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The Xiaoqinling area is located in the eastern part of the Qinling Orogen and
experiences early and late Mesozoic gold mineralization controlled by structural
deformation. The relationship between the two stages of mineralization and the
orogenic process of the Qinling Orogen is unclear. We investigated the
deformation and alteration of E-W striking veins in the Xiaoqinling area. The
geometric features revealed that all the veins developed within the E–W-striking
Guanyintang brittle–ductile shear zone. The vein was subparallel to the shear
zone, dipped at 30°–60°, and had a wave-like appearance. The Guanyintang shear
zone underwent three deformation stages: sinistral shearing (D1), dextral thrusting
(D2), and sinistral normal faulting (D3). The development of ore-bearing quartz
veins was controlled by deformation during D2, and the auriferous pyrite and
minor chalcopyrite developed along the shear foliations. Re-Os dating of the
molybdenite revealed a well-constrained isochron age of 230.2 ± 2.6 Ma,
indicating the E-W striking shear zone developed in Late Triassic. This early
Mesozoic shearing deformation in Xiaoqinling represents the early Mesozoic
metallogenesis is correlated with the collisional orogeny of the Qinling orogen.
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1 Introduction

The Qinling orogen is a collision orogenic belt formed during the Mesozoic collision and
collage process between the South and North China blocks (Ratschbacher et al., 2003; Zhang
et al., 2004; Dong et al., 2011; Meng and Zhang, 2014; Dong et al., 2016; Dong and Santosh,
2016). Qinling Orogen experienced complex orogenic process in the Mesozoic, which can be
divided into collisional shortening in Early-Middle Triassic, intracontinental strike-slip in
Late Triassic-Jurassic and extensional depression in Cretaceous (Ratschbacher et al., 2003;
Zhang et al., 2004; Hu et al., 2006; Li et al., 2007; Dong et al., 2011, 2016; Dong and Santosh,
2016; Yan et al., 2018a; Yan et al., 2018b), and formed numerous early Mesozoic and late
Mesozoic granite bodies (Zhang et al., 2008; Mao et al., 2010; Hu et al., 2012; Zhao et al.,
2012; Li et al., 2019). During the intracontinental deformation process, a large number of
Mesozoic magmatic hydrothermal gold deposits were formed within the Qinling Orogen
(Dong et al., 2016; Xiong et al., 2019; Luo et al., 2020).
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The Xiaoqinling area is located in the northern of Qinling Orogen,
and is a part of the southern margin of the North China Block
(Ratschbacher et al., 2003; Zhang et al., 2004; Dong et al., 2011;
Dong et al., 2016; Dong and Santosh, 2016). Current research
suggests that the Xiaoqinling area experienced two stages of tectonic
and mineralization events that occurred during the Late Triassic
(233–206Ma) (Li et al., 2007; Li et al., 2011; Jian et al., 2015) and
Late Jurassic to Early Cretaceous (144–120Ma) (Li et al., 2002; Qiang
et al., 2013; Hao et al., 2020; Wen et al., 2020). The presence of the
Hongtuling gold-molybdenum deposit provides further evidence for
the coexistence of these two tectonic and mineralization events during
the Late Triassic and Early Cretaceous (Zhao et al., 2019). However, the
relationship between the two stages of mineralization in Xiaoqinling
and the orogenic process of the Qinling Orogen remains unclear.

The important ore-bearing shear zones discovered in the
Xiaoqinling area include the Guanyintang and Huanchiyu shear
zones (Jiang et al., 2009; Zhou et al., 2014). The Guanyintang shear
zone (GSZ), developed in the core of the Taihua anticline belt, is one of
the largest nearly E-W-striking shear zones in the Xiaoqinling area. This
shear zone undergoes multiple stages of deformation, such as
transpression and transtension, which control the occurrence of
orebodies within the shear zone (Feng, 2009; Wang X. C. et al.,
2012; Tan et al., 2013; Yan et al., 2013; Tan et al., 2014; Zhang
et al., 2015; Han et al., 2016; Wang et al., 2018). Previous research
has suggested that the structural deformation controlling the ore body
within the shear deformation zone is mainly left-lateral compressive
shear deformation (Feng, 2009; Tan et al., 2013), and has undergone
four stages of deformation: left-lateral thrusting, mainly thrusting, right-
lateral transtension, and mainly extension (Tan et al., 2013). Some
studies have also suggested that deformation during the mineralization
period is mainly transtension shear deformation (Wang X. C. et al.,
2012). Recent structural studies have shown that the formation of ore
veins in this shear zone is related to dextral shear deformation (Zhang
et al., 2016; Wang et al., 2018).

In this study, we conducted a detailed structural analysis of the E-W
striking gold-bearing quartz veins in the Guanyintang shear zone (Tan
et al., 2013; Liu et al., 2015). The relationships between shear deformation
and quartz veins revealed structural controls during the development of
the orebody, which can be used to constrain themineralization processes
associated with the E–W-striking veins in the Xiaoqinling area.

2 Geological setting

The Xiaoqinling area is located in the eastern part of the Qinling
Orogen, on the southern edge of the North China Block. It generally
extends in a nearly E-W direction (Figure 1A). The Taiyao Fault is
located between the north side and the Fenwei Graben, and the
Xiaohe Fault is located between the south side and the Zhuyang
Basin (Figure 1B; Dong et al., 2011; Fan et al., 2003; Feng, 2009; Li
et al., 2020; Zhang et al., 2000, Zhang et al., 2003).

2.1 Strata

The exposed strata in this area are mainly the late Archean-
Paleoproterozoic Taihua Group gneiss series, which are sequentially
composed of the Dayueping, Banshishan, Donggou, Sanguanmiao, and
Qincangkou Formations. The main rock compositions are plagioclase
hornblende, biotite plagioclase gneiss, quartzite, and marble (Jia et al.,
2016). The Mesoproterozoic Gaoshanhe Formation is exposed on the
southern side of the Xiaohe Fault (Figure 1).

