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Inmountainous areas, roads are often damaged by earthquake-induced landslides
(EL). The degree of road damage and the existing functional state will have a very
important impact on the whole earthquake relief work. However, this question has
long been plaguing scientists engaged in the risk assessment. Now, anMDT-based
rapid assessmentmethod for the spatial distribution of trafficable sections of roads
(TSR) hit by EL is proposed. The method mainly consists of three procedures: 1)
Demarcate the road sections in the evaluated region; 2) Create the data for
earthquake-induced landslide sensitivity level for the evaluated region; 3) Use the
sample data to devise the MDT model for the TSR hit by EL and calculate the
trafficability of road sections. This method was applied in the study of the 2008
Wenchuan Ms 8.0, the 2014 Ludian Ms 6.5, the 2012 Yiliang Ms 5.6 and Ms 5.7
earthquake-stricken regions. The case of Wenchuan earthquake was adopted to
establish the method. The cares of Ludian and Yiliang were used to evaluate
whether the method could be transplanted into similar regions. The p-value and
the kappa coefficient were used to test and evaluate the significance and the
consistence of the actual situation. Our results suggest: ⅰ) The Wenchuan
evaluated region had the p-value 2.52 × 10−203 and the kappa coefficient 0.91.
Less than 1% of the road sections that were inferred to be trafficable with the
established method were actually interrupted by EL. The interruptions in the road
sections that were inferred to be un-trafficable were 12 times of those in the other
road sections. ⅱ) The Ludian and Yiliang earthquake-stricken regions had the p-
value 9.7 × 10−107 and the kappa coefficient 0.81. Only 1.31% of the road sections
that were trafficable according to the calculation results of the model had been
actually interrupted by EL. The interruptions caused by EL in the un-trafficable
road sections according to the calculation results were 5.2 times of those in the
trafficable road sections. This method could be applied in other similar regions
when a certain error was permitted.
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1 Introduction

The spatial distribution of trafficable sections of roads (TSR)
significantly affects emergency rescue decision-making, which
impacts both the reduction of earthquake disaster losses and the
regional planning for mitigating earthquake disasters. For instance,
if the roads are damaged during an emergency rescue, the rescue
team may be delayed, which can seriously delay the rescue of the
injured in a timely manner (Lan et al., 2009; Chang, 2013; Yang et al.,
2023a). An important part of earthquake emergency response is
drawing up a plan of action for emergency rescue within a short time
after the earthquake. Planning can be enhanced if it is supported by
the simulation and analysis of seismic disasters including the
prediction of expected road blockage caused by earthquake-
induced landslides (EL). The Ministry of Emergency
Management of the People’s Republic of China undertakes
rapidly assessing the impact of significant earthquakes occurring
on the Chinese mainland before eyewitness reports have come in
and informs the government in earthquake-stricken areas (including
the transportation department, armies, and other departments) of
the potential effects. The government’s immediate plan for rescue
and evacuation requires information about road blockage in the
disaster area and suggestions from the Ministry of Emergency
Management of the People’s Republic of China about traffic
management. Facing the need for information concerning a large
area (the Chinese mainland), the assessment of EL disasters
implemented by the Ministry of Emergency Management of the
People’s Republic of China must adopt methods based on
correlation analysis and can at present only provide information
on EL sensitivity. Recently, Dai achieved good results in rapid
assessment of human death by landslide sensitivity information
(Dai et al., 2022). This paper aims to add the capability of being able
to predict road blockage using the existing earthquake-induced
landslide sensitivity (ELS) data. Road trafficability (RT) during an
earthquake event depends mainly on two natural factors. One factor
is the ground motion, which causes direct damage to bridges,
tunnels, and roadbeds. The other factor is the secondary
geological disaster resulting from ELS and mud-rock flow, which
destroys or buries roads. Substantial progress has been made in the
development of techniques for the rapid assessment of roads directly
damaged by ground motion. However, few studies have focused on
the rapid assessment of TSR according to the secondary effects of
earthquakes such as ELS. The C4.5 method based on the maximum
information gain in the decision tree was introduced to explore the
risk assessment of road interruptions based on the ELS in the high-
intensity areas during the Wenchuan earthquake (An et al., 2015).
The study revealed that the ELS level could be used to assess the
trafficability of roads. In the C4.5 method, the ELS level was based on
the intensity as a parameter of ground motion influence. Five levels
of intensity corresponded with the values 1–5 in the landslide cell
attribute. The study used the 90 m × 90 m raster data. In the study of
the high-intensity areas during the Wenchuan earthquake, the
influence on the number of cells was however tested only at a
single ELS level for each child node in the decision tree. At the same
time, the correlation between attributes, which existed extensively in
an information system, was ignored, but it led to costly pruning in
the decision tree model. The largest shortcoming was the poor
universality of the findings in the study because of the absence of

focus on low-intensity areas. To overcome the shortcoming wholly
or partially, an MDT (Multivariate Decision Tree)-based rapid
assessment method is proposed in this paper for the spatial
distribution of TSR based on the ELS. In the method used in the
study, the seismic intensity envelope of an assessed region is used to
calculate and determine the spatial distribution of ELS levels.
Subsequently, the number of cells in the raster data for each ELS
level is calculated within the 180 m buffer zone on both sides of each
road section. The MDT correlation between the number of cells at
each landslide sensitivity level within the buffer zones of each road
section and the trafficability of the road section is established to infer
the spatial distribution of TSR. This method is established to provide a
more universal and accurate way for quickly assessing the spatial
distribution of TSR hit by EL. It is hoped that this method can
meet the urgent need for quantitative information on the spatial
distribution of TSR hit by EL while making decisions on emergency
aid in an earthquake and for quantitatively assessing earthquake
disasters. In some major projects such as the National Earthquake
Social Service Engineering Emergency Response Program, the National
Support Plan for Science and Technology, and the Earthquake Disaster
Scenario Construction in Large and Medium Cities of China, the ELS
was studied to generate the data set for the prediction of ELS level
according to the influence of seismic intensities (Bai et al., 2015; Bai
et al., 2021). The data set was used in the rapid assessment of ELS after
an earthquake. It has 90 m × 90 m raster data displayed as cells in the
computer. In terms of landslide probability, the landslide sensitivity of
cells was categorized into five levels, that is, very low, low,medium, high,
and very high, which correspondingly represent the cell attribute values
1, 2, 3, 4, and 5. The data for the prediction of landslide sensitivity had
three key features: 1) it was 90 m × 90m raster data; 2) it was predicted
with the intensity as the parameter influencing ground motion; 3)
landslide sensitivity was divided into five levels representing the cell
attribute values 1–5 correspondingly. When the landslide sensitivity
level of a region was higher, that is, there were more cells with high
values, it would be more likely that the earthquake would cause
landslides on a larger scale.

