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Deep-learning (DL) pickers have demonstrated superior performance in seismic
phase picking compared to traditional pickers. DL pickers are extremely effective
in processing large amounts of seismic data. Nevertheless, they encounter
challenges when handling seismograms from different tectonic environments
or source types, and even a slight change in the input waveform can considerably
affect their consistency. Here, we fine-tuned a self-trained deep neural network
picker using a small amount of local seismic data (26,875 three-component
seismograms) recorded by regional seismic networks in South Korea. The self-
trained model was developed using publicly available waveform datasets,
comprising over two million three-component seismograms. The results
revealed that the Korean-fine-tuned phase picker (KFpicker) effectively
enhanced picking quality, even when applied to data that were not used
during the fine-tuning process. When compared to the performance of the
pre-trained model, this improvement was consistently observed regardless of
variations in the positions of seismic phases in the input waveform, Furthermore,
when the KFpicker predicted the phases for overlapping input windows and used
themedian value of probabilities as a threshold for phase detection, a considerable
decrease was observed in the number of false picks. These findings indicate that
fine-tuning a deep neural network using a small amount of local data can improve
earthquake detection in the region of interest, while careful data augmentation
can enhance the robustness of DL pickers against variations in the input window.
The application of KFpicker to the 2016 Gyeongju earthquake sequence yielded
approximately twice as many earthquakes compared to previous studies.
Consequently, detailed and instantaneous statistical parameters of seismicity
can be evaluated, making it possible to assess seismic hazard during an
earthquake sequence.
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Introduction

Earthquake catalogs, which are usually initiated from picking of seismic phases, are the
fundamental inputs required for earthquake monitoring and seismic hazard analysis. The
completeness of a catalog, which is measured using the minimum magnitude following the
Gutenberg–Richter law, can be improved by detecting additional small earthquakes or by
identifying additional seismic phases from noisy seismograms.
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The Korean Peninsula located at the eastern margin of the
Eurasian Plate is a stable intraplate region owing to its relatively low
seismicity. However, the earthquakes on 12 September 2016 (Mw
5.6 Gyeongju) and 15 November 2017 (Mw 5.5 Pohang) were
accompanied by thousands of aftershocks (Woo et al., 2019; Woo
et al., 2020). In addition, low-magnitude earthquakes, such as those
on 3 May 2020 (Mw 3.2 Haenam) and 28 October 2022 (Mw
3.7 Goesan), were accompanied by several tens of foreshocks and
aftershocks (Sheen, 2021; Son et al., 2021; Song et al., 2022; Sheen
et al., 2023). The emergence of these earthquake sequences in a
region of low seismicity has necessitated the enhancement of
earthquake catalogs for seismic hazard mitigation.

Deep-learning (DL) pickers have demonstrated superior
performance in seismic phase picking compared with traditional
pickers (Ross et al., 2018; Woollam et al., 2019; Zhu and Beroza,
2019; Mousavi et al., 2020; Liao et al., 2021; Saad et al., 2023). They
can effectively process large amounts of seismic data and detect
seismic phases with errors similar to that of an experienced analyst,
with more phases under low signal-to-noise ratio (SNR) conditions
in a shorter time (García et al., 2022). Furthermore, their picks
exhibit better consistency than manual picks (Liao et al., 2021).

DL pickers can be generalized to other regions or source types
that were not used for their training (Mousavi et al., 2020; Liao et al.,
2021; Tan et al., 2021;Walter et al., 2021; García et al., 2022; Harsuko
and Alkhalifah, 2022; Heck et al., 2022; Liao et al., 2022;
Münchmeyer et al., 2022; Wang et al., 2023). However, the
performance of the picker is sometimes degraded when applied
to those regions or source types (Jiang et al., 2021; Heck et al., 2022;
Han et al., 2023). This issue can be resolved by retraining the neural
network (Chai et al., 2020; Johnson et al., 2020; Lapins et al., 2021).

A traditional real-time earthquake monitoring system
continuously acquires several second-long packets of waveforms
from dataloggers in seismic stations or dataservers (Olivieri and
Clinton, 2012) and computes a characteristic function to detect the
onset of a seismic phase for each sample of seismograms (Mele et al.,
2010). The association of phases to identify the occurrence of seismic
events usually relies on P arrivals (Dietz, 2002; Olivieri and Clinton,
2012; Sheen and Friberg, 2021). Retailleau et al. (2022) applied a DL
picker, PhaseNet (Zhu and Beroza, 2019), to a real-time seismic
processing system, Earthworm (Johnson et al., 1995), for monitoring
seismic and volcanic activity. They downloaded 30 s of three-
component data for each station from either an online server or
a disk archive, with a 50% overlap in the time windows, resulting in
an inevitable delay of more than several seconds in seismic analysis.
In addition, the seismic phases to pick could appear anywhere within
the input waveform.

