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Seismic facies analysis is important for oil and gas exploration. The conventional
seismic facies recognition methods are implemented manually with high
workload and low accuracy. Therefore, how to obtain seismic facies
characteristics quickly, efficiently, and accurately is an urgent requirement in
seismic facies research. To alleviate this issue, we propose a novel seismic facies
recognition method based on the region growing algorithm with expert
knowledge constraint. The processes of this algorithm are as follows: firstly,
we select high-density 3D seismic data in the target area for seismic facies
identification. Then, we utilize expert knowledge to define the priori geological
constraint for regional growing algorithm. Finally, the region growing algorithm is
used to pick up and divide different 3D seismic facies boundaries in the study area.
The verification of known geological knowledge proves that the results are
reasonable and reliable. The accuracy and efficiency of the proposed seismic
facies identification method based on region growing are significantly improved.
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1 Introduction

Sedimentary facies analysis is a fundamental work in hydrocarbon exploration, and its
reliability directly determines the success or failure of petroleum exploration (Wang et al.,
2002; Bao et al., 2005; Yang et al., 2010; Wu et al., 2011). Seismic facies can be explained as
the sum of sedimentary facies expressed in seismic information, that is, seismic facies are
seismic features formed by the sedimentary environment (Sloss, 1962; Xu et al., 1990).
Therefore, the spatial distribution characteristics of sedimentary facies can be established by
seismic facies analysis, combined with drilling, provenance direction, and other information
(Zhang et al., 2001; Zhu et al., 2009).

With the widespread use of three-dimensional (3D) seismic data, the overall understanding
of regional sedimentary facies is no longer limited to well data alone but is more often obtained
through the analysis and conversion of seismic facies based on the calibration of well data. Thus,
it is necessary for geologists to acquire seismic facies features faster and with higher accuracy.
Several scholars have tried to explore seismic facies through seismic attributes (Zhang et al., 2010;
Tang et al., 2011), waveform clustering (Deng et al., 2008; Li et al., 2017; Liu et al., 2020), shallow
neural network similarity (Saggaf et al., 2003;Marroquín et al., 2009; Dramsch and Lüthje, 2018),
deep learning (Wrona et al., 2018; Duan et al., 2019; Yan et al., 2020; He et al., 2022; Sang et al.,
2023), andmany othermethods, and have achieved certain results. For example, He et al. (2022)
used semi-supervised learning for intelligent seismic facies identification and obtained good
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results with improved estimation accuracy. Sang et al. used semi-
supervised learning for porosity prediction and reduced the
prediction uncertainty compared to conventional methods. The
methods based on deep learning may encounter a common
challenge, that is, deep networks trained for one region may be
difficult to apply to other regions.

With the increasing precision and depth of exploration, the
correlation between sedimentary facies models and geophysical data
such as seismic and well logging becomes more and more complicated.
It is difficult to identify the above complex relationships by only
interpreting sedimentary facies patterns manually, and the accuracy
and efficiency of manual interpretation cannot meet the current needs
of efficient exploration in the oilfield. Therefore, it is necessary to
introduce new seismic facies identification techniques to realize efficient
and accurate recognition of 3D seismic facies.

Image segmentation is one of the fundamental and key aspects in
the field of computer vision. Region growing is proposed under this
background and has been widely used in the field of automatic image
segmentation. Its biggest advantage is the integration of a priori expert
knowledge, which is suitable for the recognition and division of equally
complex seismic images (Zhu et al., 1996; Zhou et al., 2017). Herein,
based on the region growing algorithm, we can obtain the sensitive
attributes of seismic facies through optimization, and define the seed
points, growth criteria, and growth cut-off conditions for regional
growth based on a priori geological understanding of the
isochronous slice of the Wheeler domain. Then, we can recognize
the seismic facies layer by layer, and synthesize the final 3D seismic
facies identification results by interpolation in 3D space, which greatly
improves the accuracy and efficiency of seismic facies recognition.

