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Wind speed exacerbates challenges associated with rock stability, introducing
factors such as heightened erosion and the possibility of particle loosening. This
increased sensitivity to erosion can result in material displacement, thereby
compromising the overall stability of rock layers within the open-pit mining
site. Therefore, accurate wind speed predictions are crucial for understanding the
impact on rock stability, ensuring the safety and efficiency of open-pit mining
operations. While most existing studies on wind speed prediction primarily focus
on making overall predictions from the entire wind speed sequence, with limited
consideration for the stationarity characteristics of the sequence, This paper
introduces a novel approach for effective monitoring and early warning of
geotechnical hazards. Our proposed method involves dividing wind speed
data into stationary and non-stationary segments using the sliding window
average method within the threshold method, validated by the Augmented
Dickey-Fuller test. Subsequently, we use temporal convolutional networks
(TCN) with dilated causal convolution and long short-term memory to predict
the stationary segment of wind speed, effectively improving prediction accuracy
for this segment. For the non-stationary segment, we implement complete
ensemble empirical mode decomposition with adaptive noise (CEEMDAN) to
reduce sequence complexity, followed by TCN with an attention mechanism
(ATTENTION) to forecast wind speed one step ahead. Finally, we overlay the
predictions of these two segments to obtain the final prediction. Our proposed
model, tested with data from an open-pit mining area in western China, achieved
promising results with an average absolute error of 0.14 knots, mean squared
error of 0.05 knots2, and root mean squared error of 0.20 knots. These findings
signify a significant advancement in the accuracy of short-term wind speed

OPEN ACCESS

EDITED BY

Zhibo Zhang,
University of Science and Technology Beijing,
China

REVIEWED BY

Guo-Feng Liu,
Chang’an University, China
Wenjing Niu,
Guangxi University, China

*CORRESPONDENCE

Juan Wang,
juanwang618@126.com

RECEIVED 20 September 2023
ACCEPTED 23 November 2023
PUBLISHED 08 January 2024

CITATION

Sun P, Wang J and Yan Z (2024), Enhancing rock
and soil hazard monitoring in open-pit mining
operations through ultra-short-term wind
speed prediction.
Front. Earth Sci. 11:1297690.
doi: 10.3389/feart.2023.1297690

COPYRIGHT

© 2024 Sun, Wang and Yan. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Abbreviations: TCN, Temporal Convolutional Network; ADF, Augmented Dickey-Fuller; LSTM, Long
Short Term Memory; CEEMDAN, Complete Ensemble Empirical Mode Decomposition with Adaptive
Noise; GPR, Gaussian Process Regression; GA, Genetic Algorithm; ANN, Artificial Neural Network; VMD,
Variational Mode Decomposition; NWP, Numerical Weather Prediction; MOS, Mos Forecasting Method;
WRF, Weather Research and Forecasting Model; NWP, Numerical Weather Prediction; ARIMA,
Autoregressive Integrated Moving Average Model; SVM, SupportVectorMachine; ANN, Artificial
Neural Network; MLP, Multilayer Perceptron; SAM, Segment Anything Model; RBFN, Radial basis
function network; GWO, Grey Wolf Optimization; GRU, Gate Recurrent Unit.

Frontiers in Earth Science frontiersin.org01

TYPE Original Research
PUBLISHED 08 January 2024
DOI 10.3389/feart.2023.1297690

https://www.frontiersin.org/articles/10.3389/feart.2023.1297690/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1297690/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1297690/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1297690/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1297690/full
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2023.1297690&domain=pdf&date_stamp=2024-01-08
mailto:juanwang618@126.com
mailto:juanwang618@126.com
https://doi.org/10.3389/feart.2023.1297690
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2023.1297690


prediction. This advancement not only enables the rapid assessment and proactive
response to imminent risks but also contributes to geotechnical hazard monitoring
in open-pit mining operations.
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1 Introduction

Despite the changing landscape of energy sources, coal remains a
vital resource for meeting global energy demands. However,
particularly in open-pit settings, face unique challenges related to
wind-induced geological hazards (Chen et al., 2019; Wang and Du,
2020; Sun and Wang, 2022; Zhang et al., 2009) found that air flow
has a significant impact on the stability of soil slopes (Vardon, 2015).
Showed the importance of predicting climate characteristics,
especially changes in wind speed, temperature, precipitation, etc.,
for geotechnical infrastructure. So strong winds in open-pit mining
areas significantly elevate the risks associated with rockfalls and
mountainous landslides, presenting serious safety concerns for both
miners and equipment. These natural hazards, exacerbated by
powerful winds, can lead to accidents, damages, and disruptions
in mining activities. Addressing these challenges is of utmost
importance to ensure the safety and efficiency of coal mining
operations (Hepbasli, 2008). The use of wind speed data offers
an effective solution for mitigating these risks. By seamlessly
integrating wind speed information into geotechnical hazard
monitoring systems, mining companies can bolster their capacity
to identify and respond to impending geological instabilities
triggered or exacerbated by high winds. This integration enables
early warnings and the automatic activation of safety protocols,
thereby minimizing the potential for accidents and damages
(Khazaei et al., 2022). Wind speed prediction emerges as a
pivotal component within geotechnical hazard monitoring
systems. Providing accurate and real-time wind speed forecasts
empowers mining operators to make swift and well-informed
decisions, safeguarding the welfare of workers and the integrity
of mining operations (Parra et al., 2021). Linked forest coverage,
wind speed, and soil stability, and the results showed that higher
canopy opening and wind speed can reliably predict a higher
probability of landslide detection, although it is much better at
lower order channels and mid slope positions than on open slopes.
In areas affected by recent volcanic eruptions causing volcanic ash,
the predictive ability of wind speed is relatively low, and the impact
of forest coverage on canopy openness still exists. Even though
scientists already know the effect of wind speed on the stability of
open pit soil, the current relevant literature only inputs wind speed
as a variable to conduct correlation analysis of the stability of open
pit soil. For example, adding wind speed factor to the stability
prediction of open-pit slope (Nie et al., 2017), proposed a short and
medium term polynomial prediction (MsTPLP) model for
landslides based on Levenberg-Marquardt (LM) algorithm. The
experimental results show that the proposed model failure time is
very accurate, demonstrating the potential of this method in
landslide prediction (Kunyan and Meihong, 2019). Proposed an
improved BP neural network based on genetic algorithm and
proposed a prediction model for open-pit slope stability. The

prediction results of the model show that GA-BP model is
effective in predicting the stability of open-pit slope, and has the
advantages of small error and high calculation accuracy, providing a
new method for accurately predicting the stability of open-pit slope.
Although wind speed is important for open-pit slope stability, few
scientists have applied wind speed prediction alone to mine sites.
Hence, the incorporation of wind speed prediction into geotechnical
hazard monitoring systems stands as a paramount measure to
ensure the safety and sustained success of coal mining operations
in open-pit environments (Peng and Lu, 1995; Mölders and
Physics, 1999).

