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The probability integral method is one of the most widely used methods for
predicting surface subsidence induced by underground mining in China. In its
parameter calculation, the least square algorithm is commonly employed for
fitting parameters. However, in the process of fitting parameters, the results are
easily affected by ill-conditioned normal matrices and the interference of outliers,
resulting in divergent problems. To solve these problems, the principle of robust
ridge estimation was introduced in this paper, and a parameter calculation model
for the probability integral method based on this principle (hereafter referred to as
the established model) was established. Besides, a parameter calculation
experiment with manual intervention was conducted in combination with
engineering examples. The results demonstrate that the parameter calculation
method based on robust ridge estimation can suppress the interference of
outliers, overcome the problem of ill-conditioned matrix, and ensure the
effectiveness and reliability of parameter estimation results. Compared with the
conventional least squares method, the robust ridge estimation method
demonstrates greater accuracy in predicting surface subsidence parameters,
which validates its rationality and accuracy in underground mining engineering.
The research findings provide technical support for obtaining similar parameters
for surface subsidence inmining areas and hold significant engineering application
value.
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1 Introduction

China is the world’s largest coal producer. Extensive underground coal mining is prone
to causing large-scale surface subsidence, leading to problems such as vegetation damage, soil
degradation, and lowered underground water level in the coal mine subsidence areas, which
has brought considerable damage to the living environment in these areas. To address these
issues, it is necessary to predict the extent and scope of surface damage caused by
underground mining in advance, and then adopt targeted mining technology with low
ecological damage. The work of predicting surface damage in advance is known as mining-
induced subsidence prediction (MSP).

At present, scholars at home and abroad have conducted extensive research on MSP and
have put forward numerous MSPmodels. In 1954, Litwiniszyn (Litwiniszy, 1956) introduced
the stochastic medium theory which considered rock mass displacement as the stochastic
movement of countless small unit particles. The theory laid the foundation for modern MSP
methods. In 1993, Shu and Bhattacharyya (Shu and Bhattacharyya, 1993) established an
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empirical prediction model by investigating the relationship
between underground strata and surface subsidence movements.
The model is presented in the form of graphs and tables, which can
be used to estimate the maximum subsidence, tilting, and horizontal
deformation of the surface. In 1995, by analyzing the surface
subsidence induced by the mining of shallow thick coal seams in
Raniganj coalfields in India, Singh and Yadav (Prediction of
subsidence due to, 1996) proposed a viscoelastic model for
surface MSP and validated the feasibility of this model through
the mining conditions at two other local coal mines. In 2003,
Ambrožič et al. (Ambrožič and Turk, 2003) employed artificial
neural networks for MSP. This method is based on a substantial
number of observation data and uses variables to represent the data
of surface subsidence in the process of prediction. In 2014, Ren et al.
(Ren et al., 2014) first proposed the generalized influence function
method that utilizes computer simulation. The method can not only
be applied to more complex engineering geological conditions but
also effectively express its stress-strain relationship during mining.
In 1959, Liu and Liu (China University of Mining and Technology,
1981) first translated and introduced the stochastic medium theory
into China, bringing advanced technology and mature experience to
MSP in the country. In 1963, Zhou and Yu (Zhang, 2010) established
the negative exponential profile function of the subsidence basin
based on the analysis of numerous measured data. In 1965, the
probability integral method was first proposed, and later Chinese
scholars, including Baoshen Liu and Guohua Liao, made indelible
contributions by introducing the method to the domestic context,
thus laying a solid theoretical foundation for the quantitative
calculation of MSP in China.