2 Materials and methods

Region growing is a method of aggregating pixel points
according to the similarity of pixels within the same zone.
Starting from an initial area, such as a single pixel, the region is
gradually grown by subsuming adjacent pixels with the same
properties until there are no more points to be grouped (Meyer,
1990; Adams et al., 1994; Mehnert and Jackway, 1997). Herein, the
general process of implementing the region growing algorithm can
be carried out according to the following steps:

(1) In one image, non-edge or smooth points are manually or
automatically selected as seed points, and each seed region is
labeled using an agreed different value. Meanwhile, the mean
value of each seed area is calculated, and then the value of the
pixel points is replaced with the mean value.

(2) the non-edge and unmarked pixel point is located, marked as
Point Q, and the distance between the Point Q and the region
where the eight-neighbor pixel is situated further calculated,
which means the minimum distance can be obtained. The
distance mentioned above is given by Eq. 1:

d �
������������������������������
L* − Li*( )2 + a* − ai*( )2 + b* − bi*( )2√

, (1)

where (L*, a*, b*) denotes the values of unlabeled pixel points on the
three components of L*, a*, b*, respectively, and Li*, ai*, bi*

represent the mean values of neighboring region i (i = 1, 2,..., 8)
on the three components of L*, a*, b*, respectively.

The calculation allows Point Q to be assigned to the region
where the minimum distance neighborhood point is located, and
then further update the mean value of the region and the value of the
pixel. The above steps should be repeated until all pixel points
excluding edge points are marked.

(3) In order to maintain the distinct edges between large regions,
it is necessary to mark the edge points after non-edge points.
Specifically, this means finding the pixel points of edge point
mapping EM (i, j) = 1 in the complex wavelet domain, and
contining to repeat step (2) until all edge pixel points
are labeled.

(4) In order to solve the over-segmentation problem caused by
too many seed points and to obtain better results for human
senses, it is necessary to perform region merging based on the
following two merging criteria:

a. The distance among adjacent regions is taken as the base, and
the Euclidean distance between the mean value of the region to be
merged and the adjacent region is calculated by Eq. 2:

d � D Li* − Lk*( ), ai* − ak*( ), bi* − bk*( )( )
min D Li*, ai*, bi*( ), D Lk*, ak*, bk*( )( ) , (2)

where D(a, b, c) � �����������(a2 + b2 + c2)√
, (Li*, ai*, bi*), (Lk*, ak*, bk*)

respectively represent the mean values of L*, a* and b*
components of two adjacent regions l and k.

If the d is less than the threshold δ, the two regions are combined
and the mean value of the regions is recalculated.

b. If the ratio of the region size to the image size is less than the
preset ratio threshold μ, the calculated region is merged with the
neighboring region with the smallest surrounding color distance.

(5) Through the optimization of similar regions by multiple
iterations, we achieve the image segmentation.

3 Results

In seismic interpretation, seismic facies recognition is usually
done by initially filtering out sensitive seismic attribute slices and
then manually mapping different seismic facies on seismic
attribute slices. This traditional method is very laborious, and
it is easy to ignore the characteristics of the image itself and add
too much subjective judgment. The region growing algorithm can
fully utilize the searching and processing capability of the
computer to extract more potential information in the image
and achieve fast and accurate segmentation of seismic facies
image, thereby greatly improving the accuracy and efficiency
of seismic facies analysis.

However, the seismic facies images have multiple interpretations
compared to conventional images. For example, two regions with
the same color but not connected may belong to different types of
sedimentary facies, or regions with different colors may belong to
the same types of sedimentary facies. Therefore, when using the
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region growing algorithm to segment seismic facies images, there is a
high possibility of over-segmentation or under-segmentation, which
will reduce the geological significance of the results.

In this paper, we select high-density 3D seismic data in the
Moxizhuang area in the Junggar Basin for 3D seismic facies
identification with the regional growing algorithm. Based on expert
knowledge to define initial seed points, regional growing criteria, and
vertical cut-off condition as a priori geological constraint, the region
growing algorithm is used to pick up and divide different 3D seismic
facies boundaries in the study area to solve over-segmentation or
under-segmentation problems in seismic facies analysis.

