison of the results obtained with different loss functions from CHA355 dataset.

Loss functions mIoU/% mAcc/% mFscore/% mPrecision/%

CrossEntropyLoss 52.58 64.75 66.44 72.72

DiceLoss 49.93 63.90 63.85 66.33

FocalLoss 50.89 63.56 63.91 69.67

TverskyLoss 46.81 54.66 60.15 70.72

CBCED_Loss 54.34 68.04 68.00 70.72

Note: Underlined numbers indicate the best result of corresponding metric.
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smaller than that of Unet and UperNet. The mFscore of MFAPNet
was 6.06%, 2.73%, 1.85%, 2.21%, and 0.07% larger than that of FCN,
UNet, PSPNet, DeepLabV3, and UperNet, respectively. The

mPrecision of MFAPNet was 5.25%, 7.19%, 3.16%, 3.9%, and
0.576% larger than that of FCN, UNet, PSPNet, DeepLabV3, and
UperNet, respectively.

FIGURE 9
(A, F, K, P) are original images; (B, G, L, Q) are prediction results of MFAPNet; (C,H,M,R) are prediction results of PSPNet; (D, I, N, S) are prediction
results of UperNet; (E, J, O, T) are prediction results of FCN. (A): Dominated by developmental algae, the algal layers are clearly visible; (F): Dominated by
filled fractures, they pervade the entire image; (K): In the middle of the image, there is a open fracture that runs through the entire image; (P): Dominated
by dissolved holes, some are unfilled while others are filled.

TABLE 5 Comparison of the results obtained with MFAPNet from CHA355 dataset.

Types IoU/% Acc/% Fscore/% Precision/%

Background 96.53 98.63 98.23 97.84

Unfilled holes 42.06 51.39 59.21 69.85

Filling holes 25.07 57.33 40.09 30.82

Filled fractures 48.64 60.71 65.45 70.98

Open fractures 57.81 78.81 73.27 68.45

Algae 55.95 61.37 71.76 86.37

Note: Underlined numbers indicate the best results of corresponding metric except the values of the background.
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5.4 Comparison of different loss functions

In this section, CBCED_Loss was compared with other loss
functions: CrossEntropyLoss, DiceLoss, FocalLoss (Lin et al., 2017)
and TverskyLoss (Milletari et al., 2016). CrossEntropyLoss
quantifies the discrepancy between the predicted classification
results of the model and actual labels and is commonly applied
in multi-class classification scenarios. DiceLoss indicates the
consistency of overlapping regions between predictions and
actual labels and can address data imbalances. FocalLoss was
designed to mitigate the class imbalance issue. In FocalLoss, in
order to reduce the influence of easily classified samples, a larger
weight is assigned to the samples which are difficult to be classified.
In TverskyLoss, weight can be adjusted in the loss calculation so as to
reach the balance between precision and recall.

Table 4 presents the results from CHA355 dataset. The mIoU value
of CBCED_Loss was 1.76%, 4.41%, 3.45%, and 7.53% larger than that of
CrossEntropyLoss, DiceLoss, FocalLoss, and TverskyLoss, respectively.
Similarly, the mAcc value of CBCED_Loss was 3.29%, 4.14%, 4.48%,
and 13.38% larger than that of CrossEntropyLoss, DiceLoss, FocalLoss,
andTverskyLoss, respectively. ThemFscore of CBCED_Losswas 1.56%,
4.15%, 4.09%, and 7.85% larger than that of CrossEntropyLoss,
DiceLoss, FocalLoss, and TverskyLoss, respectively. The mPrecision,
value of CBCED_Loss was 4.39% and 1.05% larger than that of DiceLoss
and FocalLoss, equal to that of TverskyLoss, and 2.00% smaller than that
of CrossEntropyLoss, respectively. In summary, even though the
mPrecision of CBCED_Loss was slightly smaller than that of
CrossEntropyLoss, its overall performance was more uniform and
stable than the other four loss functions.

5.5 Training process and results

As shown in Figure 8, both mAcc (blue curve) and mIoU
(orange curve) firstly display the consistent rising and stable
trend and then converge. Notably, due to the utilization of pre-
trained parameters from ImageNet-22K in this study, mFscore
(orange curve) was large in the initial training phase. Then, these
parameters were increasingly consistent with the dataset used in this
study. After 4,000 iterations, the model was fully consistent with the
parameters from the pre-trained model. The mFscore firstly
increased and then converged.

As shown in Table 5, the model exhibited the optimal
performance in recognizing filled fractures in the image
except the background region. It distinguished open fractures
from filled fractures better, but it could not distinguished unfilled
holes from filled holes well. Furthermore, the model
identified algae well.