DL pickers sometimes exhibit inconsistencies owing to input
data characteristics. Szegedy et al. (2013) and Goodfellow et al.
(2014) demonstrated that DL models are vulnerable to adversarial
attacks due to imperceptible perturbations added to the original
input, which cause the model to commit mistakes. This
phenomenon is also observed in DL pickers, where a position
change or a slight perturbation in the input waveform can cause
differences in the results (Heck et al., 2022; Park et al., 2022). The
performance of DL pickers is critical, particularly for near-real time
monitoring of seismicity, as continuous waveforms are processed
with a controlled level of false-positive rate (Munchmeyer et al.,
2022).

In this study, our primary objective was to develop a robust DL
picker, i.e., the Korean-fine-tuned phase picker (KFpicker). The aim
was to enhance the determination of seismic phase arrival times for
local earthquakes, ultimately contributing to the improvement of
local earthquake catalogs. We first introduce the data and methods
used to train and fine-tune the KFpicker. Next, we compare the
performance of the KFpicker with PhaseNet (Zhu and Beroza, 2019)
using a local South Korean earthquake dataset and demonstrate its
contribution to improving the 2016 Gyeongju earthquake sequence
catalog. Finally, we discuss the effectiveness of KFpicker for the
potential application to real-time earthquake monitoring and
seismic hazard assessment during an earthquake sequence.

Data

Owing to low seismicity, sufficient seismograms are not available
to train deep neural networks in South Korea. Therefore, we used
publicly available waveform datasets to train the deep neural
network as a base model. INSTANCE (Michelini et al., 2021) is
an Italian earthquake waveform dataset collected for machine
learning applications, which comprises of approximately
1.2 million three-component waveforms (each with a duration of
120 s) sampled at 100 Hz. STEAD (Mousavi et al., 2019)
encompasses 1.2 million three-component waveforms (each with
a duration of 60 s) sampled at 100 Hz and recorded on a global scale,
comprising both local events and ambient and cultural noises.
Considering the seismotectonics of South Korea, only the
seismograms of earthquakes occurring at depths shallower than
30 km and observed within an epicentral distance of 150 km were
selected from both datasets. The last 60 s of the INSTANCE
waveforms were trimmed to match their length with the STEAD
waveforms, and the same frequency bandpass filter (1–45 Hz) used
for STEAD was applied to the INSTANCE waveforms.
Subsequently, we combined both datasets and obtained over
2.3 million three-component waveforms.

To fine-tune our base model, we gathered 26,875 three-
component waveforms of earthquakes that occurred in and
around South Korea. The earthquake catalog of the Korea
Meteorological Administration (KMA) was used to screen local
events that occurred between 2017 and 2020 (Figure 1).
Seismograms recorded at an epicentral distance of <150 km were
selected because we focused on improving the completeness of the
earthquake catalog for local events. The seismic stations are operated
by the KMA and the Korea Institute of Geoscience and Mineral
Resources and are equipped with broadband sensors, short-period
sensors, or accelerometers. The P- and S-wave arrivals were
manually identified and selected for labeling. To minimize
human error and picking uncertainty, the labeled arrivals were
used to determine the hypocenters and were cross-validated by
several analysts. Because earthquakes with magnitudes greater than
or equal to 2.0 were routinely cataloged by the KMA, we gathered
seismic waveforms and arrivals of a microearthquake sequence with
a magnitude lower than 2.0 near Suncheon City from 2009 (Kwak
et al., 2022). All waveforms were sampled at 100 Hz and filtered in
the frequency range of 1–45 Hz. The data augmentation technique
can generate new training samples using collected datasets to expand
the size and variety of training datasets, thereby improving the
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generalization of DL models (Zhu et al., 2020). For data
augmentation during fine-tuning, each trace in the local dataset
was 60 s long and centered at P arrival, thus allowing the position of
labeled arrivals to be randomly shifted within the 30 s input
waveform.

In the typical evaluation of a pre-trained model, a test dataset is
usually randomly chosen from the collected data to ensure an
unbiased assessment of the model’s performance on unseen data
(e.g., Zhu and Beroza, 2019; Mousavi et al., 2020). However, even if
the data are randomly chosen from our dataset, some may share the
same source characteristics, making it challenging to assert that they
represent entirely new types of data. To thoroughly evaluate the
performance of DL pickers, we employed two separate datasets, both
of which were distinct and had not been previously seen: 30-s long
event data and 1-day long continuous data. This was based on the
belief that employing an independent test dataset for evaluation
would provide a genuinely unbiased assessment of the model’s
performance (Wang et al., 2022).

Seismograms of events that occurred in the southern Korean
Peninsula in 2021, comprising 5,065 sets of three-component
waveforms, and ground-truth labels (P picks: 5,065; S picks:
2,879) were prepared using the same procedure used for the
training dataset. To investigate the performance in the analysis of
earthquake sequences, we also collected 1-day-long continuous
seismograms from 13 stations within 50 km of the epicenter of
the 2020 Haenam earthquake sequence, specifically during the Mw
3.2 mainshock (Sheen, 2021). PhaseNet (Zhu and Beroza, 2019) was
used to generate candidate picks, which were then used to identify

ground-truth picks. To address the inconsistency of PhaseNet
caused by variations in the input window position (Heck et al.,
2022) and maximize the number of candidates, we shifted the input
window by a 1 s stride and selected the picks exceeding a
0.1 threshold based on the point-by-point maximum of
overlapping prediction outputs. Through careful visual
inspection, a total of 1,354 ground truth picks were identified,
consisting of 489 P picks and 865 S picks, primarily due to the
low SNR of the P phases. Several regional and teleseismic phases
were ignored because we focused on local events.