Wind speed forecasting can be roughly divided into long-term,
short-term, and ultra-short-term wind speed forecasting, each of
which has different uses. Long-term wind speed forecasting typically
covers extended timeframes, ranging from days to weeks into the
future. Its primary purpose is to help plan and manage wind energy
resources, assess the feasibility of wind power projects, and inform
long-term decision-making in various industries. While it is not
directly related to immediate geotechnical hazard monitoring, long-
term trends in wind patterns can inform broader risk assessments
(Yu et al., 2013)., developed a global Gaussian process regression
(GPR) method based on Gaussian mixture copula model (GMCM)
and Bayesian inference strategy, using a new aggregated GPR model
within the Bayesian framework to explain the stochastic uncertainty
in long-term wind speed time series. Short-term wind speed
forecasting focuses on predicting wind speeds within a timeframe
of hours to days ahead. It plays a crucial role in real-time operation
and dispatch of wind power plants, helping to optimize energy
production and grid integration. While not directly linked to
geotechnical hazard monitoring, short-term forecasts can
indirectly impact safety by influencing power plant operation and
energy distribution in areas where wind-related hazards are a
concern (Zhang et al., 2020). Proposed a short-term wind speed
prediction model based on genetic algorithm-artificial neural
network (GA-ANN) improved by variational mode
decomposition (VMD), which can effectively improve the
accuracy of wind speed prediction and greatly promote the
development of green energy. Ultra-short-term wind speed
forecasting functions within significantly compressed timeframes,
often spanning mere minutes to a few hours ahead. Its primary role
is to facilitate real-time control, support operational decision-
making, and provide immediate hazard monitoring across diverse
applications, encompassing both the wind energy sector and critical
safety systems. In the realm of geotechnical hazard monitoring, the
significance of ultra-short-term wind speed predictions cannot be
overstated, as they serve as a linchpin for the swift evaluation and
proactive response to imminent risks. These risks encompass a
spectrum of perils, ranging from the potential for rockfalls to the
looming threat of landslides, all of which may be incited by the
forceful influence of high winds. The precision inherent in ultra-
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short-term forecasts empowers stakeholders to issue early warnings
and promptly initiate safety protocols, underpinning the resilience
and protection of lives, infrastructure, and assets (Chandra et al.,
2013; Tascikaraoglu et al., 2014; Ssekulima et al., 2016; Shobana Devi
et al., 2020). Accordingly, this study focused on ultra-short-term
wind speed prediction.

Existing forecasting models can be generally divided into three
categories. The first type covers physical models, which use weather
forecasting parameters (NWP) such as terrain, atmosphere, and
temperature as input variables, andmodel output statistics (MOS) or
various relatively simple statistical techniques to arrive at the best
estimate of the local wind speed before applying physical
considerations to reduce the residual error (Giebel et al., 2011;
Cheng et al., 2013; Zhang et al., 2019a). Xu et al. used the WRF
model to effectively improve the accuracy of short-term wind speed
prediction (Xu et al., 2021). Al-Yahyai et al. proposed a NWP
prediction method based on physical principles (Al-Yahyai et al.,
2010). Through comparisons with measured wind speeds under
different wind conditions, they reported that the prediction results
can essentially meet the requirements of prediction accuracy.
However, their physical model involves complex calculation and
long calculation time, and has relatively low accuracy, making it
unsuitable for ultra-short-term wind speed prediction (Al-Yahyai
et al., 2010).

The second type covers statistical methods. They are widely used
because wind speed changes show certain regularity and similarity in
the ultra-short term, and the cycle of ultra-short-term wind speed
prediction is short. Statistical methodsmainly include autoregressive
integrated moving average model (ARIMA), support vector
machine (SVM), and artificial neural network (ANN) methods
(Erdem and Shi, 2011; Liu et al., 2013; Ranganayaki and Deepa,
2019). Liu et al. used the ARIMA model to develop univariate
models and evaluated the performance of the method using large
amounts of forecasting data (Liu et al., 2021). Kavasseri and
Seetharaman predicted wind speed series using the proposed
f-ARIMA model and compared its performance with the
continuous method, and reported that the proposed model can
significantly improve the prediction accuracy (Kavasseri and
Seetharaman, 2009). Mohandes et al. introduced the SVM into
wind speed prediction, and compared its performance with the
multi-layer perceptron (MLP) neural network, and the results

showed that SVM has stronger predictive ability (Mohandes
et al., 2004). Although the use of statistical methods can enhance
the accuracy of wind speed prediction compared with physical
model methods, the overall prediction performance of a single
statistical method in wind speed prediction is not ideal (Zhang
et al., 2019b).

The third type covers hybrid prediction models. It has
gradually become the main method among current prediction
models owing to its high prediction accuracy and high model
applicability. Wang et al. (Wang et al., 2014) proposed a hybrid
model for wind speed forecasting based on SAM, ESM, and
RBFN, and experiments proved that the proposed model can
capture different modes to improve forecasting performance.
Kulkarni et al. (Kulkarni et al., 2008) used periodic curve
fitting and artificial neural network extrapolation to predict
wind speed with reasonable accuracy. Although the above
hybrid models can achieve highly accurate wind speed
prediction, they are rarely used because the overall models are
extremely complex and the prediction time is too long. Instead,
decomposition-prediction-combination models and models
based on optimization algorithms are most widely used
because of their efficiency and accuracy. Wang et al. (Wang
et al., 2010). used the variational modal method to decompose
the wind speed sequence into a series of different sub-modes to
reduce the complexity of the original data and the impact of non-
stationarity on the prediction accuracy; subsequently, they
performed long short-term memory network (LSTM)
modeling predictions separately and finally combined the
models to obtain the prediction results. Xiang et al. and
Zhang et al. (Zhang et al., 2019c; Xiang et al., 2019) used the
wind speed signal preprocessing method based on variational
mode decomposition and showed that the proposed method
could achieve high prediction accuracy and operating
efficiency. Regarding optimization, algorithms such as the
whale optimization algorithm (CGWOA), GWO, and bat
optimization algorithm (BAT) are widely used to optimize the
convergence factor, iteration number, and other related
parameters in a single model, so as to obtain better results
(Sun et al., 2015; Fu et al., 2019; Zhang et al., 2022a; Li et al.,
2022). However, these two hybrid models do not consider the
modal aliasing phenomenon produced by recursive

FIGURE 1
Causal convolution in TCN. FIGURE 2

Expansion causal convolution.
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decomposition algorithms such as empirical mode
decomposition, nor do they consider the characteristics of
wind speed data in different stationary segments. This leads to
problems such as the loss of specific physical meaning of IMF and
model-data mismatch.

