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Accurate and timely prediction of short-term rainfall is crucial for reducing the
damages caused by heavy rainfall events. Therefore, various precipitation
nowcasting models have been proposed. However, the performance of these
models still remains limited. In particular, the current operational precipitation
nowcasting method, which is based on radar echo tracking, such as the McGill
Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation (MAPLE), has
a critical drawback when predicting newly developed or decayed precipitation
fields. Recently proposed deep learning models, such as the U-Net convolutional
neural network outperform the models based on radar echo tracking. However,
these models are unsuitable for operational precipitation nowcasting due to their
blurry predictions over longer lead times. To address these blurry effects and
enhance the performance of U-Net-based rainfall prediction, we propose a
blended model that combines a partial differential equation (PDE) model
based on fluid dynamics with the U-Net model. The evaluation of the forecast
skill, based on both qualitative and quantitative methods for 0–3-h lead times,
demonstrates that the blended model provides less blurry and more accurate
rainfall predictions compared with the U-Net and partial differential equation
models. This indicates the potential to enhance the field of very short-term
rainfall prediction. Additionally, we also evaluated the monthly-averaged forecast
skills for different seasons, and confirmed the operational feasibility of the
blended model, which contributes to the performance enhancement of
operational nowcasting.
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1 Introduction

Accurate and timely predictions of short-term rainfall are crucial for minimizing
damages caused by heavy rainfall events. These damages include economic and human
losses owing to flooding, as well as disruptions in daily life, such as transportation, including
air travel. For example, during the summer of 2020, South Korea experienced destructive
floods, causing economic losses amounting to billions of dollars (KMA, 2021). To mitigate
such damages, precise short-term rainfall predictions within 0–6-h lead times are necessary
(e.g., Kox et al., 2015; Sivle et al., 2022).

Radar echo trackingmethods utilizing weather radar data, such as theMcGill Algorithm
for Precipitation nowcasting by Lagrangian Extrapolation (MAPLE), have been employed
in operational short-term rainfall prediction models (e.g., Germann and Zawadzki, 2002;
Germann and Zawadzki, 2004; Turner et al., 2004; Germann et al., 2006; Lee et al., 2010),
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and Python open-source libraries for precipitation nowcasting based
on such methods have been also proposed, such as rainymotion v1.0
(Ayzel et al., 2019) and PySTEPS (Pulkkinen et al., 2019).
Additionally, more sophisticated models have been proposed by
considering advection-diffusion equations and non-stationary
velocity fields, and such models outperform MAPLE, which
solely handles advection (Ryu et al., 2020). However, even with
the ability of these models to predict the movement of precipitation
patterns, limitations exist in their predictive performance owing to
the difficulty in considering dynamical processes, such as
precipitation generation and dissipation (e.g., Germann et al.,
2006). In particular, a significant portion of rainfall exhibits a
stationary front, thereby hindering rainfall prediction using the
radar echo tracking methods.

Numerical weather prediction (NWP) models can forecast the
dynamical processes, such as growth and decay of precipitation
fields, by incorporating atmospheric physics (e.g., Benjamin et al.,
2004; Shrestha et al., 2013; Sun et al., 2014; Wang et al., 2016; Yu
et al., 2017). Compared with the radar echo tracking methods, NWP
can model the dynamical processes, including the growth and decay
of precipitation fields. However, their spin-up time has limitations in
achieving accurate performance within lead times of a few hours
(e.g., Sun et al., 2014).

Recently, deep learning-based models have been studied to
predict the non-linear evolution of precipitation patterns (e.g.,
Shi et al., 2015; Shi et al., 2017; Agrawal et al., 2019; Lebedev
et al., 2019; Ayzel et al., 2020; Sønderby et al., 2020; Ravuri et al.,
2021; Kim and Hong, 2022a; Kim and Hong, 2022b; Choi and Kim,
2022; Ko et al., 2022; Oh et al., 2023). These models are data-driven
and physics-free, as they can be trained using high-resolution radar
data that contain spatiotemporal information on instantaneous
rainfall. S-band radar has a spatiotemporal resolution of
approximately 10-min intervals and 1-km scale (Thorndabl et al.,
2017), enabling sufficiently high-resolution predictions within 0–6-
h lead times. In particular, models based on convolutional long
short-term memory (Conv-LSTM) and U-Net have previously been
proposed, wherein multiple past radar images are used as input data
to train the model and predict future timestep images (Shi et al.,
2015; 2017; Agrawal et al., 2019; Lebedev et al., 2019; Ayzel et al.,
2020; Sønderby et al., 2020; Kim and Hong, 2022a; Ko et al., 2022;
Oh et al., 2023). These models learn the complex evolution of rainfall
patterns over time, resulting in better predictive performance than
baseline models, such as NWP, radar echo tracking, and Eulerian
persistence. Such convolutional models, however, generate blurry
prediction images with increasing prediction time; thus, adopting
such models for operational precipitation nowcasting is unlikely. To
resolve the issue of blurry images, Generative Adversarial Network
(GAN)-based generative models have been proposed in previous
studies to obtain predictions without blurry effects (e.g., Ravuri et al.,
2021; Kim and Hong, 2022b; Choi and Kim, 2022). In particular,
Ravuri et al. (2021) proposed a novel idea to produce
spatiotemporally consistent prediction by employing spatial and
temporal discriminators, which discourage blurry and temporally
inconsistent predictions, respectively. Nevertheless, these predictive
performances are not sustained over long periods (i.e., the prediction
timescale is currently limited to around 0–2-h lead times) and
exhibit decreased accuracy in predicting heavy rainfall events
(e.g., Choi and Kim, 2022).