MSP models can be broadly categorized into three types,
i.e., curve prediction methods, influence function methods, and
profile function methods (He et al., 1991; Guo, 2019). Among
them, the probability integral method, which is most widely
applied in China, is a typical influence function method. The
probability integral method, based on the stochastic medium
theory, gets its name from the inclusion of the probability integral
in the prediction formula of movement and deformation. It is
currently an important method used in China for predicting
surface movement and deformation of mining-induced
subsidence and is one of the methods for MSP as specified in
the reference (State Administration of Work Safety, 2017). The
accuracy of MSP methods primarily depends on the selection of
prediction parameters. The least square fitting algorithm that
boasts simple calculation is usually used for calculating the
prediction parameters, and the accuracy of the calculated
parameters can basically meet the engineering requirements.
The least squares estimation possesses desirable properties in
parameter estimation, and when the error follows the normal
distribution, it is unbiased, consistent, and effective among all
unbiased estimation classes. However, it has two problems: first,
in the presence of many independent variables, including
approximately linear related variables, the parameter value it
estimated deviates notably from the true value; second, when the
observed value is contrary to the normal distribution assumption
and outliers are present in the data, the least squares estimation
can be interfered, and the deviation of a single observed value
may have a significant impact on the parameters (Sui, 1994; Wu,
2009; Wang et al., 2012).

Regarding the first problem, Shu and Bhattacharyya (Wang
et al., 2012) proposed ridge estimation, which is a kind of biased
estimation of compressibility designed to reduce the mean square
error. It can improve the ill-condition of the normal matrix and
stabilize the parameter solution. As for the second problem,
Ambrožič et al. and Ren et al. (Wu, 2009; Dong-Sheng et al.,
2023) introduced robust estimation, which, by selecting the
appropriate equivalent right, helps overcome the difficulty of
parameter calculation posed by model bias and the presence of
outliers. However, these twomethods can only address one problem,
not both simultaneously. By combining the advantages of ridge
estimation and robust estimation, the principle of robust ridge
estimation proposed in this paper can resist both the influence of
ill-conditioned normal matrices on the parameter calculation
results, and the impact of outliers or gross errors on them,
ensuring the validity and reliability of the results. It can provide
technical support for obtaining estimated parameters of surface
subsidence in similar mining areas.

2 Robust ridge estimation

2.1 Principle of robust ridge estimation

The introduction of robust ridge estimation is in response to the
fact that, when outliers are present in the observed values, and the
coefficient matrix A of the equation shows an ill-conditioned
tendency, neither LS estimation nor LS ridge estimation can deal
with this ill-conditioned result (Sui, 1994; Zhou et al., 2020). Thus, it
is necessary to mitigate the ill-condition of the normal matrix
through ridge estimation. The fundamental idea of ridge
estimation is to exchange an appropriate increase in bias for a
significant reduction in variance, thereby reducing the error and
improving the calculation accuracy of the sample. The basic
calculation method of robust ridge estimation is as follows:

Let the observation equation be:

L � AX+Δ (1)
where L is the n-dimensional observation vector; A is the n × t order
coefficient matrix; X is the t-dimensional parameter vector; and Δ is
the n-dimensional error vector, Δ~N(0, δ20I).

The corresponding error equation is:

V � AX̂ − L weight P( )
VX � �

k
√

X̂ − O weight I( ) (2)

The robust ridge estimation solution of the parameter, obtained
from the principle of robust ridge estimation (Zhou et al., 2020; Lian
et al., 2021), is defined as:

X̂ � AT �pA + kI( )−1AT �PL (3)
where K is the ridge parameter; and �P is the equivalent weight
matrix.

From Eq. 3, it is evident that the determination of the ridge
parameter and the equivalent weight matrix are necessary
conditions for obtaining the solution of robust ridge estimation.
Thus, the key to robust ridge estimation lies in selecting appropriate
ridge parameters and equivalent weight matrices.
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2.2 Determination of ridge parameters

Comparative study on the determination methods of ridge
parameters is one of the current hot topics. Several methods are
widely used for the determination of ridge parameters, including
the ridge trace method, the generalized cross-validation (GCV)
method, the double-h formular method, the L-curve method,
among others (Wang et al., 2012). Despite its remarkable
applicability, the ridge trace method is too arbitrary and has
no strict theoretical basis. The GCV method is theoretically
capable of selecting the optimal ridge parameter, but
sometimes the change of the GCV function is too smooth or
even divergent, so it is difficult to determine its minimum value.
Although the double-h formular method is simple in calculation
and flexible in application when determining the ridge
parameters, its effect is not obvious when the coefficient
matrix of the normal equation is severely ill-conditioned. In
contrast, the L-curve method, an extremely rigorous method
to study ridge parameters in theory, is characterized by
accurate determination and good applicability (Aerospace
Research, 2018; Cwiakala et al., 2020; Jiang et al., 2020; Lian
et al., 2021). Considering its superiority, the L-curve method is
selected to determine the ridge parameters in this paper.