3.1 Extraction of stratigraphic domain slices

To obtain the results of 3D seismic facies identification in the
study area, we firstly carried out the seismic phase boundary
classification and identification by using a computer to slice layer
by layer at a vertical resolution. Figure 1 shows the N-S-direction
seismic profile and horizontal time slice in the study area. In this
profile, the diachroneity is very obvious on the contemporaneous

horizontal slice. The seismic facies has rapidly variable lateral phase
changes and cannot establish an accurate relationship with the actual
sedimentary interface. Therefore, it is difficult to identify seismic facies
boundaries from isochronous slices of original seismic data using the
region growing algorithm, and the accuracy is relatively low.

To better solve the diachronous problem, we transformed the
seismic data volume or sensitive attribute volume in the time domain
to that in the Wheeler domain (relative geologic age domain), and
then identified the seismic facies boundary on the slices of theWheeler
domain. On the basis of detailed identification of seismic isochronous
interface, we built a sedimentary model that is more consistent with
the actual geological conditions, and developed Wheeler domain
transformation that is more consistent with the actual geological
significance (Tan, 2013; Forte et al., 2016; Yin et al., 2018). Under
certain resolution conditions, the transformed seismic syncphase axis
is nearly horizontal and has better isochronism. The stratigraphic
cyclicity is clearer, which can better reveal the spatial relationship
among sedimentary elements (Figure 2).

Next, the extraction of densely sampled isochronous slices is
achieved by extracting slices from the sampled points of theWheeler
domain seismic data volume or sensitive attribute data volume of the

FIGURE 1
Near N-S-direction seismic profile in the time domain through wells Zhuang105-Zhuang104-Zhuang102.

FIGURE 2
Local scale of the near N-S-direction seismic profile in the Wheeler domain through wells Zhuang105-Zhuang104-Zhuang102, Lower Jurassic
Sangonghe Formation.
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vertical seismic profile. The geological significance of each slice is
relatively clear, with better correspondence with sedimentary facies.
This facilitates the identification of seismic facies boundary by using
region growing, and then transforms to sedimentary facies boundary
to achieve geologically meaningful 3D seismic facies recognition.

3.2 Introduction of a priori geological
constraints

Since the multi-solution of seismic interpretation leads to more
complex segmentation and recognition of seismic phase images, a
recognition algorithm with human-computer interaction for
improving accuracy is needed. The region growing algorithm
selects pixels with similar features and merges them into regions.
There are three major factors affecting the algorithm: the initial seed
points, the region growing criteria, and the vertical cutoff conditions.
The optimal determination of these three elements using expert
knowledge can better introduce the a priori geological knowledge
into the seismic facies identification.

3.2.1 Selection of the initial seed point
The initial seed point is the pixel that can represent most of the

pixels in the target region, and its accuracy has a great influence on the
recognition result of the region growing algorithm. Generally, there are
two methods of seed point selection: (1) automatic selection of the seed
point based on non-edge and smooth points, and (2) Manual selection
of the seed point based on expert knowledge. The former can save a lot
of manpower and time by automatically selecting the seed point
through considering edge and pixel information of color images.
However, there are also a series of problems such as over-selection
and atypical selection, especially when facing complex images such as a
seismic facies diagram. It is not only difficult to select appropriate initial
seed points, but also to introduce the existing geological understanding
into the segmentation calculation. Therefore, in this paper, the initial

FIGURE 3
Comparison of the boundary range of seismic phase identified by two methods. (A) amplitude attribute slice in the relative chronostratigraphic
domain; (B) attribute value method with picking up boundary range from15000 to 18,000; (C) correlation method with seed points with correlation
coefficient 0.8.

FIGURE 4
Fine calibration between the in-well sedimentary facies of the
Well Zhuang 3 and well-side seismic trace.
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seed points are manually selected based on expert knowledge. Although
the cost of labor and time is slightly increased, this method can better
offset the false segmentation of seismic phase generated by seismic
multi-solution and is more consistent with geological understanding.

In this paper, the manual selection of the initial seed points is
mainly based on the following two principles:

(1) The well point on each slice must be selected as the initial seed
point. Geologists interpret well logging facies according to
logging, coring, and other existing geological data to ensure
maximum reliability of the geological results. With the
detailed well-seismic calibration, the logging phase of a
single well can be precisely corresponded to the seismic
traces beside the well. On this basis, the well logging facies
can assign sedimentary facies’ geological significance to the
3D seismic facies picked up near the well, thus achieving the
hard constraints on the geological conclusions of the well
logging during the regional growth.