Studies have been conducted to improve the performance of
convolutional models, such as U-Net. Various types of loss functions
have been applied, leading to significant performance improvements
(e.g., Bakkay et al., 2022). For instance, the utilization of the logcosh
loss has positively impacted the predictive performance compared
with that of simple MSE loss (Ayzel et al., 2020 and the references
therein). In addition, some of recent studies have also employed the
loss functions based on Critical Success Index (CSI), which is used to
measure the agreement between predicted and observed
precipitation (Chen et al., 2020; Ko et al., 2022). As
demonstrated by Ko et al. (2022), the application of CSI-based
loss is a substantial factor aiding in the development of a model that
can outperform conventional convolutional models and generative
models in terms of the rainfall forecasting accuracy. Along with the
loss function, Ko et al. (2022) examined the dependence on the
training method by employing pre-training and fine-tuning steps.
According to their findings, the training method has a significant
impact on improving the prediction accuracy. Furthermore, in
recent studies, both radar and satellite data or surface
observations have been used as training data for U-Net models.
The incorporation of multiple observational data has shown
promising results in improving model performance (e.g., Lebedev
et al., 2019; Miao et al., 2020; Choi et al., 2021). These improvements
suggest that if the blurry effects of U-Net models can be addressed,
U-Net-based precipitation prediction models can be competitive.

In this study, we propose an approach to resolve the blurry
predictions produced by U-Net-based model. Assuming that the
evolution of precipitation patterns is primarily driven by certain
processes, such as advection and temporal variations in rainfall
intensity, U-Net-based models suffer from difficulties in tracking the
advection of precipitation owing to blurry effects, whereas models
based on the advection-diffusion equation struggle to predict the
complex dynamical processes, such as the growth and/or decay of
precipitation. To overcome these limitations, we first employed a
model that utilizes detailed solutions of partial differential equations
(PDEs) associated with fluid dynamics to capture the motion of
precipitation fields. We then developed the model by combining the
PDE-based and U-Net-based predictions, resulting in less blurry and
more precise forecasts. The performance of the constructed blended
model was quantitatively and qualitatively evaluated using
precipitation cases on the Korean Peninsula. In particular,
previous studies regarding the development of deep learning
models for precipitation nowcasting have focused on constructing
and evaluating deep learning models at the research level. However,
in this study, we aim to propose practical approaches that maintain
the prediction tendencies of PDE-based models already used in
short-term operational forecasting, such as MAPLE, and enhance
their performance by incorporating deep learning models into the
current approaches of operational nowcasting. To explore the
potential of this blended model for operational nowcasting, we
also compared them with recently proposed deep learning-based
models through baseline models, such as Eulerian persistence
and U-Net.

The paper is organized as follows. Section 2 describes the dataset
and model that were used in this study. Section 3 presents the
performance of the model combining U-Net architecture and
forecast based on PDEs. Section 4 provides a brief summary of
the study.
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2 Methods

2.1 Radar dataset

Korean Meteorological Administration (KMA) has provided
radar data based on Hybrid Surface Rainfall (HSR) method since
2018. The HSR method is characterized by the synthesis of
reflectivity at the hybrid surface that is unaffected by the ground
clutter, beam blockage, non-meteorological echoes, and bright band
(e.g., Kwon et al., 2015; Lyu et al., 2015; Lyu et al., 2017). The size of
data is 2305 × 2880 (or, 1152.5 km × 1440 km) and the spatial and
temporal resolutions of the HSR data are 0.5 km and 5 min,
respectively. From the radar reflectivity factor (Z), precipitation
(R) can be estimated through the Z-R relationship of KMA, R �
(Z/148)100/159.