Methods

Liao et al. (2021) measured the performance of DL pickers based
on the U-Net architecture and demonstrated that the recurrent
residual convolutional neural network based on U-Net (R2U-Net;
Alom et al., 2018) had a similar or slightly lower performance than
that of the model with attention gates (AR2U-Net). However, the
R2U-Net and AR2U-Net models exhibited similar performances in
picking P arrivals, although the former required approximately one-
fifth of the number of trainable parameters compared with the latter.
Increasing the number of trainable parameters and the depth of DL
models can improve the capturing of the characteristics in
seismograms. However, phase picking does not require such high
levels of complexity (Yu and Wang, 2022). Therefore, the R2U-Net
represented in Figure 2 was adopted for this study, whose
complexity is comparable to that of PhaseNet. During the fine-

FIGURE 1
Map of events and stations used for training. (A) Locations of events (circles) and seismic stations (triangles) for the training dataset. (B,C) Distance
and magnitude distributions of the training dataset.
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tuning step, the entire network, except for the last layer, was frozen,
and only the last layer in Figure 2 was retrained. The model classifies
the probability at each time sample on the seismogram into three
categories: P-wave arrival, S-wave arrival, and noise. The sum of the
probabilities for these three target functions at each time sample is
constrained to be one, achieved through the implementation of the
softmax activation function in the output layer of the network.

The global dataset encompassing INSTANCE and STEAD was
divided into a training set comprising 80% of the waveforms, and the
remaining 20% were left as unseen to validate the model. The local
dataset was split at the same ratio for fine-tuning.

Instead of increasing the amount of input data for the
generalization of the DL model, the training and fine-tuning
datasets were augmented by randomly shifting the waveforms,
adding Gaussian noise, and randomly dropping one channel of
waveforms (Mousavi et al., 2020). Following PhaseNet, three-
component 30-s long seismic waveforms were considered as the
model input. Seismic waveforms of this duration can adequately
capture both the P and S phases of a local earthquake. During the
training of our base model, the input waveform window in the 60-s-
long dataset was shifted randomly within a maximum of 10 s
because both STEAD and INSTANCE did not have a sufficient
waveform length prior to the arrival of the P phase. This shift was
performed within a range that guaranteed the inclusion of either the
P or S phase, or both. During the fine-tuning of the model, the input
waveform window was freely and randomly shifted within the
dataset owing to the sufficient length of the waveform before and
after the P arrival in the local dataset. Each input waveform was
normalized using its standard deviation, and a truncated Gaussian
distribution was used to label the ground-truth picks for detection
(Zhu and Beroza, 2019).

In the training and fine-tuning of the base model, we set the
dropout rate to 0.1 for all dropout layers in the neural network and
used the Adam optimizer. The learning rate for both training and
fine-tuning started at 0.001 and was reduced by a factor of 0.5 when
the validation loss did not decrease in 5 consecutive epochs. Both
processes were stopped when the validation loss did not improve for

20 consecutive epochs and generally terminated within 100 epochs.
The elapsed times for training and fine-tuning per epoch using a
single NVIDIA A100 were approximately 40 and 2 min,
respectively.

Results

Application to events data from local
earthquakes

PhaseNet (Zhu and Beroza, 2019), trained with over 0.6 million
30 s long seismic waveforms, was chosen for comparison with our
fine-tuned neural network, KFpicker. We used 30-s of three-
component seismograms from events that occurred in 2021.
These seismograms were filtered in the frequency range of
1–45 Hz and standardized by dividing each one by its standard
deviation to prepare the input data. The prediction results for the
event data starting from the origin time are illustrated in Figure 3.
We assessed the detection capability of DL pickers using precision
and recall metrics, defined as follows:

Precision � TP

TP + FP

Recall � TP

TP + FN

where TP is the number of true positives (TPs), FP is the number
of false positives (FPs), and FN is the number of false negatives (FNs).
A probability threshold of 0.3 was applied to both DL pickers, and a
predicted pick was classified as a TP if its arrival-time residual was
less than 0.5 s, while FP was designated if the residual was 0.5 s or
more (Mousavi et al., 2020; Saad et al., 2023). If there was no
prediction, we considered it an FN. Precision measures the picker’s
ability to accurately predict an arrival, while recall measures the
ability of the picker to detect all arrivals of a given phase. Precision
and recall vary between 0 and 1, where higher values are associated
with better-performing models.