This paper is divided into six sections. In the second section, we
describe the research areas and available data. The third section
presents the basic idea of the rapid assessment method for the spatial
distribution of TSR hit by the EL, as well as the MDT theoretical
model. In the fourth section, the main results obtained with the
method are described. The fifth section discusses the change to
parameters and scope of applicability of the constructed method.
The sixth section draws conclusions about the method and
highlights the matters to which special attention should be paid.

2 The study areas and available data

2.1 Study areas

Situated at the southeast edge of the Qinghai–Tibet Plateau, the
Sichuan–Yunnan region is affected by the eastward movement of
crustal materials in the Tibet Plateau and the wedging Assam peak,
causing its complicated crustal activity and intense neotectonic
deformation and seismic activity. It is, therefore, the region most
noticeably exposed to strong seismic activity in mainland China (Su
et al., 2001). At 14:28 (Beijing time) on 12 May 2008, a strong
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earthquake of Ms 8.0 occurred in Sichuan, China. The epicenter of
the earthquake was located at 31.01 N, 103.42 E in Wenchuan
County. The area affected by the Wenchuan earthquake, with
intensities up to degree Ⅺ, was within the active Longmen
Mountain fault zone. This is a zone of active tectonics that
separates the Chengdu Plain and Sichuan Basin to the southeast
from the Longmen Mountain area and the Tibetan Plateau to the
northwest. A significant difference exists between the topography of
the two areas, and the major disaster area following the earthquake was
in the mountainous area, an area prone to landslides. The earthquake
caused severe landslides, and almost all of the roads leading to the
worst-hit areas were affected to varying degrees. The road breaks caused
by the EL have seriously delayed the rescue progress. Ludian County
and Yiliang County, are located in the southwest of Zhaotong City,
Yunnan Province, China. On 3 August 2014, an earthquake of
Ms6.5 occurred in Ludian, Yunnan, China. The earthquake occurred
east of the Xiaojiang fault zone and south of the Lianfeng fault zone. The
epicenter was located in the urban area of Longtoushan Town,
southwest of Ludian County. A severe landslide occurred at the
junction of Huodehong Town and Longtoushan Town on the north
bank of the Niulan River. Although the magnitude of the Ludian
earthquake was not high, the earthquake intensity in the extreme
earthquake area reached Ⅸ, the surrounding landforms in the area
were complex, the accessibility was extremely poor, and the resource
and environmental carrying capacity were fragile. The Ludian
earthquake caused the worst landslides in the region’s history. Dense
landslides have blocked rural roads leading to settlements in the
Niulanjiang Valley region, as well as aftershocks and heavy rains in
the disaster area, resulting in repeated disruptions to the road. On
7 September 2012, the Ms 5.7 andMs 5.6 Yiliang earthquakes occurred
in Yiliang, Yunnan Province, triggering numerous landslides and
causing significant impact on the locals. Many roads around the
Luoze River in Yiliang County have been blocked by earthquake
landslides.

Identifying the extent and degree of interruption of roads hit by the
EL is vital for the development of post-earthquake traffic control

strategies in Yunnan and Sichuan (Ouyang, 2013). In this study, a
rapid assessment model of the TSR hit by the EL is constructed for the
evaluated regions, including the 2008 Wenchuan Ms 8.0 earthquake-
stricken region, the 2014 LudianMs 6.5 earthquake-stricken region, and
the 2012 Yiliang Ms 5.6 and Ms 5.7 earthquakes-stricken region. The
earthquake-stricken region is a region with the seismic intensity VI and
above based on the post-earthquake field survey (Figure 1). The three
earthquake-stricken regions mentioned are typical of the mountainous
areas in the Sichuan–Yunnan region and Southwest China, and
analyses of these are also applicable in other mountainous areas of
China. Among these evaluated regions, the Wenchuan earthquake-
stricken region has the most comprehensive set of samples for the
interruption of roads hit by the EL. These samples can be used to
establish the rapid assessment method for the TSR hit by the EL and
thereby evaluate the effectiveness of the method. The Ludian-Yiliang
earthquake-stricken region is used to evaluate the extensibility and
applicability of the constructed method in similar regions.

2.2 Basic vector data

In this study, the data of roads and seismic intensities were provided
by the basic database for earthquake emergency response of Yunnan
Province and the basic database for earthquake emergency response of
Sichuan Province. The data of the roads in the year immediately
preceding the occurrence of an earthquake in a region were taken as
the basis for creating the spatial data of the road. The format of road
date and intensities date is shapefile. Roads date’s feature type is
polyline, and the intensities date’s feature type is polygon. The
analysis of roads took into account only higher levels of
classification of roads (including expressways, national highways,
and provincial highways) but left out lower levels of roads such as
county-level and town-level roads. However, the trafficability of the
roads of lower levels is also important in real-life crisis management.

The EL data involved in this study were sourced from the
Department of Natural Resources of Yunnan Province (DNRYP).

FIGURE 1
Location of the evaluated regions. (A) Wenchuan evaluated region; (B) Ludian-Yiliang evaluated region.
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After these earthquakes, the DNRYP conducted extensive field
investigations and combined remote sensing image interpretation to
determine the spatial distribution of EL. The feature type of Yiliang EL
date is point, but the others are polygon. Immediately after the
Wenchuan earthquake, we carried out a large field investigation in
the disaster area to assess the impact of landslides on roads. The field
investigation was enhanced by the use of high-resolution images. After
the Ludian and Yiliang earthquakes, we also carried out similar work.
We used these data to determine which roads in the research area were
blocked owing to EL. In this study, the results of the basic vector data we
collected are shown in Figure 2.