For training the model described in Section 3, the HSR data from
2018, 2019, and 2021 were used and the prediction results were
validated using the HSR data from 2020. We then tested and
evaluated the performance of the model using the HSR data from
2022. The preprocessing step is summarized as follows: 1) 2 × 2
max-pooling to reduce the spatial resolution of the original data
from 0.5 km to 1km; 2) producing a cropped image with a final size
of 1152 × 1152; 3) applying the transformation, Rtransformed � ln
(Rraw + 0.01), to address the data imbalance in precipitation; 4)
Generating input data by stacking time-sequential images. When
stacking, three images were used with a temporal resolution
of 10 min.

The types of heavy rainfall events occurring in the Korean
Peninsula and their characteristics have been extensively
examined using self-organization map (SOM) and K-means
clustering (Jo et al., 2020; Park et al., 2021). In previous studies,
the classification of heavy rainfall events through the SOMmethod is
explained based on the diverse synoptic weather patterns of the rainy
season of Korea (i.e., typically from June to September), and a
substantial fraction of such heavy rainfall events do not occur
throughout the Korean Peninsula but rather in localized regions.

Figure 1 shows two representative examples of heavy rainfall events
typically occurring in South Korea. The first example shows a quasi-
stationary monsoon front that occurred in the central region of the
Korean Peninsula (Central case, hereafter). These types of rainfall
typically occur due to a clash between the air masses around the
Korean peninsula (e.g., Seo et al., 2015). The second example shows
the heavy rainfall in the southern coastal area of Korean peninsula
(Southern case, hereafter). Owing to the presence of a southwesterly
low-level jet, which contains a large amount of moisture, such
precipitation events are typically induced (e.g., Lee et al., 2008).

2.2 Structure of blended model

In this section, we present the idea of blended model, wherein
the forecast based on the fluid dynamics by solving the time-
dependent PDEs is combined with that based on U-Net
convolutional neural network. Figure 2 shows a structure of the
blended model and the details of each steps are described in
subsections 2.2.1–2.2.3.

2.2.1 Forecasts based on partial
differential equations

We adopted the forecast models based on PDEs (PDE model,
hereafter) proposed by Ryu et al. (2020). Under the assumption that
the motion field of precipitation follows a fluid equation, the model
provides nowcasting by solving the advection-diffusion equation
and Burgers’ equation in a time-dependent manner. The steps for
obtaining nowcasts are as follows: 1) calculating the initial motion
field, and 2) solving time-dependent PDEs to obtain nowcasts.

The initial motion field V(x) � (u, v) in space x � (x, y) at time
t0 is primarily calculated by the optical flow algorithm. In the optical
flow method, the motion field is extracted from two adjacent images
in the time domain. Under the assumption that the pixel intensities
of an object remain constant, the rainfall intensity R(x + Δx, y +
Δy, t + Δt) can be expressed using a Taylor series:

FIGURE 1
The rate of rain (mmh−1) of two precipitation events ((A): 0100 UTC 8 August 2022; (B): 0200 UTC 17 August 2022) in the Korean Peninsula.
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R x + Δx, y + Δy, t + Δt( ) − R x, y, t( ) ≈ ∂R
∂x

( )Δx + ∂R
∂y

( )Δy
+ ∂R

∂t
( )Δt, (1)

when ignoring high-order terms. Dividing the above equation by Δt,
we obtain

R x + Δx, y + Δy, t + Δt( ) − R x, y, t( )
Δt

≈
∂R
∂x

( )u + ∂R
∂y

( )v
+ ∂R

∂t
( ) ≈ 0, (2)

where u and v represent the basic elements of the vector field. As two
unknown variables (u, v) cannot be solved using only one equation,
relevant regularization force is required to solve the equation. The
total variation-L1 algorithm (TV-L1; Wedel et al., 2009) is used to
determine the optical flow by minimizing a regularization force, J,
defined as follows:

J ≡ ∫ λ R0 x( ) − R1 x + V x( )( )| | + ∇V| |{ }dx, (3)

where R0 and R1 are the rainfall intensities of two different timesteps.
The first term is the optical flow constraint, which assumes brightness
constancy during motion, and the second term represents the
smoothness of displacement fields. TV-L1 is available from the
Python public library OpenCV (https://opencv.org).