FIGURE 2
Recurrent residual convolutional neural network based on the U-Net (R2U-Net) architecture used in this study. The last layers in the red box were
fine-tuned using the local dataset represented in Figure 1.
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The precision and recall of PhaseNet were high for both P and S
arrivals, indicating the accuracy of the detections, which is
comparable to the result obtained by Mousavi et al. (2020). The
precision of both P and S picking obtained from our base model and
KFpicker was 0.99, which was marginally superior to that of
PhaseNet. It is important to note that neither model had seen
this dataset during training. PhaseNet falsely identified mantle
reflections (PmP, SmS, and SmP) as P or S phases (Pg, Pn, Sg,
and Sn). The picks for mantle reflections predicted by PhaseNet
were noticeably lacking in the picks made by the base model and
KFpicker, resulting in enhanced precision for both models. Fine-
tuning the base model led to an increase in the recall of both the P
and S phases. However, the recall for S-waves was still lower than
that of PhaseNet, indicating that KFpicker missed more S arrivals
than PhaseNet.

The distributions of the arrival-time residuals between the DL
and manual picks for the P and S waves are shown in Figure 4. The
residual distributions for both of our base model and KFpicker
(Figures 4B, C) showed marginally better performance compared to
PhaseNet (Figure 4A), with KFpicker outperforming the base model.
In particular, the mean errors of P picks for both the base model and
KFpicker were less than 1 sample (0.01 s).

To further evaluate the performance for S arrivals, we compared
the distributions of S arrivals predicted by PhaseNet and KFpicker
according to the SNR and distance (Figure 5). In this study, the SNR
was based on the root mean square of three-component
seismograms with two 0.5-s windows following and preceding
the ground-truth S arrival. Among all the FPs and FNs of
KFpicker, 85% came from seismograms with an SNR lower than
5 dB. In contrast, in PhaseNet, 44% were from data with an SNR

FIGURE 3
Picking performances of (A) PhaseNet (Zhu and Beroza, 2019), (B) the base model trained in this study, and (C) Korean-fine-tuned phase picker
(KFpicker) for seismograms of earthquakes that occurred in South Korea in 2021. Predicted arrivals are represented by circles. Theoretical travel times of
P-waves (5.8 km/s) and S-waves (3.4 km/s) are denoted by dashed-dot and dashed lines, respectively.
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higher than 5 dB. In both DL pickers, 79% of FPs and FNs resulted
from data with epicentral distances greater than 70 km. These results
suggest that KFpicker outperforms PhaseNet in picking S phases at
short distances with a higher SNR, potentially leading to improved
accuracy in earthquake depth estimation.

Figure 6 shows waveform examples of FNs and FPs for S arrivals
predicted by KFpicker. The upper examples correspond to FNs,
while the lower ones correspond to FPs. In all cases, KFpicker
successfully predicted P arrivals. For comparison, arrivals predicted
by PhaseNet are presented in Figures 6A–G, while KFpicker’s
predictions are shown in Figure 6H.

As shown in Figure 5, PhaseNet had fewer FNs for S arrivals
than KFpicker. This indicates that PhaseNet successfully predicted S
arrivals in certain low SNR waveforms that KFpicker did not capture
(Figures 6A, B). However, PhaseNet also had its shortcomings, as it
sometimes misidentified S arrivals as P arrivals (Figure 6C) and, in
some cases, failed to make predictions altogether (Figure 6D).

Notably, in Figure 6D, the onset of the P-wave is easily visible,
but PhaseNet missed it, whereas KFpicker predicted it correctly.

Moreover, most of the FPs in KFpickers were also incorrectly
identified by PhaseNet. However, some of them resulted from
mislabeled ground truths. In Figure 6E, where the SmS phase was
incorrectly labeled as the S phase, PhaseNet misinterpreted the S
phase as the P phase and incorrectly recognized SmS as the S phase,
whereas KFpicker made the correct prediction. The S phase in
Figure 6F was mistakenly labeled between the S and SmS phases.
KFpicker correctly predicted the S arrival, while PhaseNet
interpreted both S and SmS as S phases. Although both
KFpicker and PhaseNet correctly determined the S arrival in
Figure 6G, the S phase was manually picked at a converted
phase. Nonetheless, these were classified as FPs due to incorrect
labeling.

As shown in Figures 6C, E, F, PhaseNet picked multiple P or S
arrivals in 30-s long event data, which increased the FPs of

FIGURE 4
Histograms showing the distributions of arrival-time residuals (in seconds) of (A) PhaseNet (Zhu and Beroza, 2019), (B) the basemodel trained in this
study, and (C) Korean-fine-tuned phase picker (KFpicker) for seismograms of earthquakes that occurred in South Korea in 2021.
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PhaseNet. KFpicker also made multiple predictions; for example,
in Figure 6H, converted phases and S phases were picked as S
arrivals. For all the event data, PhaseNet predicted multiple P
arrivals in 142 cases and multiple S arrivals in 39 cases, while

KFpicker predicted multiple P arrivals in 8 inputs and multiple S
arrivals in one input.

Heck et al. (2022) demonstrated that the performance of PhaseNet
depends on the input data window relative to the phase arrival time. To

FIGURE 5
Histograms showing the distribution of S arrivals predicted by (A, B) PhaseNet (Zhu and Beroza, 2019) and (C, D) Korean-fine-tuned picker (KFpicker)
from seismograms of earthquakes that occurred in South Korea during 2021. The number in parentheses indicates the number of the prediction. There
are a total of 2,879 ground-truth S arrivals, with 39 duplicated S arrivals in the predictions of PhaseNet and one in those of KFpicker.