2.3 Earthquake-induced landslide sensitivity
date

The trafficability of roads hit by the EL is closely related to the
road condition and the scale of the landslide. Based on the current
research findings, the ELS level was selected to represent the
influence of landslides on the trafficability of roads in this study.
There have been previous studies that focused on the ELS
assessment around the world, but the methods developed in
these studies that applied to rapid assessment were mainly
divided into two categories. One category comprised studies
where the methods were based on the Newmark displacement
model and its derived models (Capolongo et al., 2002; Havenith
et al., 2006; Gaudio et al., 2012; James et al., 2013; Rajabi et al., 2013;
Chousianitis et al., 2014), and the other category contained studies
that used analysis methods based on landslide sensitivity (Havenith
et al., 2006; Kamp et al., 2008; Kamp et al., 2010; Xu et al., 2012a; Xu
et al., 2012b; Xu et al., 2012c; Xu et al., 2014). The Newmark models
applied to the assessment of smaller regions (Jibson, 2007; Yang
et al., 2023b; Pei et al., 2023; Zhao et al., 2023) and not suitable for
assessing the potential landslides caused by earthquakes extensively
(Qiu et al., 2022; Wang et al., 2022; Yang et al., 2023c; Ma et al.,

2023). In the early stage, the studies in China relied on the activity
and occurrence conditions of secondary geological disasters in the
past earthquakes for the preliminary judgment on the ELS in a
specific region, for some time to come (Tang et al., 2001; Liu et al.,
2006). The findings in these studies played a significant role in
China’s land planning and control for a long time, but they could not
be easily applied to the rapid assessment of ELS levels during an
emergency. After the Wenchuan earthquake occurred, many studies
in China explored ELS from the approach of mathematical
regression. The methods used in these studies mainly included
information quantity (Zhuang et al., 2010), logical regression
(Tao et al., 2010; Bai et al., 2015; Xu et al., 2019), analytic
hierarchy process (Wang et al., 2012), fuzzy mathematics (Wang
et al., 2011), artificial neural network (Xu et al., 2012b), and certainty
factor analysis (Xu et al., 2013). A great number of theories,
methods, and data have been accumulated in these studies for
the research of ELS. In this study, a module was borrowed from
a research initiative to rapidly assess the ELS level and formulate the
ELS distribution map of the evaluated region. The module was the
latest product of the “Research on the analysis methods for ELS”
(No. 2016QJGJ09), a special project on earthquake disaster scenario
construction in large and medium cities. The method was used to
draft the spatial distribution of landslide sensitivity levels on the land
of China according to earthquakes of different intensities (Figure 3).
It generated the 90 m × 90 m prediction data set of ELS levels with
intensity VI–XI. After calculating the probability of EL in each cell
for the given intensity, it divided the probability into five levels by
natural breaks, that is, very high, high, medium, low, and very low.
The cell values for these ELS levels are 5–1, respectively. A higher cell
value implies higher ELS (Bai et al., 2021). In Figure 3, each cell value
represents the ELS level at the corresponding position. The cell
values are highlighted in different colors. When tested with the
historical data of EL, the prediction data set of ELS levels is a good
indicator for the occurrence of EL (Bai et al., 2021; Zhang et al.,
2022).

FIGURE 2
Basic vector data of the evaluated regions. (A) Wenchuan evaluated region; (B) Ludian-Yiliang evaluated region.
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3 Materials and methods

The MDT-based rapid assessment method for the spatial
distribution of TSR hit by the EL is employed to evaluate the road
sections, which are then categorized into trafficable and un-trafficable
sections. TSR allows vehicles to ply during an earthquake as they are not
damaged by EL, while un-trafficable sections are buried or destroyed by

EL, making it impossible for vehicles to drive on them. The rapid
assessment of the spatial distribution of TSR hit by the EL is meant to
classify the TSR by identifying the number of cells at different landslide
sensitivity levels within the buffer zones of these sections with theMDT
model. The method is implemented in three basic steps (Figure 4): 1)
Demarcate the road sections in the evaluated region, that is, partition a
road into sections by virtue of the geographic information system (GIS),

FIGURE 3
Prediction data set of ELS levels with intensity VI–XI (90 m × 90 m raster data).

FIGURE 4
Process of the MDT-based rapid assessment for the spatial distribution of TSR hit by the EL.
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and make a 180 m buffer zone on both sides of each road section; 2)
Create the data for ELS level for the evaluated region. The data is
extracted for the spatial distribution of ELS levels in terms of seismic
intensity for the evaluated region. The numbers of cells at different
landslide sensitivity levels are recorded within each buffer zone. Seismic
intensity is determined in the rapid assessment while we quickly
evaluate the spatial distribution of trafficable sections of roads hit by
earthquake-induced landslides. The seismic intensity is usually
conducted by the model of area attenuation features of earthquake
intensity, shakemap, aftershock, and any other methods in the process
of rapid assessment after a significant earthquake occurs. A system of
seismic intensity rapid assessment technology has been given by Bai
et al. (2014) and other researchers. 3) Use the sample data to devise the
MDTmodel for the TSR hit by EL and calculate the trafficability of road
sections. The results of the rapid assessment are taken for mapping the
spatial distribution of TSR according to conditions of EL in the
evaluated region.

3.1 Definition and processing of road section

Road layout normally forms a networked system with some nodes
connected by different traffic lines. One or several traffic lines exist
between two nodes. A line connecting two nodes in a road network is

defined as a road section (Figure 5), which is taken as the basic unit to
assess the trafficability of a road hit by the EL. The nodes at both ends of
a road section may be cities, towns, villages, ramp entrances and exits,
highway intersections (including crossings), roundabouts, stations, or
other highway beginning and endpoints (Figure 6). A road section is
taken as the basic unit in the assessment since an interruption at any
position of the section makes it impossible to transport people and
goods between two nodes through that section. Under this
circumstance, a GIS is employed to partition a road into vector
sections, encode these road sections, and process the relevant fields.
For this purpose, the field for trafficability of sections is Boolean or
logical; that is, the sections of the roads are classified according to the
influence of the EL into either trafficable or un-trafficable sections.

3.2 Landslide influence distance and road
section buffer zone

A road becomes un-trafficable when it is buried or destroyed by
the EL or by the descent of the EL above the road. When a landslide
occurs above a road, it may interrupt the road only if its radius goes
beyond or reaches the road. As for 5,928 landslides induced in the
Wenchuan earthquake (Figure 7), the horizontal projection distance
of their movement ranged from 90 to 190 m; the maximum was

FIGURE 5
A sketch map of road sections.

FIGURE 6
A sketch map of some nodes in the traffic network. (A) Ramp entrance and exit; (B) Roundabout and crossing; (C) Road start and end.
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recorded as 1,201 m and the average was 136.6 m. Among them,
386 samples had a distance larger than 180 m, accounting for only
6.51% of total samples. The average turned out to be 168.8 m if the
repeated distances were taken out from the sample data. The roads
in the mountainous areas of China normally extend along the
valleys with higher elevations on both sides. Based on the statistical
results of EL distance, a space of 180 m on both sides of a road is
defined as the influence of EL on the trafficability of the road. This
aims to lower the subsequent statistical redundancy in this study.
Therefore, the buffer zone of road sections was made 180 m on
both sides of the roads but not provided at the ends of a road
section (Figure 8).