Based on existing research, this paper proposes a combined
prediction model of CEEMDAN, temporal convolutional network
(TCN), and LSTMwith the introduction of the attentionmechanism
(ATTENTION). First, the correlation judgment was used to assess
the factors affecting wind speed. Then, the wind speed data were
divided into stationary and non-stationary segments by using the
characteristics of the most relevant factors affecting wind speed.
Thereafter, the wind speed in the stationary segment was predicted
using the TCN-LSTM combined model, the wind speed in the non-
stationary segment was divided into reasonable wind speed
components using CEEMDAN, the wind speed components of
each part were predicted using the TCN-ATTENTION model,
and the wind speed component predictions of each part were
combined to obtain the overall wind speed forecast. The model
prediction results of the stationary and non-stationary segments
were then combined to obtain the final prediction result. Compared
with other classical models, this model has better prediction ability
and better prediction processing efficiency.

2 Algorithm principle

2.1 TCN algorithm

TCN is a new type of algorithm that can be used to solve time
series forecasting. TCN models consist of causal convolutions,
dilated/dilated convolutions, and residual blocks (Luo et al.,

2021a). Compared with traditional models, such as CNN, LSTM,
and GRU, it has a lighter network structure. At the same time, it can
effectively avoid common problems of recursive models such as
gradient explosion/vanishing problems or lack of memory retention
(Luo et al., 2021b). The salient features of TCN are the randomness
of convolution architecture design and sequence length. In addition,
through the combination of residual networks and expanded
convolution, it is also very convenient for constructing deep and
wide networks (Huang et al., 1998).

The overall principle of causal convolution is shown in Figure 1.
The causal convolution at time t is only affected by the value of the
lower layer at time t. It is a one-way structure rather than a two-
way structure.

The main structure of TCN is the expansion causal
convolution based on causal convolution, which reduces the
number of layers used by the convolutional network and
increases the receptive field by inputting larger intervals of
sampling data. The receptive field is affected by parameter d
of the dilated convolution and the number of layers k. For the
filter f: (f1, f2 · · · fk), the operation formula of the expansion
causal convolution is:

F X( ) � ∑
k−1

i�0
f i( ) · xt−i·d (1)

The principle of dilated causal convolution is shown in Figure 2. As
shown in the schematic diagram, increasing K or d can increase the
receptive field. In general, as the number of layers increases, the dilated
convolution parameters will increase according to the exponent of 2. In
this paper, the expansion coefficient d is 1, 2, and 4, the expansion causal
convolution with the number of layers k is 3, and the one-dimensional
convolutional network is used to obtain the information of the previous
layer by changing the parameters, so as to flexibly adjust the receptive
field size. The TCN gradient does not have the problem of gradient
disappearance/explosion because it is different from the time direction.
It can be used for ultra-short-term wind speed forecasting with good
clarity and simplicity.

FIGURE 3
Forecast model flowchart.

FIGURE 4
Raw wind speed time series.
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2.2 CEEDMEAN algorithm

Empirical mode decomposition (EMD) is a means of smoothing
non-stationary signals by converting a signal sequence into multiple
intrinsic mode functions (IMFs) and residuals. EMD has been
widely used in various fields but it still involves the problems of
the mode aliasing phenomenon and end effect (Zhang et al., 2019b).
These problems can be effectively suppressed by CEEMD.

The specific operation steps are as follows: first, the original
signal x(t) to be decomposed is added to K times of Gaussian white
noise with an average value of 0, and k times of sequences to be
decomposed are constructed, i=1,2,3 . . . k.

xi t( ) � x t( ) + εδi t( ) (2)
Where ε is the weight coefficient of Gaussian white noise; δi(t) is

the Gaussian white noise generated during the ith processing.
Then, decompose the empirical mode xi(t) and take the mean

value of the first modal component obtained as the first modal
component obtained IMF1(t) by CEEMDAN decomposition.

Subsequently, obtain the margin signal of the first
decomposition IMF1(t).

IMF1 t( ) � 1
K
∑
K

i�1
IMFi

1 t( ) (3)

r1 t( ) � x t( ) − IMF1 t( ) (4)

Add specific noise to the margin signal at the jth stage and
continue the EMD.

IMFj t( ) � 1
K
∑
K

i�1
IMFi

1 t( ) (5)

r1 t( ) � x t( ) − IMF1 t( ) (6)

Finally, if the EMD stops, the iteration stops and the CEEMDAN
decomposition ends.

In this paper, CEEMDAN is mainly used to decompose the wind
speed fluctuation segment, thereby reducing the complexity of the
data, stabilizing the data, and preparing for the subsequent TCN-
ATTENTION prediction.

TABLE 1 Data parameters.

Serial
number

0 1 2 3 4 5 6

Title letter WS DIR DIR 5S TEMP DPT WS 5S PRESS

Parameter (Unit) Wind speed
(knots)

wind
direction

Five second gust wind
direction

Temperature
(F)

Dew point
temperature (F)

Five second gust wind speed
(knots)

Pressure
(pa)

TABLE 2 Missing data situation.

Norm Date Time WS DIR DIR 5S TEMP DPT WS 5S PRESS

Missing False False True True True False False True False

Missing quantity 0 0 5 5 5 0 0 5 0

Percentage missing 0 0 0.000694 0.000694 0.000694 0 0 0.000694 0

FIGURE 5
Hourly resampling of wind speed. (A): Hourly resampling sum of wind speed over time, (B): Hourly resampled mean wind speed over time.
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2.3 Combined model of TCN-LSTM-
CEEMDAN-ATTENTION

The TCN-LSTM-CEEMDAN-ATTENTIONmodel (Figure 3) was
established to predict the wind speed. As mentioned earlier, the wind

speed data included the stationary and non-stationary segments. The
LSTM model optimized by TCN has a strong ability to analyze and
predict the data of the stationary segment. Furthermore, the TCN
model after CEEMDAN decomposition and the subsequent addition of
the attention mechanism has good performance for the separate
prediction of the non-stationary segment.