(2) Non-well points screened by geologists that can reflect the
typical morphology of the sedimentary facies can also be used
as initial seed points. Based on the correspondence between
existing sedimentary models and seismic attributes, and
combined with the understanding of existing sedimentary
characteristics, geologists can identify the typical attribute
distribution characteristics of different sedimentary facies in
sensitive attribute slices. This kind of non-well point can be
used as initial seed points for non-well stations, thus making
up for the fact that some logging facies types at well sites
are scarce.

In the actual calculation process, we set different influence weights
formanually selecting initial seed points. For example, the target layer in
the region is mainly shallow delta front subfacies, and the weight of seed
points involving shallow delta front subfacies in this layer segment will
be set higher than that of coastal shallow lake subfacies. The specific
weight ratio is given based on existing geological knowledge. This is also

FIGURE 5
Seismic connecting-well profile of the Zhuang 103-Zhuang 2-Zhuang 1-Zhuang 104-Zhuang 101-Zhuang 107-Zhuang 3-Zhuang 301 wells.

FIGURE 6
Logging facies profile of the Zhuang 103-Zhuang 2-Zhuang 1-Zhuang 104-Zhuang 101-Zhuang 107-Zhuang 3-Zhuang 301 wells.
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a control strategy based on expert knowledge (prior geological
understanding).

3.2.2 Determination of the region growing criteria
Another key point in the region growing process is the

selection of appropriate growth criteria. Region growing criteria
can be developed based on different principles, and different

growth criteria can result in different regional growth process.
It has two major methods for setting region growing criteria, that
is, the range of seismic attribute values and the correlation with
seed points.

(1) Region growing criteria using the range of seismic attribute
value. The geologists should prefer seismic attributes that can

FIGURE 7
Sedimentary facies versus seismic facies for Sandbed Group 1 of the J1s1 2 strata. (A) Sedimentary facies diagram of Sandbed Group 1 of the J1s1
2 strata; (B) Seismic facies diagram of Sandbed Group 1 of the J1s1 2 strata.

FIGURE 8
Sedimentary facies versus seismic facies for Sandbed Group 2 of the J1s1 2 strata. (A) Sedimentary facies diagram of Sandbed Group 2 of the J1s1
2 strata; (B) Seismic facies diagram of Sandbed Group 2 of the J1s1 2 strata.
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better reflect the sedimentary facies. After obtaining a range of
seismic attribute values corresponding to different sediments
using geophysical analysis, we then adjust the range of
different attribute values to control the region growing of
different seismic facies boundaries. This method has low
requirements on initial seed points and is suitable for
picking up multiple seismic facies boundaries
simultaneously by using attribute value range constraints.
However, it requires multiple seismic phases in the plane
corresponding to the same sedimentary facies type.

(2) The region growing criteria by correlation with the seed point.
The geologists also need to first select the seismic attribute
that can better reflect the sedimentary facies, and then
determine the initial seed points and calculate the average
of the attributes for one or more seed points. The region
growing condition is based on the correlation between the
surrounding attribute values and the average of the seed point
attributes, which has the minimum growth value
corresponding to the lower limit of the correlation. This
method relies on the selection of initial seed points by the
geologist and enables controlled pickup of a single specific
seismic phase boundary.

We identified and compared the seismic facies using the above
two methods for amplitude attribute slices in the relative
chronostratigraphic domain (Figure 3A). The results show that
the seismic phase ranges identified using the attribute value range
method are coarser, and it is easier to identify the non-seed point
identification regions, which results in the under-segmentation of
the seismic phases (Figure 3B). In contrast, the seismic phase range
identified by the correlation with seed points method are narrower
and the results had better correlation with the seed
points (Figure 3C).

Considering the advantages and limitations of the above two
methods, the correlation with seed points is more suitable as a
criterion for region growing. This is because the latter method
provides more accurate identification and classification of seismic
facies by manually preferring the initial seed points of different
geological significance.