According to the regularization theory, the robust ridge
estimation criterion of Eq. 1 is as follows:

AX̂ − L
���� ����2 + kΩ X̂( ) � AX̂ − L

���� ����2 + kX̂
T
X̂

� AX̂ − L
���� ����2 + k X̂

���� ����2� min (4)
where ‖AX̂ − L‖ and ‖X̂‖ are functions of the ridge parameter k; ‖.‖
is the Euclidean 2-norm; and Ω(X̂) is the stability functional.

With log‖AX̂ − L‖ as the abscissa ρ and log‖X̂‖ as the ordinate η,
choosing different values of K will get many various (ρ, η) points.
These different points are fitted to a curve, and the ridge parameter
corresponding to the point of maximum curvature of this curve is
the desired one.

Let ρ � ‖AX̂ − L‖22, η � ‖X̂‖22 and take logarithm to obtain
ρ̂ � log ρ, η̂ � log η, then the L curve is fitted by many (ρ̂/2, η̂/2)
points. The curvature κ of the L curve is:

κ� 2
ρ̂′η̂″ − ρ̂″η̂′
ρ̂′( )2 + η̂′( )2( )3/2 (5)

The maximum curvature can be obtained by calculating the
maximum value of the above equation, and the corresponding
maximum point is the desired one. Then, the robust ridge
parameter k corresponding to the point can be calculated.

2.3 Determination of equivalent weight
function

The robust effect of robust ridge estimation mainly depends on the
equivalent weight function. Different equivalent weight functions lead
to different robust estimationmodels and consequently different robust
effects (Lawrence and Marsh, 1984; Wu, 2009; Li S. et al., 2017; Dong-
Sheng et al., 2023). The IGG robust scheme proposed by Professor Zhou
is to modify the weight matrix of the least squares parameter estimation

solution, that is, to replace the prior weight with the equivalent weight,
so that we can use the equivalent weight to reconstruct the robust
estimation solution and the unit weight mean error (Zhou et al., 2020).
In this paper, the IGG robust scheme was adopted. The form of the
equivalent weight is defined as:

�Pii �
Pi

k0σ0
Vi| |pii

0

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Vi| |≤ k0σ0
k0σ0 ≤ Vi| |≤ k1σ0 i� 1, 2/( )
Vi| |≥ k1σ0

(6)

where k0 is the quantile, generally taken as 1.5; and k1 is the
elimination point, generally taken as 2.5.

However, the probability that the absolute value of an error is
greater than the mean square error, double of the mean square error,
and three times of the mean square error is 31.7%, 4.5%, and 0.3%
respectively, and most measurement specifications in China stipulate
that double of the mean square error is the limit error. Considering the
above fact, we take k0 =1.0 and k1 =2.0.

3 Methods

3.1 Traditional parameter calculationmodels

The probability integral method mainly involves five
predication parameters, namely, surface subsidence coefficient
q, horizontal movement coefficient b, tangent of major influence
angle tanβ, major influence propagation angle θ, and deviation
of inflection point (including the offset of strike inflection point
S1, the offset of dip inflection point S2, the offset of uphill
inflection point S3, and the offset of downhill inflection point
S4). When conducting robust ridge estimation for parameter
determination, q, tanβ, θ, S1, S2, S3, and S4 should be obtained
firstly by using the measured observed values of surface
subsidence. Subsequently, the horizontal movement parameter
b can be obtained by iterative fitting of the seven obtained
parameters, along with the observed values of horizontal
movement of the surface points.