Assuming the wind speed time series data S, firstly, the sliding
window averaging method is used to distinguish the stationary
segment SP and the non-stationary segment SF, and secondly, the
TCN-LSTM model is used to predict the stationary segment SP to
obtain SPP. Thereafter, the non-stationary segment SF is decomposed
by CEEMDAN to get INF={infi,i=1,2, . . .,7}. Then, each part of INF
is predicted using TCN-ATTENTION to obtain SFF. Finally, the two
parts are combined and merged to obtain the final prediction result
of the target sequence data SY � SPP + SFF.

The stationary segment SP is an input sequence of length, where
represents the input of the th time step. The first layer convolution
operation of the TCN model can be expressed as:

z l( )
t � ϕ W l( )x l( )

t + b l( )( ) (7)

Where x(l)t � [ht − k(l) + 1, ht−k(l)+2, . . . , ht] represents the output
vector of the current time step t and its previous time step k(l) − 1,
W(l) ∈ RF(l)×k(l) is a convolution kernel, b(l) ∈ RF(l)

is a bias vector, and
ϕ is a nonlinear activation function, usually ReLU. z(l)t ∈ RF(l)

represents
the output vector of the convolutional operation of layer.

FIGURE 6
Data correlation test. (A): Correlation of variables in raw data, (B): Correlation of variables after 1-h resampling, (C): Correlation of variables after 5-h
resampling, (D): Correlation of variables after 7-h resampling.

FIGURE 7
Sequence diagram of wind speed and dew point temperature.
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The layer l convolution operation of the TCN model can be
concatenated to form the output vector zt of the entire TCN model:

zt � z 1( )
t , z 2( )

t , . . . , z L( )
t[ ] (8)

Where L is the number of layers in the TCN model, 1 represents
the output vector of the TCN model.

The hidden state vector of the LSTMmodel ht can be expressed as:

it � σ Wixt + Uiht−1 + bi( ) (9)

ft � σ Wfxt + Ufht−1 + bf( ) (10)
ot � σ Woxt + Uoht−1 + bo( ) (11)

c̃t � tanh Wcxt + Ucht−1 + bc( ) (12)
ct � f t ⊙ ct−1 + it ⊙ c̃t (13)
ht � ot ⊙ tanh ct( ) (14)

Here, it, ft, and ot respectively represent the activation vectors of
the input gate, forget gate, and output gate; c̃t represents the

TABLE 3 Threshold selection.

Threshold 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

MSE 0.1435 0.2541 0.1298 0.1023 0.1134 0.1145 0.1435 0.1531 0.1083 0.1032 0.0971

Threshold 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1

MSE 0.0990 0.0931 0.1221 0.1264 0.1647 0.2633 0.2311 0.2653 0.2835 0.2648 0.2532

FIGURE 8
Stability division of wind speed training data. (A): Smooth sequence segment of training data, (B)Training data non-stationary sequence segments.

TABLE 5 Using ADF test to partition data.

Sequences

parameters

First
paragraph

Second
paragraph

Sequences

parameters

First
paragraph

Second
paragraph

Adt test (T-value) −4.2045 −3.0680 Value of critical ADF test at 99% confidence
interval

−3.4322 −3.4334

p-value 0.00064 0.02901 Value of critical ADF test at 95% confidence
interv

−2.8623 −2.8629

Procrastinate 16 23 Value of critical ADF test at 90% confidence
interv

−2.5671 −2.56749

Number of tests 3,582 2,127 Smoothness judgment smoothly non-stationary

TABLE 4 Smooth sequence delineation of timing nodes.

Parameters 2022.9.13 2022.9.14 2022.9.15 2022.9.15

Data Segmentation Node 14:09 15:20 15:20 16:19
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candidate cell state vector at the current moment; ct represents
the cell state vector at the current moment; and ht represents the
hidden state vector at the current moment.Wi,Wf ,Wo,Wc is the
weight matrix of the input gate, forget gate, output gate and
candidate cell states, Ui,Uf ,Uo,Uc is the weight matrix of the
corresponding hidden state, and bi, bf , bo, bc is the bias vector. σ
represents the sigmoid function, and ⊙ represents element-wise
multiplication.

The non-stationary segment SF is decomposed into several IMFs
using formula (15).

s t( ) � ∑
n

i�1
ci t( ) + rn t( ) (15)

where s(t) is the non-stationary segment sequence SF, ci(t) is the ith
IMF, rn(t) is the remaining item, and n is the number of IMFs.

Then, TCN is applied, that is, formulas (16–18) are applied to
better capture long-term dependencies.

y � f x( ) + g x( ) (16)
f x( ) � σ W1x + b1( ) (17)

g x( ) � σ W2 δ x( ) *x( ) + b2( ) (18)
where, x is the input sequence, y is the output sequence, σ is the
Activation function, W1,W2 is the weight matrix, b1, b2 is the bias

vector, * represents convolution operation, δ(x) is an extensible
Dilated Revolution operation。

Finally, by combining CEEMDAN and TCN, and adding the
Attention mechanism, the CEEMDAN-TCNN Attention model
(Formula 19) is obtained:

ht � ∑
n

i�1
αi · TN CN x1: T( )( ) i, t[ ] (19)

Where, ht is the output of the first time step, CN is a CEEMDAN
operation, TN is TCN operation, αi is the Attention weight.

3 Experimental process

3.1 Data sources

The data was collected from a mining site in western
China,specifically an open-pit mining area, spanning from
September 13 to 17, 2022, totaling 5 days. A set of 7,200 data
points was gathered, each spaced at 1-min intervals, There are
six parameters in the data set (Table 1), serving as the focus of
our research (see Figure 4). As depicted in the figure, it is evident that
the wind speed data exhibits irregular and unstable patterns.