3.3 Spatial distribution of earthquake-
induced landslide sensitivity levels and
assignment of road section landslide attribute

3.3.1 Creation of earthquake-induced landslide
sensitivity data for the evaluated regions

Using the module (described in Section 2.3 above), the ELS level
for the whole evaluated region area can be created. The process
(Figure 9) is as follows: 1) Acquire the disaster areas and the seismic
intensity in each area for the current earthquake from the seismic
intensity map determined in the rapid assessment (Sometimes it can
also be obtained through on-site investigation or other means too).
2) Extract the ELS level distributions in the intensity-specified areas
from the ELS dataset for China according to the corresponding
seismic intensity. 3) Acquire the ELS distribution for the whole
evaluated area affected by the earthquake through the mosaicking of
the previously extracted ELS distributions under each seismic
intensity.

If the spatial distribution of ELS levels is predicted with the
data set, the parameter representing the influence of ground
motion in the evaluated region should be seismic intensity or
converted into it.

3.3.2 Extraction of the cell information for
earthquake-induced landslide sensitivity levels in
buffer zones

The cell information of ELS levels in buffer zones is extracted by
counting the number of cells at different landslide sensitivity levels
in buffer zones based on the data generated in Section 3.3.1. The cells
are covered, as indicated in Figure 8. The number of cells is assigned
as the earthquake-induced landslide attributes (ELA) of the buffer
zone. In the buffer zone attribute table, Ai (i=1, 2, 3, 4, 5) denotes the
number of cells at the ELS level i in a buffer zone.

3.3.3 Assignment of earthquake-induced landslide
attributes to road sections

After extracting the information as given in Section 3.3.2, the
ELA of each buffer zone is assigned to the corresponding road
sections based on the data correlation, and these become the ELA for
these road sections. After this assignment, the road sections share
the same ELA as the buffer zones.

3.4 MDTmodeling of the trafficable sections
of roads subjected to the earthquake-
induced landslides

3.4.1 MDT model
Decision tree modeling is a method commonly used in machine

learning. For instance, we may desire to obtain a model from a given

FIGURE 7
Spatial distribution of the landslide distances in theWenchuan earthquake. To determine the extent of earthquake-induced landslides, we randomly
selected 5,928 samples from the landslides triggered by the Wenchuan earthquake. The plotted dots in the figure represent the locations of the selected
landslides, while the color of the dots indicates the distance of their movement.
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training data set for the classification of new samples in a binary
classification task. The task can be regarded as a process of
“deciding” or “judging” whether a sample is “positive.” As its
name suggests, the decision tree has the decision made in a
treelike structure. The result of the decision-making process is
the judgment we desire. Normally, a decision tree contains a root
node, several internal nodes, and several leaf nodes. The leaf nodes
reflect the results of the decision, while each of the other nodes
represents an attribute test. The sample set for each node is
categorized into the child node based on the result of the
attribute test. The root node contains the entire set of samples.
The path from the root node to each leaf node represents a sequence
that is subjected to a judgment test. Decision tree learning generates
a decision tree that is highly capable of generalization, i.e., processing
new samples. It basically follows the simple and direct strategy of
“divide-and-conquer.” It is evident that a decision tree is generated
in the process of recursion. In the basic algorithm of the decision
tree, the return leads to recursion in three circumstances: 1) all the
samples contained in a node belong to the same category and are not
further classified; 2) the attribute set is empty, or all the samples
cannot be classified since their attribute values are identical; 3) the
sample set contained in a node is empty, making it impossible to
classify. In the second circumstance, the node can be marked as a leaf

node, and its category is set as the category containing the most
samples of the node. In the third circumstance, the node is also
marked as a leaf node, but its category is set as the category
containing the most samples of its parent node. There is a
substantial difference between them. The posterior distribution of
the node is utilized in the second circumstance, while the sample
distribution of the parent node is taken as the prior distribution of
the node in the third circumstance. A decision tree involves a variety
of models and algorithms. Most of the decision tree models require
the testing of only one attribute at each node, e.g., CART, ID3, and
C4.5. These univariate decision trees assume that the conditional
attributes in the information system are immune to the effect of
decision attributes. Nevertheless, the correlation between the
attributes in various information systems is universal in real life.
It is therefore often impossible to reflect such a correlation in a
univariate decision tree. Additionally, pruning is costly for a
univariate decision tree and causes the loss of some attributes
that seem futile but contain important and relevant information.
This turns into a bottleneck in improving the classification accuracy
of the decision tree. For this reason, Murthy et al. (1994) put forward
the Multivariate Decision Tree (MDT) model in 1994. In the MDT
model, the nodes that were not leaf nodes, were not used exclusively
to decide on a specific attribute but to test the linear combination of
attributes. In other words, each node (other than a leaf node)
appeared as a line classifier, e.g., ∑d

i�1wiai � t, where wi was the
weight of the attribute ai; wi and t could be learned from the sample
set and attribute set contained in the node. The MDT was intended
to create a suitable line classifier instead of finding the optimal
classification attribute for each node that was not a leaf node as it was
conducted in the traditional learning process with a univariate
decision tree (Zhou et al., 2016). In this study, the R software is
utilized to construct the MDT model for the TSR hit by the EL.

3.4.2 Calculation of the trafficable sections of
roads subjected to the earthquake-induced
landslides

The calculation of the TSR subjected to the EL in a given region
is actually the classification of road sections based on MDT in terms
of trafficability. The road sections in a region to be evaluated are
taken as samples to analyze the correlation between RT and the ELS
on both sides of the roads. At the same time, the attributes of these
samples are represented by the number of cells at different landslide

FIGURE 9
Process of the ELS assessment in the evaluated region.

FIGURE 8
The sketch map of the road section buffer zones and cells.
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sensitivity levels on both sides of the road sections (i.e., road section
landslide attributes). The road sections are classified into trafficable
and un-trafficable sections. The RT is obtained in a field survey and
then used to determine the actual trafficable sections in these
samples. The trafficability of the roads hit by EL T is expressed as:

T � 0, 1{ } (1)
In Eq. 1, the value of T is 0 when a road section is interrupted by

EL, i.e., it is un-trafficable. The value 1 is awarded when the road
section is not interrupted by EL, i.e., it is trafficable. The number of
cells at the ELS level in the buffer zones on both sides of the road
section indicates the possibility of EL. Consequently, each sample
has five attributes in correspondence with the five levels of ELS. The
five attributes represent the number of cells at each level of ELS in
that sample. The value of Eq. 1 is determined by whether the
attributes of a road section satisfy Eq. 2:

t � ∑d

i�1wiAi (2)

In the linear expression, t represents for the threshold of
judgment; Ai stands for the number of cells at the landslide
sensitivity level i in the buffer zone; wi denotes the weight of the
landslide sensitivity level i. Normally, wi varies with nodes in the
decision tree. In this study, five ELS levels are used so that the line
classifier d=5. The C4.5 model considers the number of cells at only
one ELS level for each node, but the MDTmodel uses the number of
cells at all ELS levels for each node. In other words, the products of
the number of cells at each ELS level and the weight of the
corresponding sensitivity level should be aggregated for this
purpose.