The motion field obtained by Eqs 1−3 is then updated through
the Burgers’ equation, which is expressed as follows,

∂u
∂t

� −u ∂u
∂x

− v
∂u
∂y

+ μ
∂2u
∂x2

+ ∂2u
∂y2

( ), (4)

∂v
∂t

� −u ∂v
∂x

− v
∂u
∂y

+ μ
∂2v
∂x2

+ ∂2v
∂y2

( ), (5)

where μ is the kinematic viscosity. The fluid system with a larger
viscosity has a smoother motion field. Using the updated motion

field, nowcasting is obtained by solving the advection-
diffusion equation,

∂R
∂t

� −u ∂R
∂x

− v
∂R
∂y

+ ]
∂2R
∂x2

+ ∂2R
∂y2

( ), (6)

where the first term is responsible for advection and the second term
is used to describe the diffusion effect with a diffusion coefficient ].
Notably, μ and ] are variables varying on the spatial and temporal
domains, and were assumed as constants. The values μ � 0.2 and
] � 0.05 were used, which were empirically determined by Ryu et al.
(2020). Additionally, to numerically calculate the derivative, we used
the centered difference formula (Wendroff, 1968), which is
expressed as follows:

∂R
∂x

≈
R x + Δx( ) − R x − Δx( )

2Δx
, (7)

∂2R
∂x2

≈
R x + Δx( ) − 2R x( ) + R x − Δx( )

Δx( )2 . (8)

The Eq. 7 and Eq. 8 were used for solving the partial differential
Eqs 4−6.

2.2.2 Forecasts based on the U-Net convolutional
neural network

A deep-learning model called RainNet v1.0 was recently proposed
by Ayzel et al. (2020) for precipitation nowcasting, wherein the U-Net
architecture is adopted, as introduced by Ronneberger et al. (2015).
RainNet v1.0 contains four downsampling and four upsampling steps,
as shown in Figure 3. During the downsampling steps, the resolution of
the input data is reduced by merging every four adjacent pixels,
whereras the number of latent features per pixel, representing the
pixel’s vector dimension, is doubled. Conversely, in the upsampling
steps, the resolution of the input data is doubled, whereas the number of
latent features per pixel is halved. To ensure coherence between the
downsampling and upsampling steps, skip connections are employed,

FIGURE 2
A schematic figure of the blended model by combining the PDE and U-Net models. The top and middle panels show the PDE and U-Net models,
respectively. Notably, all models produce their prediction fields using a recursive approach, utilizing the previous prediction fields.

Frontiers in Earth Science frontiersin.org04

Ha and Park 10.3389/feart.2023.1301523

https://opencv.org/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1301523


enabling the intermediate output of each downsampling step (reflecting
the vector representation of each pixel) that contributes to the
determination of the output of the corresponding upsampling
step. The convolutional layers with up to 1,024 filters, kernel sizes of
1 × 1 and 3 × 3, and rectified linear unit (ReLU) activation functions
were used. Additionally, the dropout layers with the dropout rate =
0.5 were implemented to prevent overfitting. Note that the model
parameters were tuned by testing within the following parameter
ranges: 1) the number of downsampling and upsampling steps: 3–5;
2) the size of the kernel: 3 × 3, 5 × 5, and 7 × 7; 3)Dropout rates: 0–0.5.
For a more comprehensive understanding of the architecture, refer to
Ayzel et al. (2020).

By employing RainNet v1.0, we obtained the nowcasting
outputs, as follows:

~Rt+Δt � p Rt+Δt|Rt, Rt−Δt, Rt−2Δt, Rt−3Δt( ), (9)
where R and ~R denote the radar ground truth and prediction,
respectively. As a loss function, we adopted the logcosh loss
function, Llogcosh, as follows:

Llogcosh �
∑N

i�1 ln cosh Rgt,i − Rpred,i( )( )
N

, (10)

where Rgt,i, Rpred,i, and N denote the precipitation fields of ground
truth, prediction, and the number of pixels, respectively. To predict
the precipitation at t + Δt through Eqs 9, 10, four latest images with
Δt interval were used as the input. Notably the spatial resolutions of

the input and output are identical, as we used a 1-km interval and Δt
of 10 min. We optimized the hyperparameters using 30 epochs with
ranges of batch sizes and learning rates, 8–32 and 10−6 − 10−4,
respectively. As a set of hyperparameters, we employed the Adam
optimizer, with a batch size of 8 and learning rate of 10−4.

2.2.3 Blending the PDE and U-Net models
By combining the forecast from the PDE model (Xt0+kΔt) and

that from the U-Net model (Yt0+kΔt), the final nowcasting at time
t0 + kΔt (k � 1, 2,/), ~Rt0+kΔt � Xt0+kΔt*Yt0+kΔt, can be generated. In
this study, the blended model is simply defined as
~Rt0+kΔt � Xt0+kΔt*Yt0+kΔt �













Xt0+kΔtYt0+kΔt

√
. The implication of the

characteristics of the blended model is provided below. The time
evolution of rainfall intensity, ∂~Rt0+kΔt/∂t, is expressed as follows:

∂~Rt0+kΔt
∂t

� 1
2

Yt0+kΔt
Xt0+kΔt

( ) 1
2 ∂Xt0+kΔt

∂t
+ 1
2

Xt0+kΔt
Yt0+kΔt

( ) 1
2 ∂Yt0+kΔt

∂t
. (11)

Here, we first assumed that the typical evolution of precipitation is
expressed as the advection of the precipitation field and variation of
intensity changes owing to the dynamic processes. Under such an
assumption, we examined three cases: 1) advection dominant regime:
Xt0+kΔt≫Yt0+kΔt; 2) dynamical processes dominant regime:
Xt0+kΔt≪Yt0+kΔt; and 3) intermediate regime: Xt0+kΔt ≈ Yt0+kΔt.