2.2 Magmatic rocks

Xiaoqinling has developed magmatic rocks from the Proterozoic
to Mesozoic eras (Mao et al., 2010; Hu et al., 2012; Zhao et al., 2012;

FIGURE 1
(A) Regional tectonic location and (B) geological sketch map of the Xiaoqinling area (modified after Jiang et al., 2009; Zhou et al., 2014).
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Deng and Wang, 2016; Hao et al., 2020; Wen et al., 2020). The
Proterozoic magmatic rocks are mainly distributed on the southern
side of the tectonic belt and are mainly composed of Xiaohe granite.
The Cretaceous granitic magma activity mainly includes the
Huashan, Wenyu, and Niangniangshan plutons (Mao et al., 2005;
Hao et al., 2020; Wang et al., 2020). This series of magmatic rocks is
mainly distributed on the northern side of the tectonic belt, and the
lithology is mainly biotite monzogranite and biotite granite.

Simultaneously, a large number of mafic veins and granite
pegmatites have developed in the region, among which granitic
pegmatites are mainly produced in the form of veins and intrude
only along the boundary of the Wenyu pluton to the northeast
(Wang et al., 2008; Wang et al., 2023). These veins have a certain
spatial correlation with gold-bearing quartz veins, such as Q291 and
Q292 near Taiyao (Figure 1).

2.3 Structural characteristics

There are obvious folds in the Xiaoqinling gold deposit area,
with the Taihua anticline near the E-W direction as the main body
(Zhang et al., 2000; Mao et al., 2002; Fan et al., 2003; Feng, 2009; Liu
et al., 2015). This anticline is located on the south side of the Wenyu
Pluton and extends from west to east along gold deposits, such as
Tongguan, Haochayu, Wenyu, and Jindongcha (Figure 1B). A large
number of mineral stretching lineations have developed nearly
parallel to the anticline hinge, indicating the development of a
metamorphic core complex in the Early Cretaceous (Zhang et al.,
2000; Li et al., 2020).

Along the core of the Taihua anticline, a large shear zone with a
width of approximately 5 km has developed, namely the
Guanyintang shear zone (also known as the Dayueping shear
zone) (Jiang et al., 2009; Zhou et al., 2014). The shear zone is
generally in a nearly E-W direction and mainly develops within the
Dayueping Formation of the Taihua Group in the core of the Taihua
anticline. The strike was mainly 100°–110°, dipping southward with
a dip angle of approximately 50°. Thrust deformation characteristics
with strike-slip components within the shear zone are evident
(Wang X. C. et al., 2012; Tan et al., 2013). Large ore veins are
exposed along this shear zone, the most typical being veinss such as
Q8 and Q507, which form large-scale ore-bodies (Figure 1).

There are several medium-to high-temperature hydrothermal
quartz vein-hosted gold deposits in the Xiaoqinling area (Jiang,
2000; Fan et al., 2003; Feng, 2009; Wu et al., 2012; Xu et al., 2013).
The distribution and enrichment of veins are related to their tectonic
settings (Fang et al., 2000; Yan et al., 2013). The quartz veins in the
Xiaoqinling area can be divided into four groups (E–W, NW–SE,
NE–SW, and N–S) based on their dominant occurrences (Chen
et al., 2021). The thickest and longest veins typically strike E–W and
comprise the most important part of the Xiaoqinling area because of
their high ore grades (Wang T. et al., 2012; Deng and Wang, 2016).
These E–W-striking veins commonly occur in brittle–ductile shear
zones, which control the shape and distribution of auriferous veins
and the occurrence of ore minerals (Chao, 1989; Tan et al., 2013).

The Xiaohe and Taiyao faults were initially extensional
structures (Zhang and Zheng, 1999; Zhang et al., 2003) that were
reactivated as normal faults during the Cenozoic. The Xiaohe Fault
controls the distribution of nearby secondary faults, as well as the

development and scale of gold-bearing quartz veins. Hundreds of
gold deposits are located within the brittle–ductile shear zones that
strike dominantly E–W, NE–SW, NW–SE, and N–S (Chao, 1989;
Wang X. C. et al., 2012; Zhang et al., 2015), but mainly in the
Guanyintang shear zone, which strikes WNW–ESE, dips to the
south, and extends for approximately 18 km (Figure 1B).

2.4 Metallogenic characteristics

Previous studies have divided mineralization in the Xiaoqinling
area into four stages: pyrite–quartz veins (I), quartz–pyrite veins (II),
sulfur–polymetallic–quartz veins (III), and quartz–carbonate veins
(IV) (Figure 2; Jiang, 2000; Tan et al., 2013; Xu J. H. et al., 1998).
Regarding the mineralization and gold precipitation mechanisms of
quartz vein-type gold deposits, previous studies based on
geochemistry and fluid inclusions in mineral deposits have
shown that gold usually occurs in pyrite, chalcopyrite, galena,
and sphalerite (Figure 2H) in the form of inclusions or veins
formed in phases II and III; 90% of the gold occurs in pyrite and
chalcopyrite (Figure 2I; Liu et al., 2015; Tan et al., 2012).

For the mineralization time, based on Re-Os and Ar-Ar dating,
some researchers have suggested a late Mesozoic age of 143–118 Ma
(Chao, 1989; Li et al., 1998; Li et al., 2002; Wang et al., 2002; Li et al.,
2007; Chen et al., 2009), whereas others have suggested an early
Mesozoic age of 233–206 Ma (Li et al., 2007; Li et al., 2008, 2011; Lu
et al., 2008; Jiang et al., 2009; Chen, 2010; Jian et al., 2015; Deng and
Wang, 2016; Cao et al., 2017).