3.4.3 The quantification of a node’s “purity”
The MDT model was mainly used to find out the optimal linear

expression for each node, but a parameter was still needed to judge
the linear relationship for the most suitable MDT. Generally, the
samples contained in the branch nodes of the tree were desired to be
in the same category along with the progress of classification in the
decision process. It implied that the purity of nodes became higher
and higher. The Gini index was the commonest indicator for the
purity of the sample set. If the proportion of the samples in the kth
category of the sample set D was pk (k=1,2, . . . . . . ,|y|), the Gini
index of D was defined as:

Gini D( ) � ∑
y| |
k�1

∑
k ≠ 1

pkpk′ � 1 −∑
y| |
k�1

pk
2

(3)

The lower the value of the Gini(D), the higher the purity of D.
Apart from Gini index, information gain, and information entropy
was used to measure the purity of nodes. These measures for purity
did not exert any significantly different effect on the model. In this
study, we evaluated the classification in terms of the Gini index.
When the value of Gini(D) was the smallest, it was believed that the
corresponding classifier must be the best.

3.4.4 Accuracy evaluation of the MDT
The MDT model must guarantee the statistical significance of the

assessment results and meet the actual needs at work while ensuring
that each node has the smallest Gini index but the largest purity. The
statistical significance of results is a method for estimating the

authenticity of results (representing the whole). In the statistical test,
the p-value (p-value, Probability, Pr) is an indicator of the declining
credibility of the results. With greater p-values, the correlation of the
variables for samples becomes a less reliable indicator for the correlation
of variables overall. Inmany fields, the p-value is statistically obtained by
virtue of a significance test. However, it is normally believed that 0.05 is
the margin of acceptable error for the p-value. Under normal
circumstances, p<0.05 indicates the existence of a statistical
difference, p<0.01 significant statistical difference, and
p<0.001 highly significant statistical difference. This means that the
probability of sample error caused by the difference between samples is
less than 0.05, 0.01, and 0.001. Moreover, the correctness rate of
assessment can be considered, or the kappa test may be conducted
for the model to meet the actual needs. The correctness rate represents
the percentage of the assessment results that comply with the actual
condition of samples, while the kappa coefficient shows the consistency
of simulation results with the actual condition. The calculated kappa
coefficient ranges from −1 to 1, but the kappa value normally falls into
the range of 0–1. It is common to divide the kappa values into five
categories for the consistency of different levels. Among them,
0.0–0.20 is the range for slight consistency, 0.21–0.40 for fair
consistency, 0.41–0.60 for moderate consistency, 0.61–0.80 for
substantial consistency, and 0.8–1 for almost perfect consistency.

4 Results

4.1 Creation of the spatial data for road
sections

The data of the roads in the year immediately preceding the
occurrence of an earthquake in a region were taken as the basis for
creating the spatial data of road sections. The details regarding the
spatial distribution of road interruptions caused by EL in these
earthquake-stricken regions were obtained from a field survey
(Figure 2). By using the above method (Section 3.1), we have
divided the roads in the evaluation areas into 29,204 sections, of
which 2,254 sections are defined as blocked due to earthquake-
induced landslides. The exclusive numbering scheme and fields were
designed for each of these road sections. The road sections destroyed
or buried by EL were defined as un-trafficable sections, and others as
trafficable sections. In this study, we focused only on how EL
affected the trafficability of roads and ignored the influence of
other disasters. Therefore, some road sections that were inferred
to be trafficable may be un-trafficable for other reasons.

4.2 Data extraction of earthquake-induced
landslide sensitivity levels

For a better comparison with the actual situation, the data of
seismic intensity from the field survey (i.e., spatial vector attribute
data) was used to extract the data of ELS levels in the evaluated
regions. We followed the ELS assessment process (Figure 9) to
extract the data of the corresponding intensity from the prediction
data set of ELS level (Figure 3) and prepared a mosaic of the spatial
distribution data of ELS levels for the three earthquake-stricken
regions (Figure 10). After the data of ELS levels for the evaluated
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regions were extracted for the spatial distribution data of ELS levels
of the evaluated regions, the ELAwas assigned to the road sections in
the evaluated regions as per the methodology given in Section 3.3.2
and Section 3.3.3. Finally, the data of road sections were obtained for
the trafficability of roads hit by EL as well as the ELA.

4.3 Modeling and test in the Wenchuan
evaluated region

4.3.1 Factor analysis on the trafficable sections of
roads subjected to the earthquake-induced
landslides

In this paper, we construct a rapid assessment method for the
TSR subjected to the EL and then use it to infer the trafficability of
road sections based on their ELA. The road sections in the
Wenchuan earthquake-stricken region were classified into two
categories. One category contained the road sections interrupted
by EL, which were defined as un-trafficable. The other category
included the other road sections that were not interrupted by EL,
and these were defined as trafficable. The ELA of the road sections
interrupted by EL in the Wenchuan evaluated region (i.e., the
number of cells at different ELS levels in buffer zones as
discussed above) (Figure 11) were compared with the ELA of
other road sections (Figure 12). This comparison revealed that
the number of cells at the very high or high level of ELS within
the 180 m buffer zones on both sides of the road sections that were
interrupted by EL was significantly higher than that of other
unaffected road sections. Almost all cells were at a very low or
low level of ELS within the 180 m buffer zones on both sides of other
road sections. The number of cells at a very high or high level of ELS
for these roads was very few or even zero. It is evident that roads
were more easily interrupted when there were more cells at a high
level of ELS on both sides of the roads. On the contrary, there was a
greater possibility of roads not being affected by EL if the majority of

the cells were at low levels of ELS on both sides of the roads. As
shown in Figure 11 and Figure 12, the number of cells at different
ELS levels on both sides of road sections could be taken as an
important basis for judging the trafficability of roads hit by the EL.
This indirectly revealed that the prediction data set of ELS levels was
a good indicator for the possible occurrence of EL.

Contingency analysis was carried out to qualitatively identify the
correlation between the ELA of road sections and their trafficability.
This was intended to infer the correlation between the trafficability
of roads subjected to the EL and the number of cells at each ELS level
within their buffer zones, i.e., whether they were independent of each
other. A contingency table was employed to analyze and infer the
correlation between the trafficability of 26,151 road sections hit by
the EL and their ELA for the Wenchuan evaluated region (Table 1).
In the table, T denotes the trafficability of roads according to EL. The
roads are un-trafficable if the value of T is 0 or trafficable if it is 1.
Moreover, Ai represents the number of cells at the landslide
sensitivity level i in buffer zones. In the contingency analysis, the
number of cells at each landslide sensitivity level equaled to or
exceeded 0. The number of road sections reflected the number of
trafficable road sections for ELA.