FIGURE 9
TCN-LSTM model tuning. (A) Comparison of predictions of different Filter value models, (B) Comparison of model predictions for different Kernel_
size values, (C) Comparison of model predictions for different Dropout values, (D) Comparison of model predictions for different Epochs values.
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3.2 Data stationarity and non-
stationarity division

In this study, 7,200 sets of data were used, of which 5,760 were
used as the training sequence set of the overall model and the
remaining 1,440 were used as the test sequence set to test and verify
the generalization ability of the model. First, the shadow matrix
method of the original data set was used to assess the lack of data in
the data set. The shadow matrix is a copy of the weight matrix, and
its value is updated by the main weight matrix. Moreover, its
historical information is maintained to a certain extent. If the
value of the shadow matrix element is 1, the corresponding
position value of the original dataset is a missing state; otherwise,
if the value of the shadow matrix element is 0, the corresponding
value in the original data set exists. A description of the statistics of
missing raw data is provided in Table 2. Considering the low
proportion of missing data, the impact of missing data on the
integrity of the model is small, and deleting missing data will not
cause data deviation. Accordingly, the direct deletion method was
used for data preprocessing.

After data preprocessing, the data were resampled at 1-h
intervals in order to rapidly and intuitively extract information
on the structural kernel properties of the data in the population
distribution (Li et al., 2016). Figure 5A presents a graph of the time-
varying sum of resampled wind speed for 1 hour, and Figure 5B
presents a graph of the time-varying graph of the resampled average
value of wind speed for 1 hour. According to the change graph, the
average value and sum of the resampled data set have a similar

structure, and the overall volatility has certain rules. To improve the
accuracy of the data analysis, the original wind speed data and the 1-
h, 5-h, and 7-h re-sampling data were tested for correlation. As
shown in Figure 6, with increasing the sampling time, the correlation
between the wind direction and the 5-s gust wind direction first
increases and then decreases, and the correlation characteristics
between other variables become more prominent. The reason is that
when the resampling interval increases from a smaller value, the
correlation will increase because the relationship between data
points becomes clearer and more salient. However, after reaching
a certain resampling interval, the variation between data points
becomes irregular and chaotic, weakening the correlations. This is
because the interactions between data points become more difficult
to capture and analyze. Therefore, the relationship between
resampling interval and correlation usually presents a curve of
initial rise followed by a fall.

In the heat map, the correlation trend of wind speed and wind
direction, and the wind direction of the 5-s gust all increase first and
then decrease, with the highest values of 0.56 and 0.09 respectively.
The overall correlation is low. However, the temperature and dew
point temperature do not exhibit any downward trend with
increasing sampling time. As a result, their correlation is more
prominent in the 7-h resampling. For the 7-h interval, the top three
variables most correlated with wind speed are 5-s gust wind speed
(correlation parameter 1.00), dew point temperature (correlation
parameter 0.83), and air temperature (correlation parameter 0.81).
As the 5-s gust wind speed was obtained from wind speed data, it is
not a factor affecting the wind speed sequence. Moreover, as the dew

TABLE 6 TCN-LSTM model parameter adjustment evaluation form.

Filters MAE (knots) MSE (knots2) RMSE (knots) R2

2 0.1855 0.0971 0.3116 0.9061

3 0.1927 0.0968 0.3112 0.9063

4 0.1856 0.0980 0.3130 0.9052

10 0.2243 0.1126 0.3356 0.9011

Kernel_size

1 0.2003 0.0967 0.3114 0.9062

2 0.2276 0.1005 0.3169 0.9028

3 0.1916 0.0999 0.3162 0.9033

10 0.1872 0.09767 0.3125 0.9055

Dropout

0.20 0.1867 0.0982 0.3134 0.9050

0.23 0.1955 0.1049 0.3239 0.8986

0.26 0.1853 0.0953 0.3087 0.9108

Epochs

2000 0.1913 0.0953 0.3087 0.9108

3,000 0.1938 0.0970 0.3115 0.9062

4,000 0.2095 0.1041 0.3227 0.8993
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point temperature was calculated from air temperature, humidity,
and atmospheric pressure, the reflected data characteristics are more
comprehensive. Therefore, the dew point temperature was selected
as the largest variable affecting the wind speed. Figure 7 presents a
sequence diagram of wind speed and dew point temperature. As
shown in the figure, when the dew point temperature is a trough, the
wind speed sequence is a stationary segment. The larger the trough
span, the longer the duration of the stationary segment of the wind
speed sequence.

The preprocessed data were divided using the sliding window
average method in the threshold method. First, the time series data
were divided into fixed-size sliding windows, and then for each
window, the average value of all data in the window was calculated.
Using the average value as the representative value of the window,
the window was slid forward by one unit, and the average value was
continuously calculated until the window slid to the end of the
sequence. The optimal threshold range was determined using the
grid search method, which is a hyperparameter tuning method for
automatically selecting the optimal parameters in the model. It
evaluates and compares all possible hyperparameter combinations
to find the optimal hyperparameter combination by performing an
exhaustive search on a specified parameter grid. The sliding window
average method in the threshold method is used to segment the
preprocessed data. The time series data is first divided into fixed-size
sliding Windows, and then the average of all the data within the
window is calculated for each window. Using the mean as the
representative value of the window, slide the window forward
one unit and continuously calculate the mean until the window
slides to the end of the sequence. The optimal threshold range is
determined by the grid search method, which is a hyperparameter
tuning method that automatically selects the optimal parameters in
the model. It evaluates and compares all possible hyperparameter
combinations, and finds the optimal hyperparameter combination
through exhaustive search of the specified parameter grid. The
MyModel class calculates the mean and variance in the time
series data. It then traverses the data points to find the first point
that breaks the threshold, marking it as non-stationary. This non-

stationary point is used to cut the time series data. The program
creates a Pipeline with the MyModel class as one of the steps. Define
the param_grid parameter, which includes a range of different
thresholds. GridSearchCV was used for grid search, and the
model performance under different thresholds was evaluated
through cross-validation, with MSE as the evaluation index.
Finally, the threshold with the best performance was found, the
optimal threshold was set to 2.2 (Table 3), and the sliding window
average method was used to obtain the time nodes of the stationarity
and non-stationarity of the wind speed series on the training day
(Table 4). In order to ensure reasonable data segmentation, the
average value of time node 15:17 is taken as the segmentation point.

After dividing the data, the unit root (Augmented Dickey-Fuller
test, ADF) test was used to conduct time series division test, and the
stability of the data was assessed according to the occurrence of ADF
in the time series. The presence of ADF indicates unstable data and
vice versa. In the ADF test, the p-value is evaluated against the
0.05 confidence interval. If the p-value is less than 0.05, it can be
considered that the null hypothesis is rejected, the data does not have
a unit root, and the sequence is stable; if it is greater than or equal to
0.05, the null hypothesis cannot be significantly rejected. In this case,
further significant test statistics are required. If the significant test
statistic is less than three confidence levels (10%, 5%, 1%), then there
is (90%, 95, 99%) certainty to reject the null hypothesis, otherwise
the data are considered to be non-stationary. The stationary and
non-stationary sequences were extracted from the divided training
set (Figure 8).