3 Shear deformation of the gold-
bearing quartz veins

We analyzed the structural deformation characteristics of five
ore veins at different structural segments within the shear zone,
including Q507, Q195, Q8, Q539, and Q886, from east to
west (Figure 1).

3.1 Vein Q507

Vein Q507 is located in the eastern segment of the GSZ, at the
border between Shaanxi Province and Henan Province at elevations
of 1,850–2,165 m, and is one of the most typical ore-bearing quartz
veins in the Xiaoqinling area (Figures 3A, B; Tan et al., 2013). It
occurs within the core of the Taihua anticlinorium (Figure 1). At the
surface, the vein strikes 275°–285° and dips 30°–65° to the south.
Exploration drilling results (maximum depth = 820 m) suggest that
the vein striked WNW–ESE (270°–290°), dipped 35°–55° to the
south, and had a length up to 1,450 m. The quartz veins were
0.5–3.5 m wide. Quartz occurred as veins and lenticular and wave-
like bodies controlled by the development of mylonite, schist, and
cataclasite within the shear zone.

Vein Q507 in the Chen’er gold deposit can be divided into
western and eastern ore-bodies (Figure 3B). Here, we present a
structural analysis of four levels at elevations of 1,348, 1,430, 1,510,
and 1,550 m in the east (Figure 3C) and five levels at elevations of
850, 943, 1,023, 1,103, and 1,420 m in the west (Figure 3D).
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Within the eastern ore body, the shear zone striked dominantly
275°–295° and dipped 40°–60° to the south, with a small section that
dipped more steeply (Figure 3C). Quartz veins are typically
subparallel to or shallower than the shear zone. In all five
analyzed levels across the western ore body, the shear zone and
vein had similar orientations, striking 295° and dipping 35°–45° to
the south (Figure 3D). The shear zone and vein were thin, and the
shear zone dipped steeply (Figures 3C, D).

The eastern ore-body exhibited a wave-like geometry and
showed significant changes in shape within each level. In contrast
to the western ore-body, the eastern ore-body exhibited variations in
strike. The shape and thickness of the vein varies at some levels,
whereas in others (e.g., 1,510 m), the thickness of the vein did not
vary despite changes in its shape and the development of branching
and compound structures (Figure 4A). Most ores are hosted in thick
milky-white quartz veins (Figure 4A) and display complex thin
features. The boundaries of the branching veins striked 260° and dip
40° to the south. The southern boundary of the quartz vein is a
fracture surface that strikes 285° and dips 65° to the south. In general,
vein thickness gradually increased from west to east. For example, at
a level of 1,430 m, the shear zone changed its orientation from
striking 205° and dipping 53° to striking 195° and dipping 65°, and its
thickness increased from 1 to 2 m to more than 3 m (Figure 4B). A

relatively thin NE-trending shear zone was observed at this level
(Figure 4B). These NE-trending quartz veins striked at 225° and a
lens of quartz occurred above the quartz vein, indicating sinistral slip
and suggesting that the NE-trending veins were controlled by
sinistral deformation during mineralization (Figure 4C).

At a depth of 1,510 m, mineralization occurs within lenticular
bodies that dip at a shallower angle than the quartz vein boundaries
(Figure 4D), which is consistent with thrusting during
metallogenesis. At the northern end of the quartz vein, a
mineralized late-stage shear zone cuts early quartz veins with a
strike of 285° and a dip of 60° to the south (Figure 4A). Drag folds
occurred in the hanging wall of the shear zone at 850 m (Figure 4E),
whereas mineralization within the quartz veins was observed close to
the boundaries between the quartz vein and the host rock. At
1,550 m, the felsic wall rocks were mylonitized, striked at 280°,
and dipped at 53° to the south. Microscopic observations revealed
rotated sigma grains and fractures within microcline grains
(Figure 4F), indicating thrust deformation. At 1,430 m, samples
were collected from the NE-striking quartz veins (strike = 250°, dip =
50° to the SE). The mica grains were strongly aligned and formed
C–C′ fabrics (Figure 4G). Pyrite filled the cracks, the orientation of
which indicates that the shear zone underwent thrust deformation.
These observations are consistent with thrust deformation.

FIGURE 2
Mineralization within E-W striking veins. (A)Non-mineralized quartz veins (Phase I) in Q886; (B) Pyrite-bearing quartz veins (Phase II) in Q8; (C)Non-
mineralized quartz veins (Phase I) and pyrite-bearing quartz veins (Phase II) in Q507; (D) Phase I and sulfur polymetallic quartz veins (Phase III) in Q507;
(E) Galena distributed along foliations in Q507; (F) Three-phases quartz veins in Q61; (G) Agglomerated pyrite and chalcopyrite mineralization in
Q507; (H) Chalcopyrite and galena fill in the cracks in the pyrite in Q507; (I) Natural gold in pyrite in Q507.

Frontiers in Earth Science frontiersin.org04

Chen et al. 10.3389/feart.2023.1304402

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1304402


This vein exhibited dextral deformation during the primary
phase of metallogenesis (F2) (Figure 4A). During this period, milky-
white foliated barren quartz veins developed, and ore-bearing
hydrothermal fluid was concentrated along the structural surface.
Mineralization within the quartz veins striked 275° at a level
1,430 m, consistent with dextral shear (Figure 4H). C–C′ fabrics,
which comprised early ore fissures or quartz veins (F1) and a shear
zone boundary, were observed at several levels, indicating dextral
shear (Figure 4I). At a level of 1,510 m, the host rock was a mylonitic
schist that striked 280° and dipped at 45° to the south. The mica
grains were elongated and showed a preferred orientation, forming
an S–C–C′ fabric consistent with dextral thrust
deformation (Figure 4J).