In the contingency analysis, we used the null hypothesis H0 that
A1 and T were independent of each other, and the alternative
hypothesis H1 that A1 and T were consistent with each other.
The contingency table analysis showed that the p-value in the
test of each group was much lower than 0.001. It was revealed
that the null hypothesis, where the ELA of road sections and their
trafficability were independent of each other, was untenable. In
other words, the number of cells at different ELS levels within the
180 m buffer zones on both sides of road sections is related to the
interruption caused by EL to the road sections. The correlation
coefficient indicated a significantly negative consistency between
A1–A5 and T. WhenA3–A5were greater than 0, the value of T tended
to be 0. In other words, if the number of cells at the medium to very
high landslide sensitivity levels in the buffer zones of a road section

FIGURE 10
Spatial distribution inversion of ELS levels in the evaluated regions. (A) Wenchuan evaluated region; (B) Ludian-Yiliang evaluated region.
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was larger, the road section had a stronger tendency to be
interrupted by EL. Moreover, there was a significantly positive
consistency between A1–A2 and T. When the value of A1–A2 in
the ELA of the road section was greater than 0, the value of T tended
to be 1. Therefore, a road section had a stronger tendency of not
being interrupted by EL when the numbers of cells at the very low
and low landslide sensitivity levels in the buffer zones of the road
section were larger. The positive or negative consistency between Ai

and T depended on the agreement on the trafficability of road
sections but always proved that they were not independent of each
other. The number of cells at the very high ELS level was the least
consistent with the trafficability of roads. It implies that the cells at
the very high ELS level made the highest contribution to the un-
trafficable roads hit by the EL. At the same time, the number of cells
at the very low ELS level was the most consistent with the
trafficability of roads, and its absolute value was the largest. It is
revealed that the number of cells at the very low ELS level exerted the
highest effect on the trafficability of roads hit by the EL. The p-value
and consistency coefficient prove that the trafficability of road
sections could be inferred by using their ELA.

4.3.2 Node division
The road sections in the Wenchuan evaluated region were

classified into two categories. Among them, 8,717 pieces of data
for the road sections were taken as the training set to construct the
MDT model for the TSR hit by the EL. The remaining 17,434 pieces

formed the test set to check the reasonableness of the model.
Selecting the optimal classification attribute from the data set was
crucial to decision tree learning. Following the above constraints, the
statistical software R was utilized to build the MDT model. The
branching rules of the MDT for the trafficability of the roads hit by
the EL were developed according to the output of the R software.

The MDT model for the trafficability of the roads hit by the EL
started from the root node, which contained 8,717 training samples.
The samples included 739 un-trafficable samples and
7,878 trafficable samples. The branching for the root node of the
decision tree was conducted in terms of whether the landslide
attribute values of road sections satisfied Eq. 4:

A5 + A4 + A3 − 1( )≤ 0 (4)
Starting from the root node of the decision tree, the samples

whose landslide attributes of road sections that satisfied Eq. 4 were
deployed to node 1, and other samples went to node 2. The road
sections in node 1 of the decision tree were judged to be trafficable.
At this time, node 1 had the smallestGini index (0.00561366) but the
largest purity so the tree did not grow. In the training set,
7,827 samples satisfied Eq. 4 and were deployed to node 1.
Among them, 7,805 road sections were trafficable, so that the
fault rate was less than 1%.

The branching was conducted for node 2 of the decision tree
based on whether the landslide attributes of road sections satisfied

FIGURE 11
Statistical diagram of the landslide attributes of the road sections interrupted by EL in the Wenchuan evaluated region.

FIGURE 12
Statistical diagram of the landslide attributes of the road sections uninterrupted by the EL in the Wenchuan evaluated region.
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Eq. 5. The samples whose landslide attributes of road sections
satisfied Eq. 5 were assigned to node 3, and other samples went
to node 4. The road sections in node 4 were identified as un-
trafficable. At this time, node 3 had the smallest Gini index
(0.026989308) but the largest purity so the tree stopped growing.
In the training set, 368 samples satisfied Eq. 5 and went to node 3.
However, 363 road sections were un-trafficable, causing a fault rate
of less than 1%.

A5 − 1≥ 0 (5)
The branching was conducted for node 4 of the decision tree

based on whether the landslide attributes of road sections satisfied
Eq. 6. The samples whose landslide attributes of road sections
satisfied Eq. 6 were sent to node 5, and other samples went to
node 6. The road sections in node 5 were identified as un-trafficable.
At this time, node 5 had the smallest Gini index (0.147928994), but
the largest purity and branching was halted. In the training set,
247 samples satisfied Eq. 6 and were sent to node 5. Among these
samples, 228 road sections were un-trafficable, so that the fault rate
was less than 1%.

1/ 4 − A3( ) + 1/ 6 − A4( )< 1/4 (6)
The branching was conducted for node 6 of the decision tree

based on whether the landslide attributes of road sections satisfied
Eq. 7. The samples whose landslide attributes of road sections
satisfied Eq. 7 were added to node 7 of the decision tree, and
other samples went to node 8. The road sections in node 7 were
considered un-trafficable. At this time, node 7 had the smallest Gini
index (0.209876543), but the largest purity and the branching came
to an end. In the training set, 63 samples satisfied Eq. 7 and went to

node 7. Among these samples, 56 road sections were un-trafficable,
causing the correctness rate of 88.89%.

1/ A3 − 13( ) + 1/ 7 − A4( )< 5/104 (7)
The branching was conducted for node 8 of the decision tree

based on whether the landslide attributes of road sections satisfied
Eq. 8. The samples whose landslide attributes of road sections
satisfied Eq. 8 were deployed to node 9 of the decision tree, and
other samples went to node 10. The road sections in node 9 were
judged to be trafficable. In this case, the node had the smallest Gini
index (0.067776457) but the highest purity. Then, the branching was
stopped.