FIGURE 6
Example waveforms of earthquakes that occurred in South Korea in 2021. (A–G) Prediction results of PhaseNet (Zhu and Beroza, 2019) and (H) the
results of Korean-fine-tuned phase picker (KFpicker). Solid and dashed vertical lines represent ground-truth and predicted arrivals by deep-learning
pickers, respectively. Blue and red lines indicate P and S arrivals, respectively. Numbers in parentheses represent the signal-to-noise ratio and epicentral
distance. All waveforms are normalized by their standard deviation within a 0–30 s input window. Gray seismograms after 30 s are provided for
clarification.
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solve this dependence, they continuouslymoved the position of the input
window at 10-s intervals and merged the overlapping prediction results
using the maximum of PhaseNet outputs. Hence, Figures 3–6 would
potentially vary depending on the positions of the input window within
the dataset.

To check for variations in the performance of DL pickers owing to
the position changes in the input waveform window, we realigned the
event dataset with respect to the positions of P arrivals, moving from
1 to 29 s in the input window, whereas the dataset used in Figures 3–6
was aligned with the origin time of the event. Figure 7 shows the
prediction results related to the position shifts of P arrivals in the input
data. As reported by Heck et al. (2022), the performance of PhaseNet
varied with position changes of P arrivals in the input window.
However, KFpicker exhibited excellent performance and was
consistent for P arrivals, regardless of variations in P arrival
positions in the input window. Furthermore, the precision of S
arrivals predicted by KFpicker was consistent and high (>0.98);
however, the recall exhibited large variations. Notably, the recall of
S arrivals of both DL pickers was lower when P arrivals were
positioned within the first half of the input waveform compared to
when they were positioned in the second half. The recall started to
increase rapidly when P arrivals were located at 13 s in the input
window, and remained constant after P arrivals reached 17 s. This is
because both pickers failed to detect S arrivals recorded at epicentral
distances greater than 100 km (see Figure 3). When only waveforms
with less than 100 km epicentral distance were considered, aligning P
arrivals at the 1 s position of the input window increased the recall of S
arrivals of KFpicker to 0.95. Furthermore, regardless of the variations
in the positions of P arrivals, the recall of S arrivals was generally
consistent. The sudden changes observed from 25 s onwards are
attributed to the small amount of data.

In real-time earthquake monitoring, seismic phases can occur
anywhere in the input seismogram. The phase association procedure
typically uses P arrivals, followed by the event location procedure,
which combines S arrivals to determine the hypocenter of an event
(Dietz, 2002; Olivieri and Clinton, 2012; Sheen and Friberg, 2021).
Therefore, the robustness of KFpicker against variations in the input
window highlights its effectiveness for future applications in real-
time seismic monitoring, especially in situations where repeated
arrival predictions are not possible.

Before applying KFpicker to the 2016 Gyeongju earthquake
sequence, we validated its performance by assessing the changes in
the overlapping interval of the input window and differences in the
mergingmethod to determine the optimal conditions.WhileHeck et al.
(2022) merged the overlapping prediction results using the maximum
of PhaseNet outputs, this study introduced merging using the median
of the prediction outputs. Figure 8 shows the number of TPs against the
number of FPs for 1-day-long continuous seismograms processed using
PhaseNet and KFpicker. Note that the total number of TPs obtained
from the maximum of probabilities of PhaseNet with a 1 s stride of
overlapping intervals is 1,347, while the number of FPs is 88,807, which
falls outside the range shown in Figure 8. As this study considered 30-s
input waveforms, 10 and 30 s of strides indicate that one-third of the
input window overlapped with adjacent windows and the input
waveforms did not overlap, respectively. In all cases, as the
detection threshold decreased, the number of TPs and FPs
increased. Therefore, it may be necessary to consider a bifurcation
threshold for event detection. Furthermore, when the input window
overlapped, there were more TPs than when it did not overlap.

Reducing the overlapping stride was very effective in merging the
overlapped prediction results using the maximum of prediction
outputs, but it did not lead to significant improvement when using

FIGURE 7
Variations in picking performances of deep-learning (DL) pickers corresponding to the position changes of P arrivals in the input window. The time
represents the position of P arrivals in the input window. Red and black symbols represent the performances of Korean-fine-tuned phase picker
(KFpicker) and PhaseNet (Zhu and Beroza, 2019), respectively.
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the median. When merging using the maximum of prediction outputs,
the number of FPs increased more than the number of TPs, whereas
merging using the median reduced the number of FPs and increased
the number of TPs. In addition, as the overlapping interval decreased
and the overlapping prediction results were merged using the
maximum value, the number of TPs increased when compared
under the same detection threshold. However, the number of FPs
increased more than the number of TPs. In contrast, when the median
was used for merging under the same detection threshold, the increase
in the number of TPs was not substantial, although the overlapping
interval decreased. In addition, a considerable decrease was observed in
the number of FPs. We also found that merging the results using the
median was more effective for decreasing FPs in the case of the P phase
than merging them with the maximum value.