At 1,023 m, late calcite–quartz veins developed along the
tensional shear fractures, indicating that the hanging wall was
downthrown (F2) (Figure 4K). Furthermore, striations indicating
sinistral slip were observed at several locations within the shear zone
and along the boundary with the host rock, which reversed the E-W

compressive stress field (Figure 4L). Many late-stage en echelon
calcite–quartz veins were observed within the shear zone and host
rock, and sinistral motion (F2) was recorded (Figure 4M).

3.2 Vein Q195

The Q195 vein is situated in the center of the GSZ near the core
of the Taihua anticline (Figure 1). This vein predominantly trends in
the E-W direction and spans approximately 1,350 m. It is
characterized by the presence of three quartz vein lenses that
display disseminated and stockwork-style polymetallic
mineralization (Figure 5). The veins are located within a shear
zone that generally exhibits a gentle southward dip at 175° with a
low angle of 35°.

The shear deformation zone predominantly consisted of green
schists and quartz veins. These quartz veins intruded along the
foliation and maintained a consistent orientation with the foliation

FIGURE 3
(A) Geological sketch map of the Q507 gold deposit (modified after Tan et al., 2013); (B) Cross-section showing the vertical distribution of Q507 in
the Chen’er gold deposit (modified after Tan et al., 2012); (C) Sketch showing a vertical projection of the east ore body; (D) Sketch showing a vertical
projection of the west ore body.
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FIGURE 4
Deformation structures that formed during metallogenesis in Q507 at eastern segment of GSZ. (A) Planar features of the vein at 1,510 m; (B) Planar
features of the vein at 1,430 m; (C) Quartz vein striking 225° and quartz lenses in host rock recording sinistral deformation; (D) Sketch showing the
occurrence of quartz veins and lens of pyrite recording the thrust deformation; (E) Drag fold close to the shear zone boundary and mineralized belts
within quartz veins; (F) C–C′ fabric and rotated grains indicating thrust deformation (cross-polarized light); (G) C–C′ fabric indicating thrust motion
(plane-polarized light); (H) Oblique mineralization recording dextral slip within a quartz vein striking 275°; (I) Ore-bearing fissures and shear zone
boundary forming a C–C′ fabric; (J) S-C-C′ fabric indicating dextral deformation (cross-polarized light); (K) Primary foliation (S) and quartz lenses with
late-stage calcite–quartz veins recording normal-faulting displacement (F3); (L) Striation indicating sinistral normal faulting and the reversed stress field;
(M) Acute angle between the ore-bearing quartz veins and shear bands. Py-pyrite; Sq: boundary of the quartz vein; Sf: fault plane; Lf: striation or lineation;
Sg: gneissosity.
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in the adjacent rock (Figure 6A). Within this deformation zone, the
typical width of quartz veins was approximately 40 cm. However, in
certain regions, these quartz veins can be narrower, measuring only
5–10 cm or completely absent (Figure 6B). The structural
characteristics within the remaining vein bodies and deformation
zone revealed that the primary deformation in this region was
marked by right-lateral thrust shearing (Figures 6B–D). The
primary structural alignment within this zone extended eastward
and inclined at an approximate angle of 45°. This zone displayed the
features of oblique shear deformation. On the exposed surface at the
top of this deformation zone, the neighboring rock demonstrated
distinct shear deformation, characterized by mylonitic foliation, σ-
type porphyroblasts and structural cleavage, which signify a right-
lateral shear deformation pattern (Figure 6E).

Furthermore, there was a set of nearly parallel SE-trending vein
bodies at both the surface and vein levels. The overall orientation
within the deformation zone was approximately trending to 130°

with dip angle of 45° (Figures 5, 6F, G). The SE-trending
deformation zone cut across the S-dipping deformation zone of
Q195. There were evident vein offsets and tensional folds within the
S-dipping deformation zone (Figures 6H, I), indicating a distinct
left-lateral movement. The structural relationship between the two
sets of deformation zones indicates that the S-dipping deformation
zone formed earlier, whereas the SE-trending deformation zone
formed slightly later. The structural stress field inferred from the
fault slip inversion showed that the principal stress directions for
both zones were oriented in a NW-SE direction. However, there
were differences in the stress mechanisms (Figures 6D, F). In the
case of the near E-W striking deformation, shear strain
predominated, whereas in the NE-striking deformation, is
shortening strain prevailed.

3.3 Vein Q8

The Q8 vein is located in the middle section of the GSZ, on
the northern flank of the Taihua Anticline. It has a total surface
exposure length of approximately 4430 m and varies in thickness
from 0.15 to 4.15 m. The shear deformation zone, in which this
vein is situated, generally trends in the E-W direction, with an
overall trend of 182° and a dip angle of 50°. In some localized
areas, it may exhibit NNW and NNE trends, with moderate dip
angles ranging from 40° to 50° (Figure 7A). Within the
deformation zone, the development of lens-shaped quartz
veins is a prominent feature, with the thickest veins reaching
approximately 2 m, typically averaging approximately 0.5 m in
thickness. These quartz veins generally follow shear
foliation (Figure 7A).

Within this deformation zone, there is clear evidence of thrust
deformation resulting in distinct mineral stretching lineations.
These lineations plunged to 170°–195° with angle of 40°–50°,
indicating brittle-ductile shear deformation (Figures 7B, C).
Additionally, within the shear zone, there are bands of pyrite-
quartz veins that intersect the shear foliation at small angles
trending to 213° and dipping at 42° (Figure 7B). Furthermore,
interleaved lenses of calcite-quartz veins were arranged in en
echelon patterns (Figure 7D). The boundaries of the pyrite veins
exhibited banded filling (Figure 7E), which revealed right-lateral
shear deformation. In the host rock beneath the quartz vein, there is
evidence of drag folds and extensional fractures filled with quartz
veins. Within the quartz veins, aligned bands of pyrite were observed
(Figure 7F). These observations collectively indicate that the ore-
forming process of the Q8 vein was related to right-lateral thrust
deformation.