1/ A2 − 102( ) + 1/ 14 − A3( )≤ 15/14 (8)
The branching was conducted for node 10 of the decision tree

based on whether the landslide attributes of road sections satisfied
Eq. 9. The samples whose landslide attributes of road sections
satisfied Eq. 9 were deployed to node 11 of the decision tree, and
other samples went to node 12. The road sections in node 11 were
found to be un-trafficable. At this time, node 11 had the smallest
Gini index (0.64498791) but the highest purity and the decision tree
stopped growing. In the training set, 61 samples satisfied Eq. 9
and were deployed to node 11. Among them, 59 road sections
were un-trafficable, so that the fault rate was less than 4%. The
road sections in node 12 were judged to be trafficable. Node
12 had the smallest Gini index (0.157215802) and the largest
purity so the branching of the decision tree was completed. In the
training set, 122 samples did not satisfy Eq. 9 and went to node
12. Among them, 112 road sections were trafficable, so the
correctness rate was 91.80%.

TABLE 1 Contingency of the ELS and the RT.

Ti p-value of Ai and Ti Consistency coefficient of Ai and Ti

0 1 Total

Ai A5 0 1,127 23,897 25,024 2.42×10−116 −28.9715

>0 1,104 23 1,127

Total 2,231 23,920 26,151

A4 0 207 23,529 23,736 7.52×10−185 −26.1829

>0 2024 391 2,415

Total 2,231 23,920 26,151

A3 0 391 23,368 23,759 2.08×10−151 −22.8983

>0 1840 552 2,392

Total 2,231 23,920 26,151

A2 0 230 23 253 8.884×10−23 21.1148

>0 2001 23,897 25,898

Total 2,231 23,920 26,151

A1 0 1,265 414 1,679 2.91×10−99 96.509

>0 966 23,506 24,472

Total 2,231 23,920 26,151
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3/7≤A4/7< 1 (9)
The above MDT rules for judging the trafficability of the roads

hit by the EL were drafted into a traditional tree structure, as shown
in Figure 13.

The judgment rules given in Figure 13 were used to decide the
trafficability of roads hit by the EL for all samples in the Wenchuan
evaluated region by virtue of MDT. The results were compared with
the actual trafficability of roads. According to the calculation results
(Table 2), the p-value of the Wenchuan evaluated region was
2.52×10−203, much lower than 0.001, and its overall correctness
rate reached 98.50%. Its kappa coefficient was 0.91, which falls in
the range of 0.81–1 so the assessment results given by the model had
almost perfect consistency with the actual condition. Based on the
results, the number of interruptions in the trafficable road sections
hit by the EL took up only 0.958% of these road sections, while the
number of interruptions in the un-trafficable road sections was
12.3 times as high as those in other road sections. Obviously, the
MDT model could be taken as a good indicator of the interruption
caused by EL in the road sections. Compared with the C4.5 decision
tree, theMDTmodel is applicable in a wider range and shows higher
differential significance, that is, higher statistical significance, as well
as higher kappa coefficient, that is, higher consistency and overall
correctness rate.

The above model was utilized in ArcGIS to obtain the spatial
distribution of TSR hit by the EL in the evaluated region

(Figure 14A) by calculating the trafficability of road sections hit
by the EL, based on the seismic intensity from the post-earthquake
field survey. The comparison with actual conditions revealed that
most of the road sections that were assessed to be un-trafficable but
were trafficable belonged to some expressways with high intensity,
while most of the road sections that were calculated to be trafficable
but were interrupted by landslides existed in some provincial
highways with low intensity. The model was not constructed
with the classification of roads but assumed that all roads were
identically vulnerable to EL. However, provincial highways were
more vulnerable to EL than expressways due to design and siting
considerations.

4.4 Application of the model to the Ludian-
Yiliang evaluation regions

The 2014 Ludian Ms 6.5 earthquake-stricken region and the
2012 Yiliang Ms 5.6 and Ms 5.7 earthquake-stricken region in
Yunnan were employed in the study to test the extensibility of
the proposed method for the rapid assessment of TSR hit by the EL
caused by different earthquake magnitudes in the regions with
similar natural and geographical environments. The MDT model
constructed for the TSR hit by the EL for the Wenchuan evaluation
region was applied to the Yunnan evaluation region without altering
the data processing method, model indicators, and parameters. The

FIGURE 13
MDT model of the TSR hit by the EL in the Wenchuan evaluated region.
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spatial distribution of TSR that had EL in the Ludian-Yiliang
evaluation regions was obtained, as shown in Figure 14B. The
Ludian earthquake and the Yiliang earthquake had much lower
magnitude and intensity, and the landslides induced were less
serious than for the Wenchuan earthquake, but they still
triggered different severities of interruption to roads because of
EL since they occurred in the mountainous areas. The calculation
results (Table 3) showed that the p-value in the test of trafficability
for the Ludian-Yiliang evaluated regions was closer to 0, and the
overall correctness rate reached 99.67%. Moreover, the kappa
coefficient was 0.81. Its consistency was slightly lower than that
of the Wenchuan evaluated region but still fell into the almost
perfect range. In the Ludian-Yiliang evaluated regions, the road
sections that were interrupted by EL comprised only 1.31% of those
with the trafficable attribute. Additionally, the road sections that had
the untrafficability attribute and that were interrupted by EL were
5.2 times as high as other road sections. Thus, the calculated
trafficability is a good indicator of whether road sections are
interrupted by landslides. The constructed model for the
Wenchuan evaluated region can be promoted for evaluating the
trafficability of other regions with similar natural and geographical
environments under conditions of EL damage of their road network.

On the premise of acceptable error, the constructed method can be
employed to rapidly and more extensively assess the TSR hit by the
landslides caused by earthquakes of different magnitudes in
Southwest China.

5 Discussion

The strong correlation between the trafficability of road sections
and the ELS level is pivotal to the construction method for the rapid
assessment of TSR hit by the EL. As discussed above, the model must
be constructed under three conditions: 1) The basic unit in the
assessment must be a road section. In the assessment process, a road
must be divided into sections and should not be simply taken as a
unit. 2) The buffer zones on both sides of road sections must be
extended by 180 m and not created at both ends of a road. The value
of 180 m was determined using the horizontal projection distance of
EL in the Wenchuan earthquake. 3) The ELS level uses the 90 m ×
90 m raster data. Moreover, the data of landslide sensitivity is
obtained by taking intensity as a parameter for the influence of
ground motion. The landslide sensitivity is divided into five levels,
and the attribute values of the cells for landslides are

TABLE 2 Assessment results based on the MDT model (the Wenchuan evaluated region).

Actual condition Overall correctness
rate

Kappa coefficient p-value

Un-trafficable Trafficable Total

Judgment based on the model Un-trafficable 1978 161 2,139 98.50% 0.91 2.52×10−203

Trafficable 230 23,782 24,012

Total 2,208 23,943 26,151

FIGURE 14
Spatial distribution inversion of TSR hit by the EL for the evaluated regions. (A) Wenchuan evaluated region; (B) Ludian-Yiliang evaluated region.
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correspondingly 1–5. In the end, the efficacy of this method may
vary if any of these conditions are altered, e.g., using a different basic
unit for the assessment, changing the distance or way of buffering, or
abandoning the 90 m × 90 m raster data of the sensitivity levels.