3.2.3 Determination of the vertical cut-off
conditions

After determining the regional growth criteria, strata slices can be
selected layer by layer for seismic facies identification and division.
However, the cut-off conditions for the growing region in the vertical
direction is still unclear. The initial seed point has a good
representation of the seismic facies around it in one strata slice
which can be approximated as an isochronous plane. Thus, it is
reasonable to take the lower value of the correlation degree with
the initial seed point as the cut-off condition for region growing.
When another strata slice is vertically transformed, the corresponding
sedimentary microfacies on the well may have changed significantly,
although the change in properties may be minor. In this case, the
correlation with the initial seed point can no longer fully express the
change of geological significance of seismic facies, so it is necessary to
further add an external hard constraint condition to correct this error.

The above problem can be solved by introducing the sedimentary
facies information of a single well. The precise correspondence between
the sedimentary microfacies on the well and the seismic traces beside
the well can be established by using the fine well seismic calibration.
Furthermore, the depth range of different sedimentary facies at the well
point can be taken as the cut-off conditions for vertical growth of
different seismic facies. Figure 4 shows the synthetic seismic records
and logging facies of the Well Zhuang 3 in the study area. We took the
underwater distributary channel at 3132 ms–3140 ms as an example.
In the strata slices in the vertical range from 3132 ms to 3140 ms, the
attribute scope near the initial seed point of the Well Zhuang 3 with its
correlation degree greater than 0.8 can be identified as the underwater
distributary channel. Meanwhile, the attribute scope near the initial
seed point of theWell Zhuang 3with its correlation degree greater than
0.8 in the strata slices from 3140 ms to 3146 ms should be described as
channel bar microfacies.

3.3 Acquisition of 3D seismic facies

In order to further break through the 2D seismic facies analysis
and realize the 3D seismic facies modeling, we can extract dense
strata slices at the interval of seismic vertical sampling rates from the
seismic attribute data volume in the relative geological age domain
(Wheeler domain). Then, we can identify and divide the seismic
facies of the strata slices based on the regional growth algorithm and
combine and smooth the recognition results of each slice within the
three-dimensional space, so as to obtain the 3D seismic facies
identification results.

4 Field data application

In the previous exploration, a total of 20 exploratory wells were
completed in the Jurassic strata in the Moxizhuang area and
hinterland of the Junggar Basin, of which 5 wells were drilled
and encountered oil flow, showing a great exploration potential.
However, there were also some problems, such as the large buried
depth of the target formation, poor correspondence between the
reservoir and the seismic, and difficulty in accurately determining
the distribution characteristics of sedimentary facies. In this study,
the initial seed point, regional growth criteria, and vertical cut-off

FIGURE 9
Seismic facies identification results of Jurassic Sangonghe
Formation (time domain).
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conditions were determined through expert knowledge to introduce
geological constraints. On this basis, different 3D seismic facies
boundaries were picked and divided by the regional growth
algorithm to construct the 3D seismic facies model of the study
area. Based on the interpretation of logging facies from real drilling,
we have carried out a detailed description of sedimentary
development characteristics in the study area.

The Jurassic Member 2 of Sangonghe Formation (J1s2) in the study
area is vertically divided into five sandbed groups (from 1 to 5), among
which 1, 2, 3, and 4 sandbodies are developed. From the thickness
statistics of the J1s2 and the sandbodies from1 to 4, the shallow water
delta frontal subfacies sedimentary system from the northern
provenance is mainly developed in the study area during this
period. Typical shallow water deltaic markers such as large amounts
of carbon debris and vertical biological boreholes are also visible in the
rock cores. The paleolandscape slope is gentle, at only about 0.3˚-1.4˚.
The water depth is shallow, about 10–30 m, but with the deepening of
the water body, the sandbodies presented the characteristics of multi-
stage development and positive superposition. Through the
optimization of seismic attributes by geologists, the root mean
square amplitude is taken as the sensitive data body for seismic
facies analysis, and isochronous strata slices are extracted at intervals
of vertical seismic sampling rate for the root mean square amplitude
attribute body in the Wheeler domain. Then, the regional growth
algorithm can carry out the identification and division of different
seismic facies in each strata slice. Finally, the results of seismic facies
division in all strata slices are synthesized into 3D seismic facies
recognition results in space. The whole process took about 5 h.