FIGURE 5
Geological sketch map and distribution characteristics of Q195 at the central segment of GSZ.
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3.4 Vein Q539

Q539 is located in the western segment of the shear zone and is
characterized by the development of thick quartz veins, with the
thickest veins reaching up to 5 m. The vein boundaries trends at 190°

with a dip angle of 40° (Figure 8A). The structural foliation of the
shear deformation zone where this vein is situated trends to 195° and
contains numerous structural lenses, indicating characteristics of
thrust deformation (Figure 8A). Along with structural foliation,
galena, chalcopyrite, pyrite, and other sulfides occur (Figure 8B).
Additionally, molybdenite can be observed along the NE-striking
structural foliation, trending to 130° with a dip angle of 30°. The NE-
striking and S-trending structural foliations formed the C-C′ fabric,
which indicated thrust deformation (Figures 8C, D). Molybdenite
appears as thin sheets along the structural foliations (Figure 8E),
which indicated that its formation is related to thrust deformation.

3.5 Vein Q886

The Q886 vein is situated in the westernmost extremity of the GSZ
and extends over a surface length of approximately 1 km. Within the
shear deformation zone where this vein was found, the thickness varies

from 0.20 to 3.10 m. This ore-bearing shear zone exhibited a continuous
distribution and was composed of structurally altered rocks, schists, and
quartz veins. Based on field observations conducted at the level of the
Q886 vein, it was found that the shear zone predominantly extended in
the E-W direction, trending to 180° with dip angle of 40°. Multiple lens-
shaped quartz vein bodies, arranged in a sub-parallel fashion, developed
within this shear zone (Figure 9A). Additionally, within the
deformation zone, there were quartz veins with thicknesses of up to
2 m, and their boundaries trending to 145° with dip angle of 40°.

In the host rocks, both above and below the E-W striking quartz
veins, drag folds were formed near the shear deformation zone
(Figures 9B, C). Beneath the shear zone, horizontally-oriented lens-
shaped quartz veins formed in an extensional environment
(Figure 9D), indicating thrust deformation characteristics. In the
plane view, macroscopic S-C structures were visible within the shear
zone (Figure 9E), and granitic pegmatite veins formed asymmetric
folds (Figure 9F), collectively indicating features of right-lateral
strike-slip deformation. Inside the tunnel at the 1,600 m level of
the Q886 vein, there was a banded lamprophyre vein that had been
offset by approximately 2 m within the shear zone (Figure 9G). At
the boundaries and within the quartz veins, pyrite and galena
developed along the shear foliations and fractures. Additionally,
pyrite was often filled along the C′ foliation, and pyrite

FIGURE 6
Deformation structures formed during metallogenesis in Q195 at central segment of GSZ. (A) Quartz veins intruded along the shear foliation; (B)
Drag fold formed by gneissosity indicating thrust deformation; (C) Quartz lenses in the shear zone; (D) Striation on the fault plane indicating thrust
deformation and reversed stress field; (E)Mylonitic foliation, σ-type porphyroblasts indicating right-lateral shearing; (F–H)NE striking vein offset Q195; (I)
Quartz vein left-lateral offset by NE-striking fault.
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mineralization was observed in the side branches, indicating an
association between the ore-forming process and right-lateral shear
deformation (Figure 9H).

Late-stage normal fault striation were visible on the main
boundary surface of this shear zone. The fault plane was trending
to 170° with a dip angle of 56°, while the striation plunged to 143°

at 45° (Figure 9I), indicating characteristics of left-lateral normal
faulting. Additionally, within the shear zone, the en echelon
arrays of calcite-quartz veins trended to 100° with a low angle
of 10° (Figure 9J), suggesting left-lateral movement.

In summary, the shear deformation zone where the Q886 vein is
situated has experienced at least two superimposed phases of

FIGURE 7
Deformation structures that formed during metallogenesis in Q8 at central segment of GSZ. (A) Occurrence of the quartz vein in shear zone; (B)
Stretching lineation and occurrence of pyrite-quartz veins; (C) Stretching lineation on the shear foliation; (D) Lenses of calcite-quartz veins arranged in en
echelon patterns; (E) Pyrite veins filled in the tensile fracture; (F) Sketch showing the occurrence of quartz veins and lens of pyrite recording the thrust
deformation.

FIGURE 8
Deformation structures that formed during metallogenesis in Q539 at western segment of GSZ. (A)Occurrence of the quartz vein in shear zone; (B)
Galena, chalcopyrite, pyrite, and other sulfides developed along the foliation; (C,D) Molybdenite developed along the NNE-trending foliation; (E)
Occurrence of the molybdenite for dating.
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deformation and mineralization (Figure 9K). An early phase of
right-lateral thrust deformation (Phase II) represents the structural
deformation of the ore-forming period. It is characterized by the
development of pyrite and chalcopyrite along the structural
foliation, resulting in banded pyrite mineralization. This phase
exhibited the characteristics of late-stage structural hydrothermal
filling and caused significant drag-fold deformation in the
surrounding rocks. A later phase of left-lateral normal faulting
(Phase III) occurred, which often reactivated along the earlier
structural surfaces but did not significantly alter the overall
characteristics of the vein. In addition, within the deformation
zone, the E-W striking quartz veins notably modified the thick
NNE-striking quartz vein lenses. These two sets of veins differed in

their occurrence and mineralization characteristics, suggesting the
possibility of an even earlier phase of left-lateral thrust
deformation (Phase I).