While developing the rapid assessment method for TSR hit by the
EL, road sections are demarcated since they are the basic element
connecting two nodes in a road network. Theoretically, a road section
fails to serve as a transport medium between two nodes if it is
interrupted at any position. However, a problem still needs to be
addressed, that is, different lengths of road sections. In other words,
the total number of cells at the landslide sensitivity levels in the buffer
zones varies with road sections, which inevitably causes the error of the
model. In this study, a rapid assessment method is uniformly developed
for expressways, national highways, and provincial highways. This may
lead to a simplified process of modeling that could reduce the
calculation of RT in the rapid assessment but increase the relative
error of the assessment results. If the unified geometric attributes are
used for the assessed units and different models are developed for
different types of highways, the assessment accuracy of the model may
be further improved.

The correlation between the trafficability of road sections hit by
the EL and the attribute of ELS level can be described with different
models. In this study, only the MDT model has been employed to
illustrate the correlation between the trafficability of the roads hit by
the EL and the number of cells at different ELS levels. It has also been
compared with the existing C4.5 model. Different models may
generate different assessment results. Therefore, it is necessary to
develop different models and select the more effective one.

As a preliminary attempt, the method is constructed for the
Wenchuan evaluated region and then applied in the Ludian-Yiliang
evaluated regions. It is proved that the proposed rapid assessment
method for TSR hit by the EL is effective when road sections are
taken as the basic unit in the assessment. Moreover, it is also
endorsed for the rapid assessment of earthquake-induced losses
and the risk prediction of earthquakes in other mountainous areas.
The proposed method is basically a machine learning method.
Taking a larger sample size or a larger evaluated region may
further lower the error of the assessment results with the
method. Nevertheless, the method may experience a larger
relative error in the assessment of TSR hit by the EL if the
earthquake in the evaluated region has a lower magnitude or
affects a narrower range. This situation must be attributed to the
discrete lengths of road sections and other occasional factors.

The proposed method for the rapid assessment of TSR hit by the
EL is an exploratory effort to address the lack of assessment methods
for the trafficability of roads subjected to earthquake-induced

geological disasters. This effort is made to quantitatively calculate
the spatial distribution of post-earthquake interruptions on the
roads caused by EL. Therefore, it is possible to develop a
reasonable traffic control strategy and initiate the necessary air
support promptly. The method can be further improved and
expanded after overcoming some shortcomings related to the
sufficiency of data of road interruptions caused by EL in past
earthquakes, the currency—the degree to which the data is
current—of basic data, and the diversity of models and methods.

6 Conclusion

The rapid assessment results of the spatial distribution of TSR
significantly affect the regional planning for alleviating earthquake-
induced disasters and the emergency rescue decision-making for
reducing the losses caused by earthquake-induced disasters. The
southwestern region of China is characterized by high mountains
and steep slopes due to which it is vulnerable to the direct impacts
of groundmotion.Moreover, earthquake-induced geological hazards are
also important factors causing the interruption of roads in the region. In
this paper, a rapid method for assessment of the trafficability of sections
in the roads hit by the EL based on GIS and MDT is proposed to assess
the trafficability of the roads affected by earthquake-induced disasters.
The method is constructed in three basic steps. The first step is to define
the road section as the basic unit of assessment. In the second step, ELA
is assigned to road sections. The numbers of cells at different landslide
sensitivity levels within the 180m buffer zones on both sides of road
sections are calculated and taken as the ELA. The third step is to calculate
the trafficability of road sections using the MDT model for the
correlation between the ELA of road sections and their trafficability.
The calculation results are employed in a GIS for mapping the spatial
distribution of trafficable road sections in the evaluated region.

In this study, the 2008 Wenchuan Ms 8.0 earthquake-stricken
region in Sichuan was selected together with two regions with
similar natural and geographical environments, including the
2014 Ludian Ms 6.5 earthquake-stricken region in Yunnan, and
the 2012 Yiliang Ms 5.6 and Ms 5.7 earthquakes-stricken region in
Yunnan. These evaluated regions were used to develop the rapid
assessment method for TSR hit by the EL and build the
corresponding model. The Sichuan evaluated region was used to
construct the model and test its reasonableness, while the Ludian-
Yiliang evaluated regions in Yunnan were employed to evaluate the
extensibility and applicability of the model. The model constructed
for the Wenchuan evaluated region had a p-value of 2.52×10−203

(much lower than 0.001). The overall correctness rate of the model

TABLE 3 Assessment results based on the MDT model (for the Ludian-Yiliang evaluated regions).

Actual condition Overall correctness
rate

Kappa coefficient p-value

Un-trafficable Trafficable Total

Judgment based on the model Un-trafficable 19 6 25 99.67% 0.81 9.7×10−107

Trafficable 4 3,047 3,051

Total 23 3,053 3,073
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for identifying the trafficable road sections in the assessment reached
98.50%. The kappa coefficient was 0.91, indicating the almost perfect
consistency between the assessment results and the actual condition.
The road sections that were identified as trafficable but were
interrupted by EL took up only 0.958% of these road sections,
while the road sections that were evaluated as un-trafficable and
were in fact interrupted by EL were 12.3 times as high as other road
sections. This revealed that the RT calculated using the MDT model
for theWenchuan evaluated region was a good indicator for whether
road sections were interrupted by EL. The MDT model was
compared with the C4.5 decision tree to prove its wider
applicability, higher differential significance (i.e., higher statistical
significance), as well as higher kappa coefficient (higher consistency
and overall correctness rate). When the constructed method and
model were applied in the Ludian–Yiliang evaluated regions, the
assessment results showed a p-value of 9.7×10−107 and an overall
correctness rate of 99.67%. The kappa coefficient was 0.81, falling
into the range of 0.81–1 so the assessment results given by the model
were almost perfectly consistent with the actual condition.
Moreover, the road sections that were assessed to be trafficable
but were interrupted by EL accounted for only 1.31% of these road
sections, while the road sections that were identified as un-trafficable
but were interrupted by EL were 5.2 times as high as other road
sections. The results of the Ludian–Yiliang evaluated regions proved
that the calculated trafficability was a good indicator for whether
road sections were interrupted by landslides. With some acceptable
error, the constructed method can be used to rapidly assess the
trafficability of the roads according to EL for different magnitudes of
earthquakes and in a wider range of similar natural and geographical
environments in Southwest China.
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