According to the reference (Shuaiying et al., 2021), it can be
found that the movement and deformation prediction model of the
strike main section is given by:

W x( ) � w0

2
erf

��
π

√
γ

x( )+1[ ] − w0

2
erf

��
π

√ x − l

γ
( )+1[ ]

U x( )� bw0 erf −π x
2

γ2
( )−erf −π x − l( )2

γ2
( )[ ]

w0� mq cos α

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(7)

where w0 is the maximum subsidence value (mm); γ is the main
influence radius (m); l is the advance distance of the working face
(m); W(x) is the surface subsidence (mm); U(x) is the horizontal
movement value of surface along the strike main section (mm); b is
the horizontal movement coefficient; q is the surface subsidence
coefficient;m is the mining thickness (mm); α is the dip angle of coal
seam (°); and erf() is the error function.

The prediction model for the movement and deformation of the
inclined main section is as follows:
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W x( ) � w0

2
erf

��
π

√
γ1

y( )[ ] − w0

2
erf

��
π

√ y − L

γ2
( )[ ]

U x( ) � w0 b1erf −π y
2

γ21
( ) − b2erf −π y − L( )2

γ22
( )[ ]

+w0

2
cot θ erf

��
π

√
γ1

y( )−erf ��
π

√ y − L

γ2
( )[ ]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(8)

where γ1 and γ2 are the main influence radii of uphill and downhill in
the dip direction respectively (m);W(x) is the surface subsidence (mm);
U(y) is the horizontalmovement value of the surface along the dipmain
section (mm); b1 and b2 are the horizontal movement coefficients of
uphill and downhill respectively; θ is the propagation angle of extraction
(°); and L is the mining width in the dip direction (m).

The essence of the traditional curve fitting method is an estimation
method, which takes the least squares principle as the criterion to
calculate parameters according to the measured subsidence values and
horizontal movement values on the main section. The basic principle is
that the target variable y such as subsidence value or horizontal
movement value is regarded as a function of the independent variable
x and the parameter B to be determined, as expressed by Eq. 9:

y � f x;B( ) (9)
With n pairs of observed values (x, y), the optimal parameter B

can be calculated using Eq. 10:

Q � ∑n
i�1

yi − f xi;B( )[ ]2� min (10)

In other words, a set of parameters B is selected to minimize the
sum of squares of deviations between the fitting curve and themeasured
results.

3.2 Parameter calculation model based on
robust ridge estimation

The prediction parameters of the probability integral method can be
obtained from themeasured data of surface movement and deformation

at any points along any direction. When the arranged observation
stations are conventional, the least squares curve fitting method is
used; when they are non-conventional, that is, when they include a
series of scattered points, the least squares surface fitting method is
employed. However, when the normal matrix of the least squares is ill-
conditioned or outliers are present in the observed data, distorted
parameter results are likely to occur. The least squares surface fitting
method based on robust ridge estimation can not only effectively resist
the interference of outliers and ill-conditioned normal matrix, but also
apply to the parameter calculation of arbitrarily-shaped or incomplete
observation station data (Wang et al., 2012).

According to the probability integral method’s model for surface
movement and deformation at any point, the subsidence value W at
any point can be expressed as a function of the measuring point
coordinates and the estimated parameters, namely,

Wi � f Xi, B( )
� f xi, yi, q, tan β, S1, S2, S3, S4, θ( ) (11)

Select initial parameter values “q0, tanβ0, θ0, S10, S20, S30, and
S40,” and linearize them as follows:

Wi � f xi, yi, q0, tan β0, S10 , S20, S30, S40, θ0( ) + ∂f
∂q

Δq + ∂f
∂ tan β

Δ tan β + ∂f
∂S1

ΔS1

+∂f
∂S2

ΔS2 + ∂f
∂S3

ΔS3 + ∂f
∂S4

ΔS4 + ∂f
∂θ

Δθ

(12)

Then, the general form of the error equation is given as:

Vi � ∂f
∂q

Δq + ∂f
∂ tan β

Δ tan β + ∂f
∂S1

ΔS1 + ∂f
∂S2

ΔS2 + ∂f
∂S3

ΔS3 + ∂f
∂S4

ΔS4

+ ∂f
∂θ

Δθ − l0i

(13)
where l0i � Wi measured −W0i.

The matrix form of Eq. 10 is:

Vn×1 � An×7X7×1 − ln×1 (14)

TABLE 1 Information regarding the auxiliary 271 working face.