4 Molybdenite Re-Os dating

4.1 Samples

Seven molybdenite samples were collected from the NE-striking
and S-trending structural foliation in Q539 ore veins for the Re-Os
dating (Figure 8). All molybdenite samples used for dating were
subjected to indoor pollution-free crushing and sorting, and purified

FIGURE 9
Deformation structures that formed during metallogenesis in Q886 at western segment of GSZ. (A)Occurrence of the parallel quartz veins in shear
zone; (B) and (C)Drag folds forming by the gneissosity indicating thrust deformation; (D) Lens-shaped quartz veins indicating thrust deformation; (E) S-C
structures within the shear zone indicating dextral strike-slip; (F) Asymmetric folds formed by the granitic pegmatite veins; (G) Lamprophyre vein right-
lateral offset; (H) Pyrite filling along the C′ foliation; (I) Striation indicating sinistral normal faulting; (J) Calcite quartz veins indicating sinistral strike-
slip; (K) Sketch showing the superimposed phases of deformation and mineralization for Q886.
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under binocular lenses to obtain molybdenite samples with a purity
greater than 99%. Descriptions of the molybdenite samples are listed
in Table 1.

4.2 Methods

Re–Os isotope analyses were performed at the National
Research Center of Geoanalysis, Chinese Academy of Geological
Sciences, China. The detailed procedures are described in Du et al.
(2004) and Leng et al. (2013). Osmium was isolated and purified
from the acidic solution using a 50% HBr solution and
microdistillation. The Re from the Os-extracted solution was
separated via NaOH–acetone extraction. The compositions of the
Re and Os isotopes were measured using N-TIMS (Triton Plus). The
analytical reliability was tested by analyzing the certified reference
materials JCBY. The model Re-Os age was calculated using the
equation [t = ln(187Os/187Re + 1)/λ, using the decay constant (λ) of
1.666e−11 a−1 (Smoliar et al., 1996). Uncertainties were determined
using the uncertainty in weighing the sample and tracer solution,
calibration of the tracer solution, mass spectrometry measurements,
and blank values. The common Re 185Re/187Re=0.59738 was used as
the external standard for the mass fractionation correction of Re
isotopes, and 192Os/188Os=3.0827 was used as the internal standard
iteration method for the mass fractionation correction of Os. All
uncertainties are presented at the 2σ absolute level. Concordia
diagrams and weighted mean calculations were performed using
the Isoplot software (ver. 4.15) (Ludwig, 2011).

4.3 Results

The seven molybdenite samples contained 1999–21815 ppb Re
and 4.861–52.72 ppb 187Os (Table 1). Regression of 187Re and 187Os
contents defines a well-constrained isochron age of 230.2 ± 2.6 Ma,
with initial 187Os = −0.04 ± 0.18 ppb (MSWD =3.1; Figure 10A). The
calculated model ages ranged from 226.7 ± 3.1 Ma (2σ) to 232.2 ±
3.7 Ma (2σ), with a weighted average age of 229.4 ± 2.1 Ma (2σ,
MSWD =1.5, n = 7, Figure 10B). The isochron age was similar to the
weighted average model age (Figure 10), the measured initial 187Os
met the calculation conditions for the age of the Re-Os isotope
system model, and the data were reliable.

5 Discussion

According to previous studies, in the Neoarchean-Paleozoic, the
Xiaoqinling area experienced a continental crust growth event on
the periphery of the original continental core, accompanied by the
re-construction of ancient continental crust material (Hu et al.,
2013). Subsequently, the Xiaoqinling area was affected by multistage
tectonic evolution, forming a series of folds and shear zones. Since
the early Mesozoic period, the collision between the Yangtze and
North China blocks, the South Qinling Block, and the North China
Block have fully integrated the Qinling Mountains, creating a
geotectonic pattern of a multi-terrain collage (Meng and Zhang,
2014; Tan et al., 2014; Dong and Santosh, 2016). The late Mesozoic
period was an important stage of extensional tectonic evolution in
eastern China, producing a series of metamorphic core complexes
and associated gold deposits (Zhang et al., 2000; Li et al., 2012a; Li
et al., 2012b; Zhu et al., 2015; Deng andWang, 2016; He et al., 2016).
Among them, gold mineralization is closely related to the role of
hydrothermal fluids in the intracontinental orogeny at the end of the
Triassic period. The Xiaoqinling gold field is an important
metallogenic series.

5.1 Structural deformation in E-W striking
shear zone

The E–W-striking shear zone in the Xiaoqinling area dips
moderately toward the south and is controlled by thrust, sinistral,
and dextral deformations (Tan et al., 2014). The structural
characteristics of different segments of E-W striking GSZ in the
Xiaoqinling area have been studied. All the main bodies of gold-
bearing quartz veins in this shear zone trended to south at angle of
30°–50°. These quartz veins were typically arranged in en echelon
patterns in the form of lens-shaped bodies and intersected the shear
zones in parallel or at shallow angles (Figures 3–9).

Analysis of the structural deformation characteristics of
different structural segments of the GSZ shear zone indicated
that the E-W striking shear deformation zone had undergone a
superimposition of dextral thrust deformation (D2) and sinistral
normal faulting deformation (D3). Within the shear zone, the
development of features such as drag folds (Figures 4E, 6B, 9B),
S-C-C′ structures (Figures 4G, J, 9E), rotated porphyroclasts

TABLE1 Re-Os isotopic data for molybdenite from Q539 quartz vein.