Although the optimumdetection thresholds were different between
DL pickers, the closer the curve was to the upper-left corner in Figure 8,
where the number of FPs and FNs was zero, the higher the precision
and recall. Therefore, KFpicker performed better than PhaseNet
because it detected more true picks and fewer false picks.

Application to continuous data from an
earthquake sequence

We applied KFpicker to the first 2 weeks of continuous
seismograms obtained from the 2016 Gyeongju earthquake
sequence, which comprised the mainshock, a moderate earthquake
(Mw 5.6) that occurred in Gyeongju, South Korea, on 12 September

FIGURE 8
Performance comparison of deep-learning (DL) pickers based on the overlapping stride of the input window and the merging method of the
prediction results. The left figures represent the performances of PhaseNet (Zhu and Beroza, 2019), while the right figures represent the performances of
Korean-fine-tuned phase picker (KFpicker). (A–F) display the results for P arrivals, S arrivals, and all arrivals, respectively. The maximum number of true
positives is 489 for P arrivals and 865 for S arrivals, while the numbers of false positives is 49,382 for P arrivals and 39,425 for S arrivals, respectively.
The numbers near the symbols indicate the corresponding detection threshold values.
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2016, several foreshocks, and numerous aftershocks.Woo et al. (2019)
and Han et al. (2023) used seismic waveforms obtained from
35 seismic stations, comprising 8 permanent stations and
27 temporary stations that began operation within 2 h of the
largest foreshock (Mw 5.1), which occurred approximately 50 min
before the mainshock, whereas we only used waveforms from
13 permanent stations within an epicentral distance of 50 km
(Figure 9A).

For phase picking using seismograms recorded between
September 12 and 25, 2016, we overlapped the input window with
a 5 s stride for KFpicker and merged the prediction results with the
median. The optimumdetection threshold for KFpicker was 0.3 or 0.4
(see Figure 8). However, to enhance the catalog by detecting more
TPs, we used a low threshold of 0.2, and FPs were eliminated during
the phase-association process (García et al., 2022). In this study, the
Gaussian Mixture Model Association (Zhu et al., 2022) was used in
this study, and the association parameters were at least six phases (a
minimum of three P and three S phases). The associated events were
located using Hypoinverse (Klein, 2002) with the local 1-D velocity
model of Kim et al. (2011). During the period of interest,
4,035 earthquakes were detected using seismograms obtained from
13 permanent regional seismic stations. After careful inspection, we
found that 30 blasts and 331 false events were included in the initial
catalog. Blast events were screened through visual inspection of
waveforms and epicenter locations, and most false events were
found to be related to noise-induced picks. For comparison with
the results of Woo et al. (2019) and Han et al. (2023), events located
within 35.715°–35.815°N and 129.142°–129.242°E were chosen,
resulting in 3,531 true events and 126 false events (Figure 9B).

Woo et al. (2019) picked P- and S-wave phase arrival times using
the short-term average to long-term average ratio method of
Withers et al. (1998) and manually inspected them to
discriminate overlapping events and remove false detections.
They reported 1,723 earthquakes within the same area in the first

2 weeks. Han et al. (2023) used the same dataset used by Woo et al.
(2019) and picked seismic phases using EQTransformer (Mousavi
et al., 2020) by overlapping 60 s of the input waveforms by 30%. The
thresholds for P-waves, S-waves, and event detection were 0.3, 0.1,
and 0.1, respectively. Before association, they screened the phases
detected by EQTransformer based on waveform similarity with the
phases picked byWoo et al. (2019) and selected phases whose cross-
correlation coefficients were greater than 0.8. Then, they associated
phases based on S-wave travel times. They reported
1,843 earthquakes within the same region and time period used
in this study.

Earthquakes with an origin time difference of less than 1.0 s were
considered the same among the three catalogs. Out of the
1,541 common earthquakes found in all three catalogs, our catalog
had a hypocentral difference of 1.02 ± 0.75 km when compared to that
ofWoo et al. (2019) and a difference of 0.87 ± 0.65 kmwhen compared
to that of Han et al. (2023). We missed 56 events present in the catalog
of Woo et al. (2019) and 91 events present in the catalog of Han et al.
(2023). However, we identified 1,864 and 1,778 more earthquakes than
Woo et al. (2019) and Han et al. (2023), respectively. Although only
seismograms obtained from permanent regional stations were used in
this study, we identified nearly twice the number of earthquakes
compared to the previous studies (Figures 9C, D). This suggests
that KFpicker and our customization can substantially enhance the
catalog and lower the magnitude of completeness.