In case that the precipitation field obtained by the PDE model,
Xt0+kΔt, dominates over Yt0+kΔt, ∂~Rt0+kΔt/∂t expressed by the Eq. 11
can be approximately expressed as follows,

FIGURE 3
The structure of U-Net adopted in this study. Themodel comprises four downsamplings and four upsamplings. The pixel number of the input image
is 1152 × 1152with four channels (i.e., four different timesteps, t − 30, t − 20, t − 10, and t), and that of the output image is 1152 × 1152with one channel
(i.e., one timestep, t + 10).
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∂~Rt0+kΔt
∂t

≈
1
2

Xt0+kΔt
Yt0+kΔt

( ) 1
2 ∂Yt0+kΔt

∂t
. (12)

Equation 12 indicates the temporal features of U-Net forecasts,
and ∂Yt0+kΔt/∂t is simultaneously involved when the evolution of
precipitation is mainly governed by the evolution of Xt0+kΔt. In
particular, the growth and decay of precipitation fields can be
considered, that are hardly predicted through the PDE model.

When the rainfall intensity obtained by the U-Net model,
Yt0+kΔt, is more crucial, ∂~Rt0+kΔt/∂t can be simplified as

∂~Rt0+kΔt
∂t

≈
1
2

Yt0+kΔt
Xt0+kΔt

( ) 1
2 ∂Xt0+kΔt

∂t
. (13)

We interpret the Eq. 13 that time variation of Xt0+kΔt can be
considered when the U-Net model, Yt0+kΔt is a dominant forecaster.
The main advantage is that the advection features of Xt0+kΔt and
precipitation evolution occurring at the small scale could be
predicted, which are poorly predicted through the U-Net model.

When the contribution of the two models is comparable, the
precipitation field is evolved through both Xt0+kΔt and Yt0+kΔt,

∂~Rt0+kΔt
∂t

≈
1
2
∂Xt0+kΔt

∂t
+ 1
2
∂Yt0+kΔt

∂t
. (14)

The form of ∂~Rt0+kΔt/∂t shown in Eq. 14 demonstrates that the
precipitation field is evolved by the average evolution of two models.

Notably, during real precipitation evolution, three regimes
are simultaneously included. Thus, the blended model could
substantially enhance the performance of precipitation
nowcasting.

2.2.4 Reference model: Eulerian persistence
As a reference model, we employed Eulerian persistence.

Eulerian persistence model (Persistence, hereafter) ensures that
the most recent observation is frozen:

Rpred,t0+kΔt ≈ Rgt,t0, (15)
∂Rpred,t0+kΔt

∂t
≈ 0, (16)

where Rgt,t0 and Rpred,t0+kΔt are the observed and predicted
precipitation fields at times t0 and t0 + kΔt, respectively.
Although this model (Eqs 15, 16) is simple and does not
consider the advection or generation and dissipation of the
precipitation field, it is powerful for very short lead times. Thus,
it has been employed as a baseline model in the recent deep learning-
based studies for nowcasting (e.g., Lebedev et al., 2019; Ayzel et al.,
2020; Sønderby et al., 2020; Ko et al., 2022).

FIGURE 4
Nowcasting outputs of the Central case at 0100 UTC, 8 August 2022 at 0–3-h lead times.

Frontiers in Earth Science frontiersin.org06

Ha and Park 10.3389/feart.2023.1301523

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1301523


The purpose of using Persistence can be summarized as follows.
The comparison between the PDE model and Persistence enables
the evaluation of the accuracy of precipitation nowcasting,
considering advection in the precipitation field. By comparing
Persistence with the U-Net and the blended models, we can
observe the impact of the prediction of the change in
precipitation intensity on the accuracy of precipitation
nowcasting. Additionally, the comparison between this study and
recent studies of deep learning-based precipitation nowcasting can
be conducted using Persistence.

3 Results and discussion

This section describes the performance comparison between PDE,
U-Net, and blended models. In particular, we report the prediction
performance for heavy rainfall events with an accumulated rainfall of
≥ 30mmh−1 within 1 hour, as such events could lead to destructive
floods. The evaluation focused on heavy rainfall events during 2022.
Both qualitative and quantitative methods were employed to assess the
model performance in predicting the motion of precipitation fields and
changes in their intensities. Subsequently, we discuss the operational
potential of the blended model based on the monthly averaged
performance of the blended model.