Sample no. Weight (g) Re (ppb) Common Os (ppb) 187Re (ppb) 187Os (ppb) Model age (Ma)

Measured ±2σ Measured ±2σ Measured ±2σ Measured ±2σ Measured ±2σ

XQC08-1 0.02171 21,145 282 0.0532 0.0440 13,290 177 51.03 0.42 230.0 4.3

XQC08-2 0.01531 21,815 257 0.0198 0.0122 13,711 161 52.72 0.33 230.4 3.8

XQC08-3 0.02092 1999 22 0.4336 0.0236 1,256 14 4.861 0.035 231.8 3.8

XQC08-6 0.02079 2,215 27 0.0222 0.0017 1,392 17 5.272 0.042 226.9 4.0

XQC08-7 0.03993 4,603 33 0.0307 0.0154 2,893 20 10.95 0.07 226.7 3.1

XQC08-8 0.03010 19,221 192 0.0111 0.0003 12,081 121 46.18 0.31 229.0 3.6

XQC08-15 0.05023 8,475 94 0.5883 0.0146 5,327 59 20.64 0.12 232.2 3.7
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(Figures 4F, 6E), asymmetric folds (Figure 9F), and en echelon
arrangements of quartz veins (Figure 4D; Figure 5), suggest that
right-lateral thrust deformation was predominant in the E-W
striking shear zone. Additionally, the presence of mylonitic
foliation and mineral stretching lineation (Figures 7B, C)
indicated brittle-ductile shear deformation, primarily occurring
within a horizontal NW-SE compression stress field (Figure 6D).
The calcite-quartz veins (Figures 4M, 9J) and striation structures
(Figures 4L, 9I) developed within the shear zone and its surrounding
rocks indicate the superimposition of a later left-lateral normal
faulting deformation. Moreover, the structural stress field inferred
from the striations exhibited the characteristics of near-horizontal
E-W compression. The deformation processes described above are
generally consistent with the structural characteristics of the main
E-W striking shear zones and veins in the Xiaoqinling area (Wang X.
C. et al., 2012; Zhao et al., 2012; Tan et al., 2013; Yan et al., 2013).
Furthermore, they aligned with the NW-SE compressive stress
experienced by the main body of the E-W striking veins (Tan
et al., 2013; Yan et al., 2013).

Within the E-W striking veins and shear deformation zones,
there was also significant development of NE-striking veins (Figures
4, 5). The main orientation of these veins was trending to southeast
with a dip angle of approximately 50°, and they were notably
controlled by the left-lateral thrusting shear deformation zone
(Figures 4B, 6I). Structural analysis of the NE-striking veins and
their surrounding E-W striking veins revealed that the geometry,
kinematics, and dynamics of the two sets of veins or shear zones
were significantly different; the NE-striking shear zone or veins
offset the E-W striking veins (Figure 6), and the E-W striking veins
had traction folding characteristics near the NE-striking veins at the
intersection position, indicating that the regional left-lateral veins
and shear zones offset the E-W striking veins and shear zones (Chen
et al., 2021).

Additionally, the relationships between the early stage milky-
white quartz veins and the shear zone indicated that these veins may
have formed during sinistral thrust deformation (D1) (Figures 4A,
9K), which may represent early deformation in the GSZ (Wang X. C.
et al., 2012; Tan et al., 2013). Therefore, the E-W striking shear zone
was mainly controlled by dextral thrusting during the development

of ore-bearing veins, which were overprinted on the early sinistral
shear, followed by sinistral normal faulting associated with the
development of calcite–quartz veins. The NE–SW-trending belt
of sinistral deformation that cuts the E–W-trending shear zone
may represent the most recent deformation in the Xiaoqinling area
(Zhang et al., 2016; Chen et al., 2021).

5.2 Timing of the E-W striking shear zone

Owing to the uncertainty of the deformation characteristics
during the main mineralization period, the timing of the E-W
striking mineralization of the Xiaoqinling gold deposits has
been debated.

Recently, molybdenite Re–Os and Ar–Ar ages have been
obtained from alteration-related minerals in the Xiaoqinling area,
with results concentrated in the Late Triassic (233–206 Ma) mainly
in the Dahu gold deposit (Li et al., 2007; Li et al., 2008; Jiang et al.,
2009; Li et al., 2011; Jian et al., 2015) and Late Jurassic–Early
Cretaceous (143–120 Ma) (Li et al., 2002; Wang et al., 2002; Li
et al., 2007). The quartz-vein-hosted copper deposit in the Xiong’er
area yielded a Re–Os age of 230 ± 31 Ma, which is coeval with early
Mesozoic mineralization in the region (Deng and Wang, 2016; Cao
et al., 2017). The latest research on structural deformation has also
obtained the Late Triassic deformation age within the Xiaoqinling
(Li et al., 2020) and Late Triassic magmatic activity in the Huashan
pluton (Hu et al., 2012), indicating the development of Late Triassic
deformation in the Xiaoqinling area. However, an accurate
definition of the deformation time of the E-W striking shear
zone in the southern region is still lacking.

Seven molybdenite samples collected from the Q539 located at
western segment of GSZ defined a well-constrained isochron age of
230.2 ± 2.6 Ma (Figure 10). All of the molybdenite samples
developed along the NE-striking and S-trending structural
foliation, which were resulted by the thrust deformation
(Figure 8). In addition, the Sheet-like molybdenite parallel to the
structural planes, indicating that its formation is synchronous with
E-W striking dextral thrust deformation. This age was consistent
with the molybdenite Re-Os isotope ages from the Huanchiyu Shear

FIGURE 10
(A) Re-Os isochron and (B) weighted average model age diagrams for molybdenite from the Q539.
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zone, which is parallel to the GSZ and developed in the northern part
of the Xiaoqinling area (Li et al., 2007; Li et al., 2008; Jiang et al.,
2009; Li et al., 2011; Jian et al., 2015). Moreover, a large number of
E-W striking ore veins, F5, were also developed in the Huanchiyu
Shear zone (Figure 1), indicating that the formation of the E-W
striking shear zone and molybdenite was contemporaneous and that
the shear zone was formed in the Late Triassic.

Unlike the Late Triassic age, a large number of late Mesozoic Ar-
Ar ages were also obtained within the GSZ, such as 146–128 Ma in
Q507 (Xu Q. D. et al., 1998; Li et al., 2002; Li et al., 2012a),
144–119 Ma in Q8 (Li et al., 2012a), 130–129 Ma in Q875 (Wang
et al., 2002), and 135–124 Ma in S60 (Li et al., 2012b). These Ar–Ar
ages are accompanied by the activity of granitic magma in the
Xiaoqinling area (Mao et al., 2010; Hu et al., 2012; Zhao et al., 2012;

Yang et al., 2020), which may represent the superimposed
deformation of the E-W striking shear zone during late Mesozoic
tectono-thermal events (Jiang et al., 2009).