Figure 5 shows the near north-south seismic connecting-well
profile of the Zhuang 103-Zhuang 2-Zhuang 1-Zhuang 104-Zhuang
101-Zhuang 107-Zhuang 3-Zhuang 301 wells extracted from the 3D
seismic facies identification results. The sand content of the J1S2 2

formation is relatively low and the lithology is mainly sand-mud
interbedded, in which the sand body is thin and laterally
discontinuous, showing a shore shallow lake and delta front
sedimentary facies. The sand content of the J1S1 2 formation is
relatively high, with large sand body thickness and good lateral
continuity, mainly manifesting as a shallow water delta front
subfacies. The river channel migrated rapidly laterally, and the
sedimentary microfacies dominated by the river channel sand bar
changed rapidly longitudinally and laterally. The macroscopic
sedimentary pattern shown in the seismic connecting-well profile is
basically consistent with the existing geological understanding, and the
description of different seismic facies is more refined. Figure 6 shows
Logging facies profile of the connecting-well profile. Through
comparison with the sedimentary facies profiles of the over-
connected well, it is considered that the seismic facies identification
results show more natural distribution characteristics of different facies
zones with a certain vertical resolution and have good comparability
with the actual sedimentary development characteristics.

The seismic facies map extracted from Sandbed Group 1 and
Sandbed Group2 of the J1s1 2 strata are compared with the
sedimentary facies diagram drawn by the geologists through the
combination of well data and seismic data (Figures 7, 8). The results
show that the automatic identification of seismic facies based on
region growing was basically consistent with the distribution
characteristics of different seismic facies in the original seismic
data. The results also show that the automatic identification of

seismic phases based on region growing is consistent with the
spreading characteristics of different phases in the original
seismic data. The results also show that it has a better effect on
the mapping of different subfacies at the front edge of the shallow
water delta in the study area, and the lateral distribution
characteristics of different sedimentary facies zones are more
refined and consistent with the geological deposition pattern. The
seismic facies predicted by the proposed method are controlled by
the category of seed points. For example, the seed points have been
assigned five microfacies that belong to two different sedimentary
subfacies. The predicted microfacies will not exceed the number of
types given by the seed points. In summary, this has a good guiding
significance for the understanding of sedimentary facies in the area.

Figure 9 shows the 3D display of seismic facies identification
results from the bottom of J1S2 2 formation to the bottom of J1S1 2

formation in the study area relative to the chronostratigraphic domain
restored to the temporal domain. Combined with the logging facies
interpreted by real drilling, it can be found that the bottom of J1S2 2

formation is dominated by cold-toned shore-shallow lake seismic
facies, but the local area also developed warm-toned front seismic
facies from the northern provenance. The J1S2 2 formation generally
showed a water-continent connection facies, and its lithology was
dominated by sandstone-mudstone interbed. The J1S1 2 formation has
an overall development of warm-toned frontal seismic facies, and its
lithology was mainly sandstone, which is basically consistent with the
actual geological understanding.

5 Conclusion

(1) The region growth algorithm based on the facet model can
fully utilize the powerful processing ability of the computer to
extract more potential information from sensitive attribute
slices, effectively avoid over-segmentation, and realize the
rapid and accurate segmentation of seismic facies images,
which greatly improves the accuracy and efficiency of seismic
facies analysis.

(2) Considering the three key elements of region growing,
namely, initial seed point, regional growth criteria, and
vertical cut-off conditions, a specific implementation
strategy based on expert knowledge is innovatively
proposed to introduce the priori geological knowledge into
the specific seismic facies identification calculation through
human-computer interaction, and more accurate seismic
facies segmentation results can be obtained.

(3) This method has achieved good application results in the
Moxizhuang area. The 3D seismic facies pickup results
showed that the Jurassic Sangonghe Formation as a whole
is dominated by northern provenance, and the bottom of J1S2
2 formation is dominated by shore-shallow lake facies. The
front subfacies are developed in the local area, which is
generally characterized by a water-continent connection
facies with low sandstone ratio, and the lithology is
dominated by sandstone-mudstone interbed, while the J1S1
2 formation is dominated by a shallow water delta front
subfacies, and the river quickly migrated laterally with a
high sandstone ratio, and the lithology is mainly sandstone
(Su-Mei et al., 2022).
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