Discussion

Future applications to real-time earthquake
monitoring

We have demonstrated that KFpicker can consistently and
accurately predict P and S arrivals, irrespective of variations in

FIGURE 9
Results of earthquake detection using the 2016 Gyeongju earthquake sequence. (A) Distribution of seismic stations used in this study. Blue triangles
represent permanent seismic stations used, while white triangles represent temporary stations not used in this study. Themainshock is indicated by a red
star, and its focal mechanism was obtained from Woo et al. (2019). Known faults and lineaments are shown as solid lines. (B) Epicenters of the
2016 Gyeongju earthquake sequence, which were determined in this study. (C) Venn diagram of the number of events in the catalogs of this study,
Woo et al. (2019), and Han et al. (2023). (D) Frequency–magnitude distributions of the 2016 Gyeongju earthquake sequence obtained from this study,
Woo et al. (2019), and Han et al. (2023), represented by circles, crosses, and plus signs, respectively.
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the positions of seismic phases in the input waveform. The F1 score
combines the precision and recall of a DL model into a single metric,
defined as the harmonic mean. This is primarily used to compare the
performance of two models and provides a balanced assessment.
KFpicker achieved an F1 score of 0.99 ± 0.0004 for P arrivals
corresponding to the position changes of P arrivals given in
Figure 7, which is better than the PhaseNet score of 0.96 ±
0.0265. However, for S arrivals, PhaseNet showed a marginally
better performance than KFpicker, with an F1 score of 0.93 ±
0.0468 compared to 0.92 ± 0.0511 for KFpicker.

A phase detection algorithm in the conventional earthquake
monitoring system continuously analyzes each sample of
seismograms to identify the onset of any seismic phase. In
contrast, DL pickers determine the arrivals from sliced data of a
given length, often with some overlap, which can result in a delay of
several seconds in real-time seismic processing. Therefore, KFpicker
can be considered effective for real-time applications because it is
more robust against changes in the input waveform’s position and
can consistently provide results, even without the need for overlap,
which can introduce delays.

To compare the performance of DL pickers when applied to
continuous seismograms of an earthquake sequence, we compared
the number of associated phases and detected events for the
2016 Gyeongju earthquake sequence under different overlapping
strides and thresholds (Table 1). Note that events located outside the
region of interest, most of which were false events caused by noise,
were not considered. The overlapped prediction results were merged
using the median value, and a stride of 30 s indicated that the input
waveform did not overlap.

As shown in Figure 8, the number of associated phases increased
as the probability threshold for phase detection was lowered, leading
to an increase in both true and false events. By overlapping the input
waveforms, the number of associated phases decreased, but the total
number of events increased. For a threshold of 0.2, the number of
true events increased by 6% for both KFpikcer and PhaseNet, while
the number of false events decreased by 27% for KFpicker and 20%
for PhaseNet when merging with the median value of overlapping
prediction results, as observed with a threshold of 0.3. These are in
good agreement with the results presented in Figure 8, where true
positives increased slightly, and false positives decreased

significantly upon merging with the median value. Therefore, it is
expected that by increasing the threshold further, the number of true
events will remain relatively unchanged while minimizing the
number of false events.

The precision of event detection, determined by comparing true
events to all detected events, was 0.96 for KFpicker with a threshold
of 0.3, even without overlapping, while the best precision for
PhaseNet was 0.94, even when overlapping with a 5 s stride.
Considering the real-time application of PhaseNet by Retailleau
et al. (2022), where the input waveform overlapped by 50%, it is
expected that the real-time application of KFpicker is not only
possible but also more effective for real-time seismic hazard
assessment.

Based on our understanding of previous studies, the input
lengths for DL pickers are typically much longer when
considering the requirements of a real-time earthquake
monitoring system. For example, almost half of the seismic
stations in South Korea sent data packets every second from
stations to the monitoring system in 2017 (Sheen et al., 2023).
Nowadays, the number of stations sending data every second are
increasing. In contrast, most DL pickers, including KFpicker in this
study, require 30 or 60 s seismograms to predict the arrival time of
seismic phases (Zhu and Beroza, 2019; Mousavi et al., 2020; Liao
et al., 2021; Saad et al., 2023), while only two pickers, GPD of Ross
et al. (2018) and BasePhaseAE of Woollam et al. (2019), were
designed to use the input of 4 and 6 s waveforms, respectively.
Therefore, it is essential to develop a DL picker with a shorter input
length to ensure efficiency in its application to a real-time system.

Future applications to real-time seismic
hazard assessment

Detecting more events through DL pickers would facilitate the
investigation of the detailed spatiotemporal evolution of earthquake
sequences and the mapping of subsurface geometry (Liu et al., 2020;
Wilding et al., 2022). These outcomes could serve as fundamental
inputs for forecasting aftershocks and predicting the likelihood of a
larger forthcoming event (Page et al., 2016; Gulia and Wiemer,
2019). Although our approach is anticipated to provide a better

TABLE 1 Comparison of detection results between Korean-fine-tuned phase picker (KFpicker) and PhaseNet (Zhu and Beroza, 2019) under different strides of
overlapping and different probability thresholds.