Figures 4, 5 show the prediction results or precipitation in the
central and southern regions of the Korean Peninsula. As demonstrated
in previous studies using U-Net (e.g., Ayzel et al., 2020), the U-Net
model tends to exhibit significant blurry effects and slightly
underestimate the rainfall intensities. Such drawbacks of U-Net
predictions are particularly important in certain cases, such as in the
example shown in Figure 4, where the stationary rainfall front persists
strongly. Conversely, the PDE model overestimates both the spatial
extent and rainfall intensities as it fails to accurately simulate the
processes such as precipitation dissipation. In particular, PDE-based
predictions could provide inaccurate forecasts when encountering
precipitation cases with evolving rainfall that dissipates, as shown in
the example of Figure 5 (i.e., false alarm rate could increase). In
comparison, the blended model performs better than the U-Net and
PDE models in tracking the motion of precipitation patterns and
accurately predicting dynamical processes, including the dissipation
of precipitation and expansion of precipitation areas, in both the central
and southern regions.

We also assessed the robustness of the blendedmodel’s performance
by predicting heavy rainfall events with characteristics similar to those in
Figures 4, 5. The two right panels in Figure 6 demonstrate that the
blended model effectively predicts an elongated structure, including
convective and stratiform rains, in theCentral area. The two left panels in
Figure 6 show the performance in predicting the development of the

FIGURE 5
Nowcasting outputs of the Southern case at 0200 UTC, 17 August 2022 at 0–3-h lead times.
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precipitation field in the Southern coastal area. Notably, the blended
model accurately forecasts the injection of precipitation from the south-
western area, as illustrated in the case at 1200 UTC on 25 April 2022.

The blurry effects of the precipitation prediction field were
quantitatively measured using power spectral density (PSD)
calculations during the 0–3-h lead times. The radially averaged
PSD of rainfall intensity is computed as follows:

1
2
∑N
i�1
R2
i � ∫P k( )2πkdk, (17)

where k �







k2x + k2y

√
indicates the radial wavenumber, N is the

number of pixels and Ri represents rainfall intensity at
individual pixels.

Figure 7 illustrates the results of the PSD calculations using
Eq. 17 during the 0–3-h lead times. The PDE model can provide
predictions without the loss of spatial information as it considers
precipitation advection as a key factor in precipitation pattern
evolution. The slight underestimation of the PSD at scales of
10–100 km in the PDE model is attributed to its inability to
accurately predict the complex evolution processes observed in
real precipitation patterns. For example, the assumptions of
constant kinematic viscosity or diffusion coefficient may not
adequately represent the intricate details of the actual
environment. Additionally, although turbulent motions play a
crucial role in precipitation pattern evolution, the motion
tracked based on radar data in the two-dimensional space
cannot account for the vertical component, which is a

FIGURE 6
Nowcasting outputs of Central (0800UTC, 15 August 2022; 1200UTC, 3October 2022) and Southern (1530UTC, 17March 2022; 1200UTC, 25 April
2022) cases at 3-h lead time.

FIGURE 7
Power spectral density (PSD) averaged over 12 heavy rainfall events for 0–3-h lead times. Black, red, blue and green solid lines indicate ground truth,
blended, U-Net, and PDE models, respectively.
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limitation. The U-Net model exhibits the blurriest prediction
results among the models, whereas the blended model
demonstrates less blurriness compared with the U-Net model.
Moreover, the power spectrum evolution of the U-Net model
shows a decrease in power density at small scales over time,
whereas the power spectrum of the blended model maintains
consistent power density at small scales, regardless of time. This
indicates that the blended model can provide consistent forecasts
from the perspective of spatial resolution during 0–3-h lead times.

To investigate the correlation between the predicted (P) and
observed (O) values, the correlation coefficient, CC, was
estimated using the equation described in Germann and
Zawadzki (2002):

CC O, P( ) � ∑N
i�1OiPi





∑N

i�1O
2
i

√ 





∑N
i�1P

2
i

√ . (18)

Here,N is the number of pixels; and for calculating CC, rainfall
intensities and two motion components were considered
(i.e., CC(Rgt, Rpred), CC(ugt, upred), and CC(vgt, vpred) were
calculated). The closer this coefficient is to 1, the higher is the
correlation between the predicted and ground truth values, when
this value is close to 0, there is almost no correlation.