Depth of topsoil (m) Dip angle (°) Strike length (m) Dip length (m) Mining thickness (m) Average mining depth (m)

220 8 830 150 3.1 304

TABLE 2 Results of parameter calculation from data fitting before manual intervention.

Estimation method q θ/(°) b tanβ S1/m S2/m S3/m S4/m

Least squares 0.89 84 0.22 2.16 34.05 31.14 18.04 18.04

Robust ridge estimation 0.87 84 0.24 2.15 34.01 31.09 18.05 18.05

TABLE 3 Results of parameter calculation from data fitting after manual intervention.

Estimation method q θ/(°) b tanβ S1/m S2/m S3/m S4/m

Least squares 0.98 84 0.42 1.78 31.97 27.58 15.57 15.57

Robust ridge estimation 0.88 84 0.23 2.14 34.04 31.13 18.03 18.07
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By determining the ridge parameter k from Eq. 5 and the
equivalent right from Eq. 6, the robust ridge estimation solution
of the corrections of the seven parameters can be obtained, as shown
in Eq. 15:

~X � AT �PA + kI( )−1AT �PL (15)
After the results are obtained, the results of the previous

calculation are used as the initial values for the next iteration,
and the iterative calculation is carried out until the difference of
the parameter estimates of the last two calculations meets the
iterative convergence accuracy. At this point, the robust ridge
estimation solution for parameter estimates can be obtained.

4 Result and discussion

Engineering examples in this paper are based on the data of a
surface movement observation station in references (Chen, 2010; Li
Shuaixin et al., 2017). The observation station is located above the
auxiliary 271 working face. Since the observation station records
data during both single-seam mining and multi-seam mining, and
more detailed data in both strike and dip directions are provided
during the former, this paper uses the data of the observation station
during single-seam mining. The mining details of the working face
corresponding to the observation station are listed in Table 1.

To test the effectiveness of the established robust ridge estimation
model, firstly, the least squares method and the robust ridge estimation
algorithm were used to fit the parameters respectively. Subsequently, a
random error with a standard deviation of 10 mm was generated and
added to the observed values using the “random” command in
MATLAB software. Afterwards, the least squares method and the
robust ridge estimation algorithm were used again to fit the
parameters respectively. Finally, a comparative study on the two
results of parameter calculation was conducted in both vertical and
horizontal directions.

1) The results of fitting the parameters using the original measured
data are shown in Table 2.

2) The results of parameter calculation from data fitting after
manual intervention are given in Table 3

A comparative analysis on Tables 2–4 reveals the following:

1) When no manual intervention is involved in the observed values,
the results of parameter calculation from the robust ridge
estimation theory and the traditional least squares estimation
theory are essentially the same.

2) When some outliers and random errors are artificially added to
the observed values, the parameters obtained using the
traditional least squares estimation theory show significant

deviations, while the parameters obtained using the robust
ridge estimation theory differ insignificantly from those
obtained without manual intervention (Table 4).

5 Conclusion

1) Traditional observation data are prone to problems such as outliers
and ill-conditioned matrices, which tend to occur when using the
least squares method to fit the parameters. In other words, when the
conventional probability integral method is utilized to obtain the
surface deformation parameters, the parameters are prone to
considerable errors, resulting in distorted results.

2) Applying the robust ridge estimation theory to the process of
obtaining parameters using the probability integral method can
automatically eliminate the interference of ill-conditioned
normal matrices and outliers.

3) The parameter calculation experiment with manual intervention
demonstrates that the established parameter calculation model
for the probability integration method based on the robust ridge
estimation theory, in comparison with the conventional least
squares method, has smaller errors in predicting surface
subsidence parameters before and after manual intervention.
By adopting the theory for parameter calculation, the predication
parameters obtained through the probability integral method
boast better effectiveness and reliability.
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TABLE 4 Absolute value of the difference between data fitting and parameter calculation results before and after manual intervention.

Estimation method q θ/(°) b tanβ S1/m S2/m S3/m S4/m

Least squares 0.09 0 0.2 0.38 2.08 3.56 2.47 2.47

Robust ridge estimation 0.01 0 0.01 0.01 0.03 0.04 0.02 0.02
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