Stride Probability threshold Number of associated phases Number of detected events

Total P S Total True False

KFpicker 5 0.2 59,008 29,643 29,365 3,657 3,531 126

5 0.3 54,962 27,801 27,161 3,474 3,364 110

30 0.2 59,823 30,329 29,494 3,512 3,339 173

30 0.3 55,690 28,284 27,406 3,386 3,236 150

PhaseNet 5 0.2 64,155 30,535 33,620 3,666 3,332 334

5 0.3 59,514 28,267 31,247 3,488 3,273 215

30 0.2 65,632 31,304 34,328 3,565 3,147 418

30 0.3 60,079 28,544 31,535 3,427 3,092 335
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solution for understanding the seismogenic structure of the
2016 Gyeongju earthquake sequence compared to the work of
Woo et al. (2019), further investigation is beyond the scope of
our current study. Instead, we focused on analyzing the temporal
evolution of the aftershocks in the sequence.

We measured the magnitude of earthquakes using an empirical
relationship derived from 36 earthquakes greater than magnitude
2.5 in the Gyeongju sequence, as described in the Supplemental
Material for this article. In contrast, Woo et al. (2019) estimated
magnitudes relatively based on amplitude ratios with reference to
the whole set of aftershocks of the sequence, while Han et al. (2023)
utilized an empirical relationship established by Sheen et al. (2021).
These approaches may have resulted in inconsistencies in
earthquake magnitudes below 2.0, as observed when comparing
the magnitudes of the 1,541 common earthquakes (Figure 10).
Discrepancies in magnitude estimates for microearthquakes have
been reported and addressed using second-order polynomial
equations (Edwards and Rietbrock, 2009; Uchide and Imanishi,
2018). Therefore, before investigating temporal evolution, we scaled
our estimates and those of Han et al. (2023) to match themagnitudes
of Woo et al. (2019) using second-order polynomial equations. This
adjustment increased the R-squared coefficient from 0.91 to
1.00 and from 0.81 to 1.00, respectively.

Figure 11 depicts the statistical variations of each catalog over
time, including the magnitude of completeness (Mc) and the
Gutenberg–Richter b value (b-value), both measured using
ZMAP (Wiemer, 2001). The Mc and b-value were estimated for
every set of 500 events in chronological order, allowing for the
duplication of 400 events, following the approach of Woo et al.
(2019). To ensure comparability with Woo et al. (2019), we utilized
the adjusted magnitudes from this study and the study by Han et al.
(2023), as shown in Figure 10B.

Interestingly, the Mc in this study, which utilized seismograms
exclusively from permanent seismic stations, was consistently lower

FIGURE 10
Comparison of (A) the original and (B) scaled magnitudes of 1,374 common earthquakes in the catalogs of Woo et al. (2019), Han et al. (2023), and
this study. The magnitudes of Han et al. (2023) and this study were scaled using second-order polynomial equations.

FIGURE 11
Temporal variation of (A) the magnitude of completeness (Mc)
and (B) the Gutenberg–Richter b value (b-value). Vertical dashed lines
indicate the origin times of the mainshock (Mw 5.6) and aftershocks
greater thanmagnitude 3.0. The horizontal and vertical error bars
in (B) represent one standard deviation of the event origin times and b-
values, respectively.
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than those in the studies of Woo et al. (2019) and Han et al. (2023),
which used temporary stations operated near the epicenter. As
demonstrated by Woo et al. (2019), the Mc values in all catalogs
decreased during the initial few days, and this was attributed to the
additional deployment of temporary seismic stations. However, our
study also observed a similar decrease, suggesting that it may not be
solely attributed to the enhanced seismic monitoring facilitated by
the temporary network. This decrease could be related to
superimposed seismic signals from an active aftershock sequence
(Kagan, 2004; Hainzl, 2016; van der Elst, 2021), suggesting the
possibility of undetected events during the initial few hours, either
due to missing seismic phases or the failure to associate them.

We also found that the b-values of all catalogs temporarily
increased during the initial few days and then decreased, consistent
with the findings of Gulia et al. (2018). Due to the enhanced catalog
obtained in this study, an increase in the b-value can be detected
earlier compared to other studies, which is valuable for real-time
seismic hazard assessment, whether the largest earthquake has
already occurred or is yet to come (Gulia and Wiemer, 2019).

Conclusion

For seismic phase picking, we fine-tuned a deep neural network,
which was initially trained using more than 2.3 million publicly
available global waveforms, using a local dataset obtained from
South Korea, which accounted for approximately 1% of the global
dataset. KFpicker exhibited outstanding and highly consistent
performance, irrespective of variations in the input window
position, which would be effective for real-time seismic
monitoring. Additionally, using the median value of probabilities
as a threshold for phase detection, the number of FPs and TPs
considerably decreased and increased, respectively. The application
of KFpicker to the continuous seismograms of the 2016 Gyeongju
earthquake sequence yielded a detection of approximately twice as
many earthquakes compared to previous studies. These results
demonstrated that fine-tuning the last layer of a deep neural
network using a small amount of local data considerably
improves earthquake detection in the region of interest, and that
careful data augmentation enhances the robustness of DL pickers
against variations in the input window. This highlights the
effectiveness of DL pickers for future applications in real-time
seismic monitoring, especially in situations where repeated arrival
predictions are not feasible. Additionally, DL pickers are valuable for
evaluating instantaneous statistical parameters of seismicity and,
consequently, for assessing seismic hazard during an earthquake
sequence.
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