The ADF test results of the extracted data are shown in Table 5.
The T value of the first sequence was -4.2045 and less than 1%, 5%,
and 10%, indicating rejection of the hypothesis. Moreover, the
p-value of 0.00064 is significant at 5%, verifying the rejection of
the null hypothesis, and thus the stationarity of the data. The T value
of the second sequence was -3.0680, and it was not less than 1%, 5%,
and 10% at the same time, indicating that the hypothesis cannot be
rejected, and that the data is non-stationary. These results proved
that partitioning of the data according to stationarity was successful.

3.3 Wind speed prediction and fitting effect

Through the division of data described in the previous section,
the stationary and non-stationary data sequences were successfully
obtained. Next, TCN-LSTM was used to process the stationary data,
and CEEMDAN-TCN-ATTENTION was used to process the non-
stationary data.

3.3.1 TCN-LSTM model prediction
Before model training, the wind speed and dew point

temperature in the stationary segment and the non-stationary
segment sequence were aligned according to the time axis, and
the wind speed and dew point temperature at each time point were
used as multivariate data at that time point, thereby obtaining a
multivariate time series. The model was trained using this
multivariate time series.

The TCN-LSTM model was trained with 3,600 sets of data and
used to predict the stationary part of the wind speed time series. The
sample sequence was converted into a supervised learning sequence
and then normalized. The model first defines the TCNmodel. Then,

FIGURE 10
Prediction of stationary wind speed data using TCN-LSTMmodel.
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the parameters are optimized using the following evaluation
indicators: mean absolute error (MAE), mean squared error
(MSE), root mean squared error (RMSE) and R squared error (R2).

The initial parameters were set as follows: loss function MSE,
filters=2, Kernel_size=2, Dropout=0.23, Epochs=4,000.

(1) Filter optimization

Filters refer to the number of convolution kernels used in the
convolution layer, and each convolution kernel can extract a specific
feature. Therefore, the size of filters affects the number and
complexity of features learned by the model. With Kernel_size=3,
Dropout=0.2, and Epochs=2000, the test sets were compared among
Filters of 2, 3, and 4.

As shown in Figure 9 (a) and Table 6, MAE, MSE, RMSE, and R2

did not exhibit large numerical changes with increasing values of
filters. The reason is that the feature space of the input data set is not
very complicated, and the use of more filters will not bring
significant improvements. In order to obtain more accurate
predictions, the filter value was set at 3.

(2) Kernel_size optimization

With Filters=3, Dropout=0.2, and Epochs=2000, the test sets
were compared among Kernel_sizes of 1, 2, and 3.

Kernel_size refers to the size of the convolution kernel, which
is usually a square or rectangular matrix. The convolution kernel
slides and extracts features during the convolution process.
Kernel_size will affect the size and shape of the features
learned by the model. A larger Kernel_size can usually capture
a wider range of features, but it will increase the amount of
calculation and the complexity. As shown in Figure 9 (b) and
Table 6, the increase in the value of Kernel_size did not cause
much change. The reason is that the features in the data set are
small, and more useful features cannot be learnt by increasing
Kernel_size. To improve the prediction accuracy, the Kernel_size
was set at 1.

(3) Dropout optimization

With Filters=3, Kernel_size=10, and Epochs=2000, the test sets
were compared among Dropouts of 0.20, 0.23, and 0.26.

As shown in Figure 9 (c), and Table 6, the best results were
obtained at Dropout=0.26, with MAE=0.1853 knots,
MSE=0.0953 knots2, RMSE=0.3087 knots, and R2=0.9108.

(4) Epoch optimization

With Filters=3, Kernel_size=10, and Dropout=0.26, the test sets
were compared among Epochs of 2000, 3,000 and 4,000.

FIGURE 11
CEEMDAN decomposition diagram.
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As shown in Figure 9 (d), and Table 6, the best results were
obtained at Epochs=2000, with MAE=0.1913 knots,
MSE=0.0953 knots2, RMSE=0.3087 knots, and R2=0.9108.

Considering these results, the main parameters of the TCN-
LSTM wind speed plateau sequence model were set as follows:
Filters=3, Kernel_size=10, Dropout=0.26, and Epochs=2000. The
comparison between the prediction and actual situation is shown
in Figure 10.

3.3.2 CEEMDAN-TCN-ATTENTION model
prediction

The CEEMDAN-TCN-ATTENTION model was used to
predict the non-stationary segment of the wind speed time
series, and 2,160 sets of data were used for training. As
shown in Figure 11, CEEMDAN divided the wind speed data
were divided into modal components (IMF1–IMF7) and residual
sequence (Res), arranged in order of frequency from high to low.
In CEEMDAN, each IMF is obtained by extracting and
interpolating a series of local mean and extreme points from
the original data. Each IMF represents a specific vibrational
mode in the data, with distinct time-scale and frequency
signatures. Residual series are leftover data, usually
considered noise or random disturbances. As shown in
Figure 11, IMF1 usually represents high-frequency noise or
the trend of high-frequency changes, and may have negligible
relationship with independent variables, but IMF2 to
IMF7 represent lower and lower frequency components, and
the change patterns of these IMFs can reflect each independent

variable. Therefore, IMF2 to IMF7 respectively represent the
influence of sknt(wind speed), drct(wind direction), gust_
drct(5-s gust wind direction), Tmpf,(temperature)
Dwpf(dewpoint temperature), gust_sknt(5-s gust wind speed),
and pres1(pressure) on wind speed. IMF5 and the original data
exhibit the same trend.

Combined with the correlation analysis in Figure 6, the dew
point temperature was verified to be the main influencing factor of
wind speed, with a positive correlation between them. The TCN-
ATTENTION model was then run for each IMF separately.

The model first defines the TCN model, then adds the self-
attention layer, and then optimizes related parameters. The
following evaluation indicators were used: MAE, MSE, RMSE,
and R2.