5.3 Mineralization mechanism of E-W
striking shear zone

From the Late Jurassic to Early Cretaceous, the Xiaoqinling area
experienced intense granitic magmatic activity (Mao et al., 2010; Hu
et al., 2012; Zhao et al., 2012; Yang et al., 2020), which was associated
with the large-scale mineralization during the late Mesozoic in the
North China Block (Zhu et al., 2015; Deng and Wang, 2016).
Consequently, it is believed that the main ore-forming period for

FIGURE 11
Structural model of mineralization mechanism for E-W striking shear zone in Xiaoqinling area. (A) Sinistral thrust deformation in Late Triassic; (B)
Dextral thrust deformation in Late Triassic; (C) Sinistral normal faulting deformation in Late Triassic; (D)NE-SW striking shear zone overprinted on the E-W
striking shear zone in Early Cretaceous.
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gold deposits in the Xiaoqinling region occurred during the late
Mesozoic. These deposits are classified as magmatic-hydrothermal
(or Jiaodong-type) deposits formed in an extensional environment
resulting from lithospheric thinning in the North China Block (Mao
et al., 2005; Li et al., 2012a; Li et al., 2012b; Deng andWang, 2016; He
et al., 2016).

However, fluid inclusions are composed of CO2-H2O-NaCl±CH4

system with medium to low salinity, and the mineralization
temperature is medium to high temperature (225°C–407°C),
indicating the existence of metamorphic hydrothermal from deep
sources (Chen et al., 1998; Fan et al., 2000; Qi et al., 2002; Jiang et al.,
2009; Zhao et al., 2011; Zhou et al., 2014; Zhou et al., 2015). The
magmatic-hydrothermal model cannot fully explain the widespread
presence of metamorphic-hydrothermal material composition in the
region. In contrast, the Late Triassic mineralization aligns well with
the collision and orogeny processes between the North China and
Yangtze blocks. Moreover, there is no evidence of large-scale early
Mesozoic magmatic activity over the entire Xiaoqinling area (Hu
et al., 2012). Consequently, it is believed that Late Triassic
mineralization in the region was associated with orogenic-type
gold deposits related to collisions between tectonic plates during
the early Mesozoic (Chen et al., 2004; Chen et al., 2005; Jiang et al.,
2009; Pirajno, 2009; Chen, 2010; Zhao et al., 2011; Zhou et al., 2015;
Cao et al., 2017).

The E–W-striking shear zone was overprinted by the late NE-
trending shear zone, and the structural characteristics of the
mineralized material suggest that three phases of deformation
and mineralization occurred in the E–W-striking shear zone in
the Xiaoqinling area, with a metallogenic period in the Late Triassic
followed by superimposed mineralization in the Early
Cretaceous (Figure 11).

During the Late Triassic, the Xiaoqinling area underwent E–W-
striking sinistral thrust deformation. The development of an E–W-
trending shear zone formed a confined space, where the upward
migration of ore-forming fluids along the fractures resulted in the
development of milky-white, unmineralized quartz veins
(Figure 11A). This early sinistral thrust deformation
characteristic is consistent with the sinistral transpression in the
Longmenshan (Yan et al., 2018a; Yan et al., 2018b), Mianlue (Li
et al., 2007; Chen et al., 2010), and Dongjiangkou (Li Y. et al., 2019)
areas, which is associated with the oblique subduction of the Yangtze
Block beneath the North China Block (Li et al., 2019). Subsequently,
accompanied by a change in the stress field, the shear zone
underwent dextral thrust deformation and formed numerous ore-
bearing quartz veins (Figure 11B). The sinistral normal faulting
deformation developed with the stress field transformation, which
was associated with the formation of calcite-quartz veins
(Figure 11C). The stress field transformation of the E–W-striking
shear zone in the Xiaoqinling area was related to the N–S collision
between the North China and Yangtze blocks during the early
Mesozoic (Ratschbacher et al., 2003; Zhang et al., 2004; Chen
et al., 2006; Chen et al., 2008; Dong et al., 2011; Meng and
Zhang, 2014; Dong et al., 2016), as well as the injection of
hydrothermal fluids. However, there is still a lack of evidence
regarding the timing of the three phases of deformation.

During Early Cretaceous, the Pacific plate subducted beneath the
Eurasian plate (Zhu et al., 2015; Deng andWang, 2016; Li S. et al., 2019).
The North China Block underwent a large-scale extension that gradually

influenced the Xiaoqinling area (Wang T. et al., 2012). The intrusion of
granite provides a heat source (Mao et al., 2010; Hu et al., 2012; Zhao
et al., 2012), increases the activity of ore-bearing fluid, and provides the
driving force for the reactivation, migration, and enrichment of Au and
Mo in this region (Li et al., 1998; Li et al., 2007). NE–SW-striking ore-
bearing quartz veins may also have been overprinted in the early E-W
striking shear zone during this period (Figure 11D).

6 Conclusion

(1) The E-W striking shear zone in Xiaoqinling was mainly
controlled by dextral thrusting during the development of
ore-bearing veins, which were overprinted on early sinistral
shearing, followed by sinistral normal faulting associated with
the development of calcite–quartz veins.

(2) Seven molybdenite samples defined an isochron age of 230.2 ±
2.6 Ma, representing that the E-W striking shear zone was
formed in the Late Triassic.

(3) The E–W-striking shear zone is overprinted by the NE-trending
shear zone, which represents the main orogenic metallogenic
period in the Late Triassic superimposed by magmatic
hydrothermal mineralization in the Early Cretaceous.
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