The evolution of the correlation coefficients of rainfall
intensities, CC(Rgt, Rpred), obtained by Eq. 18, at 0–3-h lead
times is shown in Figure 8A. Up to a 1.5-h lead time, U-Net
exhibits the highest correlation; however subsequently, the
correlation coefficient sharply decreases. This decline indicates
that the U-Net model produces overly blurry predictions, resulting
in poor correlation with the distribution of ground truth values.
Notably, CC(Rgt, Rpred) of the U-Net model measured at a 3-h lead
time is almost comparable with that of Persistence. Conversely, the
blended model shows decent performance at 0–3-h lead times,
demonstrating the best performance after a 1.5-h lead time. This is
attributed to the preservation of spatial resolution and influence of
the PDE model, which accounts for the movement of precipitation
patterns. Additionally, the blended model captures complex
variations in precipitation intensity owing to the U-Net model,
leading to a better correlation than the PDE model.

The correlation coefficients of two motion components,
CC(ugt, upred), and CC(vgt, vpred), are displayed in Figures 8B, C.
We suggest that compared with those of the U-Net model, the motion

fields obtained by the blended model exhibit a better correlation with
those obtained by the ground truth. As evident from the PSD analysis
shown in Figure 7, this is because the blended model produces less
blurry predictions compared with the U-Net model.

To evaluate the accuracy of precipitation prediction,
performance was evaluated by measuring critical success index
(CSI), probability of detection (POD), and false alarm ratio
(FAR). These metrics are defined based on the values of hits (H),
misses (M), and false alarms (F) as follows:

CSI � H

H +M + F
, (19)

POD � H

H +M
, (20)

FAR � F

H + F
. (21)

The CSI is used to evaluate the accuracy of precipitation
prediction (Eq. 19). POD represents the ratio of correctly
predicted events among the actual occurrences of
precipitation (Eq. 20). A low POD value indicates a higher
number of missed events. Higher values (closer to 1) for both
CSI and POD indicate more accurate predictions. FAR is used to
measure the ratio of incorrectly predicted events out of the total
predicted events (Eq. 21). A higher FAR value indicates a larger
number of false predictions, often associated with
overestimating precipitation areas. A lower FAR value, closer
to 0, indicates better predictions.

We evaluated the performance of precipitation events with
intensities of 1mmh−1 or more, 5mmh−1 or more, and 10mmh−1

or more. Figure 9 shows the performance evaluation at 0–3-h lead
times. In terms of the CSI, the PDEmodel generally underperforms
compared with the other models. This is because it lacks the ability
to predict the dynamic processes involved in precipitation
evolution. Consistently, the POD values of the PDE model are
lower compared with those of the other models (i.e., the number of
missed events is higher than those of other models), and larger
FAR values indicate a tendency to overestimate rainfall intensities
and their areas. The blended model outperforms the other models
up to a 3-h lead time, and this improvement is particularly
significant when predicting moderate rainfall events
( ≥ 1mmh−1). The performance difference between the U-Net
and blended models arises from the inability of the U-Net

FIGURE 8
Correlation coefficients (CC s) of precipitation fields (A) and two velocity components [u: (B), v: (C)] averaged over 12 heavy rainfall events for 0–3-h
lead times. Red, blue, green and gray solid lines indicate blended, U-Net, PDE models, and Persistence, respectively.
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model to predict precipitation advection accurately owing to its
blurry effects. These results are consistent with the results of
qualitative analysis of Figures 4, 5.

The performance of the blended model was also assessed
separately for each precipitation type (i.e., Central and Southern
cases) to examine the characteristics of nowcasting outputs
produced by the blended model (see Figure 10). Overall, the
prediction accuracy for the Central case is higher than that for
the Southern case. According to FAR scores, the models generally
overestimate when predicting heavy rainfall in the Southern
area. Additionally, lower POD values for the Southern case at
1–3-h lead times indicate a substantial number of missing events.
We interpret that such performance difference is mainly related
to the failure to detect precipitation growth in the southern
coastal area. While the blended model accurately predicts the
eastward movement of precipitation fields in both the central and
southern regions of the Korean Peninsula, dynamic processes
such as the growth and decay of precipitation are more
prominent in the southern coastal regions. To predict such
convective rainfall accurately, additional information such as
satellite images would be required, which is beyond the scope of
this paper.

Comparison between recent studies regarding precipitation
nowcasting is presented in Table 1. Notably, direct comparisons
cannot be conducted owing to the different detailed settings
adopted in each study. Despite such limitations, indirect
comparison could be conducted using baselines, such as
Persistence and U-Net. In predictions of both moderate
( ≥ 1mmh−1) and heavy rainfall ( ≥ 10mmh−1), the blended
model demonstrates better performance than the other models
proposed in previous studies at 0–3-h lead times. Although most
previous studies have improved the prediction accuracy through
the design and enhancement of deep learning models, we
highlight the potential for achieving predictions at higher
accuracies by incorporating efficient data processing methods
from existing models.