(1) Unit optimization

In self-attention, the unit parameter is usually used to specify
the vector dimension of the input sequence. First, the basic
parameters in the combined model were set. In actual use, the
size of units can be adjusted according to the application scenario
and the complexity of the model. A larger value of units may
increase the representation ability of the model, but it will also
increase the calculation time and training complexity of the
model. The initial parameters were set as follows: loss
function MSE, Dropout=0.3, Filters=5, Kernel_size=2,
Epochs=300. The performance of the test set was compared
with unit sizes of 10,000, 20,000, and 30,000.

FIGURE 12
CEEMDAN-TCN-ATTENTION model tuning. (A) Comparison of model predictions for different Units values, (B) Comparison of model predictions
for different Dropurt values, (C) Comparison of model predictions for different Filters values, (D) Comparison of model predictions for different Kernel_
size values, (E) Comparison of model predictions for different Epochs values, (F) Prediction of non-stationary wind speed data.
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As shown in Figure 12A and Table 7, the best performance was
achieved at the unit size of 20,000, with MAE, MSE, RMSE, and R2 of
0.1602 knots, 0.0340 knots 2, 0.1844 knots, and 0.9879, respectively.

(2) Dropout optimization

With Units=20,000, Filters=5, Kernel_size=2, and Epochs=300,
the test sets with Dropout of 0.1, 0.2, and 0.3 were compared.

As shown in Figure 12Band Table 7, the best performance was
achieved at the dropout of 0.2, with MAE, MSE, RMSE, and R2 of
0.1096 knots, 0.0143 knots2, 0.1194 knots, and 0.9949,
respectively.

(3) Filter optimization

With Units=20,000, Dropout=0.2, Kernel_size=2, and
Epochs=300, the test sets were compared among Filters of 3,
4, and 5.

As shown in Figure 12C and Table 7, the best performance
was achieved at the Filter value of 3, with MAE, MSE, RMSE, and
R2 of 0.1499 knots, 0.0363 knots2, 0.1906 knots, and 0.9870,
respectively.

(4) Kernel_size optimization

With Units=20,000, Dropout=0.2, Filters=4, and Epochs=300,
the test sets were compared among Kernel_size of 2, 3 and 4.

As shown in Figure 12D and Table 7, the best performance
was achieved at the Kernel_size of 3, with MAE, MSE, RMSE, and
R2 of 0.1546 knots, 0.0384 knots2, 0.1959 knots, and 0.9863,
respectively.

(5) Epoch optimization

TABLE 7 CEEMDAN-TCN-ATTENTION model parameter adjustment evaluation form.

Units MAE (knots) MSE (knots2) RMSE (knots) R2

10,000 0.2231 0.0582 0.2412 0.9792

20,000 0.1602 0.0340 0.1844 0.9879

30,000 0.1767 0.0516 0.2272 0.9816

Dropout MAE (knots) MSE (knots2) RMSE (knots) R2

0.1 0.1509 0.0346 0.1861 0.9877

0.2 0.1096 0.0143 0.1194 0.9929

0.3 0.2294 0.0663 0.2574 0.9764

Filters MAE (knots) MSE (knots2) RMSE (knots) R2

3 0.1499 0.0363 0.1906 0.9870

4 0.1737 0.0661 0.2571 0.9764

5 0.1698 0.0829 0.2879 0.9705

kernel_size MAE (knots) MSE (knots2) RMSE (knots) R2

2 0.1776 0.0696 0.2638 0.9752

3 0.1546 0.0384 0.1959 0.9863

4 0.2366 0.0616 0.2481 0.9781

Epochs MAE (knots) MSE (knots2) RMSE (knots) R2

300 0.2533 0.1377 0.3711 0.9509

400 0.0860 0.1338 0.1157 0.9940

500 0.1705 0.0370 0.1923 0.9868

FIGURE 13
Overall model wind speed data prediction.
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The same method was used to optimize the Epochs
parameter. With Units=20,000, Dropout=0.2, Filters=4, and
Kernel_size=1, the test sets were compared among Epochs of
300, 400, and 500.

As shown in Figure 12E and Table 7, the CEEMDAN-TCN-
ATTENTION model showed the best performance for the non-
stationary segment at the Epoch value of 400, with MAE, MSE,
RMSE, and R2 of 0.0860 knots, 0.1338 knots2, 0.1157 knots, and
0.9950, respectively. The prediction graph is shown in Figure 12F.

3.3.3 Combined model of TCN-LSTM-
CEEMDAN-ATTENTION

A total of 18,800 sets of data from a wind farm in western China
September 13 to 16, 2022 were used to train the combined model.
TCN-LSTM was used to predict stationary sequences, and
CEEMDAN-TCN-ATTENTION was used to predict non-
stationary sequences. Finally, the TCN-LSTM -CEEMDAN-
ATTENTION combined model was used to predict 1,440 sets of
data on September 17. The main parameters of the TCN-LSTM
model for the stationary segment were set as follows: Filters=3,

Kernel_size=10, Dropout=0.26, and Epochs=2000. The main
parameters of the CEEMDAN-LSTM-ATTENTION model for
the non-stationary segment sequence were set as follows:
Units=20,000, Dropout=0.2, Filters=4, Kernel_size=1, and
Epochs=400. The overall prediction plot of the model is shown
in Figure 13.

4 Discussion

The TCN-LSTM-CEEMDAN-ATTENTION model was
compared with the TCN-LSTM-VMD-ATTENTION and TCN-
LSTM-EMD-ATTENTION models. Figures 14A,B show
prediction comparison charts of the TCN-LSTM-CEEMDAN-
ATTENTION model with the TCN-LSTM-VMD-ATTENTION
and TCN-LSTM-EMD-ATTENTION models, respectively.
Figure 14C presents a comparison diagram of the three different
decomposition algorithms. Table 8 lists the evaluation indicators of
the three different decomposition algorithms. As shown in Figures
14, 15 and Table 8, the overall MAE, MSE, and RMSE of the model

FIGURE 14
Comparison of the prediction results of each decompositionmodel. (A) TCN-LSTM-VMD-ATTENTION Forecast Comparison Chart, (B) TCN-LSTM-
EMD-ATTENTION Forecast Comparison Chart. (C) Comparison of prediction results of different decomposition models.
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with CEEMDAN are better than those with the other two
algorithms. The model predicted data and the actual value fit
well. These results prove that the use of CEEMDAN in the
decomposition process of this model is optimal.