5.6 Comparison of visualization results

Figure 9 shows the segmentation results obtained with various
network models from CHA355 dataset. In the first row, due to the
heterogeneity in algae features and considerable interference, the algal
segmentation results of various network models were different.
Notably, MFAPNet identified discrete algal layers better than other
algorithms. The second row, characterized by white scratch
interference, revealed that MFAPNet, PSPNet, and UperNet
discerned filled fractures. In the third row, when obvious fractures
could be observed without other interferences, every network model
segmented the fractures well. In the fourth row, whenmixed filled and
unfilled holes could be observed, all models yielded false identification
results of some holes. However, MFAPNet and UperNet could
discriminate unfilled holes from filled holes. On the whole, the
MFAPNet model developed in this study offered better
segmentation results, outperformed other models in dealing with
interferences and distinguishing filled regions from unfilled regions.

6 Application

In the study, the deep carbonate rock reservoir of the Dengying
Formation in the Penglai Gas Field, Sichuan Basin was selected for
porosity calibration. Figure 10A shows the original core rolling scan
image of the segment PS9J.X977.10-X977.22. A representative area
was selected (Figure 10B). This selected image was then input into
MFAPNet to output the prediction result (Figure 10C).

Unfilled structures have no geological significance for oil and gas
exploration, so only these parts were considered for further analysis.
The porosity is calculated as:

Porosity � np.sum Mask �� n( )
Mask.size

× 100% (12)

FIGURE 10
Comparison diagram: (A) original core rolling scan photo; (B) selected area; (C) predicted results.
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where Mask indicates the MFAPNet’s prediction output;
np.sum(Mask �� n) indicates the summation of the values of
the pixels with the predicted result equal to n (the value of
unfilled fractures and holes); Mask.size indicates the cumulative
value of the pixels in the predicted image. With Eq. 12; Figure 10C,

the proportion of unfilled holes was calculated to be 4.48% and the
proportion of open fractures was 2.41%. Consequently, core porosity
for the segment shown in Figure 10A was 6.89%.

With this method, the porosity of PS13 core was determined, as
illustrated in the porosity histogram (the sixth track in Figure 11).

FIGURE 11
PS13J Comparison chart. (A) signifies a depth trace utilized for depth indexing. (B) represents a statically enhanced image derived from theWellbore
image. (C) displays an image capturing fractures and holes. (D) depicts a core rolling scan image at the specified depth. (E) denotes the outcomes
following model segmentation. In (F), a comparison of surface porosity is presented, with the black curve representing the surface porosity calculated
based on the image of fractures and holes from the third trace. The green discrete columnar points correspond to the surface porosity derived from
the respective core rolling scan image, and the red curve portrays the predicted core surface porosity post-calibration.
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Subsequent image segmentation enabled the extraction of wellbore
imaging porosity (the third track), in which the wellbore imaging
porosity curve was computed with a window length of 1 ft and a step
of 0.1 in. When the logging tool’s button electrode was close to an
unfilled natural fracture, the resistivity of the drilling fluid within
fractures was substantially lower than that of adjacent rock, thus
leading to the large current of the electrode. As a result, the apparent
width of fractures in imaging results was several times of their actual
width (Nian et al., 2021). This phenomenon might also lead to the
enlarged boundaries of dissolved holes. For a more precise
representation of porosity, the curve was mathematically adjusted
in this study. The refined curve was well consistent with the core
porosity histogram. The curves in Figure 11 (sixth track) revealed that
the porosity derived from wellbore imaging was 1.5–3 times of that
obtained from core rolling scan images. Moreover, the difference
increased with the decrease in porosity. This result, to some extent,
reveals the correlation between the wellbore image logging data and
the actual characteristics of the Dengying Formation in the Penglai
Gas Field of the Sichuan Basin. It also provides a certain basis for the
subsequent logging evaluation of the formation.

7 Conclusion

1. Based on the detailed descriptions of the core rolling scan
images of the deep carbonate rock reservoir of the Dengying
Formation in Penglai Gas Field, Sichuan Basin, we successfully
acquired the distinct features of various fractures and holes
and formulated a robust classification framework for these
types. We highlighted three primary challenges in segmenting
datasets comprising fractures, holes, and algae: variance in
feature scales, class imbalance, and a limited dataset number
with larger samples.

2. After the introduction of SAM segmentationmodel, we facilitated
semi-automatic delineation of the target regions (fractures and
holes) from the background in images and markedly accelerated
the geological dataset compilation process.

3. We developed the MFAPNet semantic segmentation deep
learning model, which ensured swift and high-fidelity
intelligent recognition of fracture types as well as the
quantitative analysis of fractures and holes.

4. We explored the porosity of wellbore imaging results and core
rolling scan images and further validated the calibration
relationship between electric imaging results and core
rolling image porosity.
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