To test the operational feasibility of the blended model, we
examined the performance of blended model in predicting
precipitation in various seasons, each characterized by distinct
weather patterns. We evaluated the monthly-averaged forecast
skills based on the CSI scores for different seasons. Figure 11
shows the monthly-averaged performances of the blended and
U-Net models during January (i.e., winter season), March
(i.e., spring season), and September (i.e., late summer season)

FIGURE 9
Evaluation results (CSI, POD, and FAR) averaged over 12 heavy rainfall events for 0–3-h lead times. The (A–C) show the scores with thresholds of 1, 5,
and 10mmh−1, respectively. Red, blue, green and gray solid lines indicate blended, U-Net, PDE models, and Persistence, respectively.
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2022, respectively. Notably, the prediction performance during
September is the best, whereas it is the worst during January. This
is mainly because during summer, more precipitation cases with
sustained strong rainfall intensity substantially evolve by advection
compared with those in winter or spring. The performances of
both the blended and U-Net models follow such seasonal
variability. Additionally, the blended model outperforms U-Net
in predicting both moderate ( ≥ 1mmh−1) and heavy ( ≥ 10mmh−1)
precipitation events. Hence, we interpret that the performance
enhancement of the blended approach is robust for
different seasons.

4 Summary

In this study, we proposed an approach to improve the
performance of existing U-Net models by combining a PDE
model that considers fluid dynamics with the U-Net
architecture for precipitation prediction. The main objective
was to address the blurriness in the predictions from
traditional U-Net models. We conducted qualitative and
quantitative performance analyses using precipitation cases in
the Korean Peninsula. Based on the qualitative and quantitative

evaluations, we found that improving the blurriness and
enhancing the movement of precipitation patterns through
fluid dynamics contribute to the improvement of the
prediction accuracy at 0–3-h lead times. In particular, the
performance enhancement measured by CSI, POD, and FAR
remains robust across different thresholds of rainfall intensity
and seasons. Moreover, the blended model demonstrates higher
performance compared with PDE-based models that are
currently used in operational short-term precipitation
forecasting, including KMA’s nowcasting model based on
MAPLE. Therefore, the blended model holds potential for
future application in operational short-term forecasting.
Additionally, the blended model can be easily applied as an
extension of existing operational PDE models, providing
further advantages.

While this study focused on the strong rainfall events last
more than a few hours in the central and southern regions of
Korean Peninsula, the prediction accuracy for predicting the
isolated precipitation patterns, where rainfall generates or
dissipates rapidly in localized areas, is also crucial. Previous
deep learning-based studies have also demonstrated relatively
poor performance in predicting such isolated precipitation
compared with that in predicting precipitation in central and

FIGURE 10
Evaluation results (CSI, POD, and FAR) of the blended model for 0–3-h lead times (red: Central case; blue: Southern case). Each precipitation type
includes six heavy rainfall events. The (A–C) show the scores with thresholds of 1, 5, and 10mmh−1, respectively.
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southern cases, which encompass relatively broader regions (Kim
and Hong, 2022a; Oh et al., 2023). To further improve the
performance of nowcasting models, enhancing the prediction
capabilities for isolated precipitation patterns is crucial. As

indicated by previous studies (e.g., Miao et al., 2020; Choi
et al., 2021), training the data from satellites and surface
observations associated with the physical processes of clouds
and precipitation would significantly enhance the performance.

TABLE 1 Comparison between recent studies of precipitation nowcasting. The CSI scores were used for calculating the improvement over the baseline.

Model Area Rain rates Baseline Lead time Improvement over the baseline

U-Net Ayzel et al. (2020) Germany ≥ 1mmh−1 Persistence 1 h ≈ 43%

≥ 10mmh−1 1 h ≈ 66%

DGM Ravuri et al. (2021) UK, US ≥ 1mmh−1 U-Net 1 h ≈ 0%

DeepRaNE Ko et al. (2022) South Korea ≥ 1mmh−1 Persistence 1 h ≈ 18%

3 h ≈ 35%

≥ 10mmh−1 Persistence 1 h ≈ 50%

3 h ≈ 105%

This work (Blended Model) South Korea ≥ 1mmh−1 Persistence 1 h ≈ 60%

3 h ≈ 138%

U-Neta 1 h ≈ 16%

3 h ≈ 5%

≥ 10mmh−1 Persistence 1 h ≈ 90%

3 h ≈ 110%

U-Neta 1 h ≈ 5%

3 h ≈ 10%

aU-Net indicates the U-Net model employed in this study.

FIGURE 11
CSI results averaged over January, March, and September for 0.5–3-h lead times (red: Blended model; blue: U-Net model). The (A, B) show the
scores with thresholds of 1 and 10mmh−1, respectively.
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Such an approach is beyond the scope of this paper, and will be
part of future studies.
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