The TCN-LSTM-CEEMDAN-ATTENTION model was
compared with the LSTM model alone, CEEMDAN-LSTM
model, TCN-LSTM model, TCN-ATTENTION model, and
CEEMDAN-TCN-ATTENTION model. A comparison chart is
shown in Figure 15. In order to evaluate the prediction accuracy
of each model more accurately, three indicators were used: MAE,
MSE, and RMSE. The prediction results of each model are listed
in Table 9.

Table 9 shows that the MAE, MSE, and RMSE of the TCN-
LSTM-CEEMDAN-ATTENTION model are the smallest at
0.1381 knots, 0.0499 knots2, and 0.2048 knots, respectively.
Accordingly, it can be concluded that the TCN-LSTM-
CEEMDAN-ATTENTION model has superior prediction
performance, and is thus more suitable for ultra-short-term wind
speed prediction.

In this experiment, the time consumed by each model (TCN-
LSTM-CEEMDAN-ATTENTION, LSTM, CEEMDAN-LSTM,
TCN-LSTM, TCN-ATTENTION, and CEEMDAN-TCN-
ATTENTION) throughout the run was recorded. As shown in
Table 9, the overall runtime of the TCN-LSTM-CEEMDAN-
ATTENTION model is smaller than that of the other models.
Therefore, it can be concluded that the efficiency of the TCN-
LSTM and CEEMDAN-TCN-ATTENTION processes improve
after the data are divided by stationarity.

We also compared the evaluation parameters of the ultra short
term wind speed prediction models established by other researchers,
including Yan et al.’s article “Wind speed prediction using a hybrid
model of EEMD and LSTM considering seasonal features” (Yan
et al., 2022), Zhang et al.’s article“A comprehensive wind speed
prediction system based on Monte Carlo and artificial intelligence
algorithms” (Zhang et al., 2022b), Wang et al.’s article “Wind speed
prediction using measurements from neighboring locations and
combining the extreme learning machine and the AdaBoost
algorithm” (Wang et al., 2022), Ji et al.’s article “Short-Term

FIGURE 15
Comparison of the results of the predictions of the models. (A) Comparison between the model and LSTM prediction in this article, (B) Comparison
between the model and CEEMDAN-LSTM prediction in this article, (C) Comparison between the model and TCN-LSTM prediction in this article, (D)
Comparison between the model and TCN-ATTENTION in this article, (E) Comparison between the model and CEEMDAN-TCN-LSTM prediction in this
article, (F) Comparison between the model in this article and some models’ predictions.

TABLE 8 Analysis of prediction results of different decomposition models.

Mould MAE (knots) MSE (knots2) RMSE (knots)

TCN-LSTM-CEEMDAN-ATTENTION 0.1381 0.0499 0.2048

TCN-LSTM-VMD-ATTENTION 0.2001 0.0801 0.2461

TCN-LSTM-EMD-ATTENTION 0.4902 0.2967 0.5447
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Canyon Wind Speed Prediction Based on CNN—GRU Transfer
Learning” (Ji et al., 2022). The comparative data is shown in
Table 10. After comparing models in similar articles, the model
established in this article still has significant advantages and is
suitable for ultra short term wind speed prediction.

5 Conclusion

This study introduces and validates a state-of-the-art real-time
prediction model for ultra-short-term wind speeds using a dual-
model framework consisting of the TCN-LSTM and CEEMDAN-
TCN-ATTENTION architectures. The main objective of this study
is to improve the efficiency of geotechnical hazard monitoring and
early warning systems, with a special focus on open pit mining areas.
The excellent predictive accuracy and efficiency of the model in
predicting ultra-short-term wind speeds highlights its key role in
advancing smart geotechnical hazard monitoring.

A noteworthy contribution of this investigation lies in its
methodical treatment of the distinctive characteristics inherent in
stationary and non-stationary sequences within ultra-short-term
wind speed time series. The application of the sliding window
averaging method facilitated the categorization of wind speed
series into stationary and non-stationary components. The TCN-
LSTM model demonstrated proficiency in predicting the stationary
sequence, leveraging its dilated causal convolution and LSTM units
for discerning time correlations and maintaining temporal
continuity. Concurrently, for the non-stationary sequence, the
CEEMDAN-TCN-ATTENTION model, incorporating
CEEMDAN for data simplification and ATTENTION for
enhanced TCN data capture, proved effective. The amalgamation
of these models yielded the robust TCN-LSTM-CEEMDAN-
ATTENTION model.

The comparative analysis involving various decomposition
algorithms and five distinct single and combined models
accentuated the superior predictive capabilities of our proposed
integrated model. With minimal Mean Absolute Error (MAE) of
0.1381, Mean Squared Error (MSE) of 0.0499, and Root Mean
Squared Error (RMSE) of 0.2048, our model surpassed alternative
approaches. Its prediction fit outperformed other models,
reinforcing its suitability for ultra-short-term wind speed prediction.

The model is important for geotechnical hazard monitoring,
especially in open pit mining areas. The validated model not only
improves our understanding of ultrashort-term wind speed
dynamics, but also provides a practical and efficient tool for real-
time prediction. The success of our approach highlights its potential
for wider application in geotechnical monitoring systems, promising
improved safety and operational efficiency in high-risk
environments. Integrating this advanced predictive model into an
operating system is a key step towards a more resilient and
responsive approach to geotechnical disaster management.
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TABLE 9 Comparison of prediction results of different models.

Mould MAE (knots) MSE (knots2) RMSE (knots) Elapsed time(s)

TCN-LSTM-CEEMDAN-ATTENTION 0.1381 0.0499 0.2048 1,000.2007

LSTM 0.3130 0.2897 0.5382 1,430.1756

CEEMDAN-LSTM 1.4871 3.3649 1.8343 1,482.3360

TCN-LSTM 0.4083 0.3386 0.5819 2,750.3588

TCN-ATTENTION 0.4529 0.4206 0.6485 1,634.7742

CEEMDAN-TCN-LSTM 0.9781 1.8512 1.3606 1,354.9698

TABLE 10 Comparison of models in similar types of articles.

Mould MAE (knots) MSE (knots2) RMSE (knots) R2

TCN-LSTM-CEEMDAN-ATTENTION 0.1381 0.0499 0.2048 0.9940

SARIMA-EEMD-LSTM 0.3027 — 0.4102 0.9848

VMD-SCCS-BP-ARMA 0.4220 — 0.3548 —

Multiple-point-AdaBoost-ELM 0.2474 — 0.3212 0.7384

TL-CNN-GRU 1.0390 — 1.5690 —
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