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In this work, a framework was developed to access and process raw data
from a commercial X-ray Computed Tomography (CT) scanner for research
purposes. Our method requires vendor-provided binaries to convert the data to
a readable format and also to remove the effect of proprietary beam hardening
preprocessing. As a result, custom reconstruction techniques, including beam-
hardening corrections algorithms, can be applied. Small region-of-interest CT
imaging techniques and different backprojection algorithms were investigated
to improve image quality (spatial resolution, noise) with an in-house iterative
reconstruction algorithm. For a reconstruction matrix of 512 pixels × 512 pixels,
processing times of approximately 2.5 s per slice were obtained using a set of
8 x GPUs. With this framework, high-quality images of high density samples
(e.g., minerals) can be obtained with reduced truncation-induced blurring, free
of artifacts stemming from the reconstruction process and reduced beam-
hardening artifacts.

KEYWORDS

tomographic reconstruction, iterative reconstruction, proprietary data format,
backprojection with bilinear interpolation, GPU acceleration, nondestructive testing,
beam-hardening

1 Introduction

X-ray Computed Tomography (CT) is nowadays ubiquitous in medicine for diagnosis,
treatment planning, and treatment response purposes. This technology is also increasingly
used for non-medical purposes in many fields, including archaeology, industrial metrology
Kruth et al. (2011); De Chiffre et al. (2014), geology Fortin et al. (2013); Kibria et al. (2014);
Périard et al. (2016), the timber industry, biology Mizutani and Suzuki (2012), industrial x-
ray inspection and aviation security Ying et al. (2006). It provides several advantages such as:
(i) non-destructive imaging and (ii) high spatial and density resolution Kaick and Delorme
(2005).

When compared to a microCT scanner, a medical CT scanner can present some
advantages such as faster scanning time and the possibility to scan large samples
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Hipsley et al. (2020). There are some drawbacks however in
using a device that was developed for scanning the human
anatomy, including artifacts for high-density samples, photon
starvation problems and lower spatial resolution Barrett and Keat
(2004). At INRS Eau Terre Envinronnement in Quebec City, the
Multidisciplinary Laboratory of CT-Scan for Natural Resources
and Civil Engineering is equipped with a modified medical CT
scanner, mounted on rails and using a custom CT table, which
allows scanning long samples, such as sediment cores Fortin et al.
(2013).

In clinical CT scanners, raw acquisition data are stored as
sinograms and are typically processed by proprietary methods,
notably to reduce beam hardening artifacts in reconstructed images,
which are often obtained with filtered backprojection algorithms
(e.g., FDK) Feldkamp et al. (1984). Raw sinograms are relatively
large from a storage perspective and are typically not kept on the
long term, as opposed to reconstructed images which are normally
sent to a database. Even though it is possible to archive sinograms,
their proprietary format typically prevents users from reading
them. The sinograms could also be preprocessed (e.g., calibration,
beam-hardening correction), and in this respect might not truly
represent raw CT data, i.e., measures of attenuation along a ray.
In some cases, including for research purposes, it is desirable
to access this raw attenuation data to use custom tomographic
reconstruction algorithms, including iterative ones where physics
priors can be considered. In this class of algorithms, the image
output is obtained by optimizing an specific objective function
Matenine et al. (2015c), which usually requires the computation
of several forward- and backprojection steps Geyer et al.
(2015).

Several methods can be used for forward- and backprojection
in tomographic reconstruction, and the choice is typically
driven by a trade-off between image quality, from a human
observer perspective, accuracy in terms of quantitative density
reconstruction, and processing time. For the ray-driven
backprojection, the accumulation process in each voxel (the
process on which the attenuation values for each ray are
accumulated onto a set of voxels, which represent the 3D volume
of the object) depends on the number of rays, where some
voxels might not be intersected at all, giving rise to artifacts.
A known solution, which increases computation time, is to
define detector sub-pixels, or to upsample the projection data,
so that the number of rays are multiplied by a constant factor.
Likewise, better accuracy with voxel-driven backprojection
methods is achieved by dividing a voxel into smaller sub-voxels
Zhuang et al. (1994). These methods can be advantageously
implemented on highly-parallel GPUs through different approaches,
allowing faster execution times Matenine et al. (2015b); Park et al.
(2015).

Previous work have shown the importance of the forward
projection model on image quality for iterative reconstruction
algorithms Hahn et al. (2016). Adding the forward- and
backprojection models as reconstruction parameters makes the
assessment of different techniques more complex, as each method
comes with several degrees of freedom.

We have developed a framework where an in-house iterative
algorithm can be used to reconstruct images based on genuinely
raw attenuation data. First, the sinogram data in proprietary

format are converted through the use of binaries provided by
the manufacturer. The conversion generates useable sinogram
data along with associated geometrical data. These data are then
used to perform the reconstruction with the iterative algorithm
OSC-TV (ordered subsets convex algorithm with total variation
technique) Matenine (2011). In this work, two backprojection
techniques were evaluated in terms of their impact on image
features: a Siddon-based (ray-driven) Siddon (1985) and a bilinear
interpolation (voxel-driven) approach. A technique used to
reconstruct regions-of-interest with this class of algorithms was also
analyzed Ziegler et al. (2008), as they allow for reduced truncation
artifacts caused by objects outside the reconstructionmatrix. Finally,
a custom beam-hardening correction (BHC) algorithm can be
applied on raw data, in combination with the aforementioned
techniques.

2 Background

2.1 OSC-TV

The Ordered Subset Convex (OSC) iterative reconstruction
algorithm (IR) is based on the maximization of the log-likelihood:

L(μ) = −∑
i
(bie−ti +Yiti) , (1)

where μ is the image estimate, bi is the photon count for the
detector index i in the absence of a sample, ti is the total attenuation
ti = ∑jlijμj, andYi is the transmitted data, where the index j represents
the voxels intersected by the ray going from the source to the
detector i. For a photon-counting detector, the transmission is
giving by:

Yi = bie
−ti . (2)

The CT Scanner uses energy-integrating detectors (EIDs),
so bi represents the total energy read by the detector. Even
though Yi will not strictly follow a Poisson distribution, this
model can be considered a good approximation Man et al.
(2001).

The maximum of the objective function defined by Eq. 1
is obtained via ordered subsets convex (OSC) expectation-
maximization algorithm Matenine et al. (2015a). In this case, the
convergence is accelerated by using subsets of projections for the
forward- and the backprojection step of the algorithm, given by the
following expression:

μ(n)s+1 = μ
(n)
s + μ

(n)
s

∑
i∈S(s)

lij [ ̄yi
(n) −Yi]

∑
i∈S(s)

lijt
(n)
i ̄yi
(n)
, (3)

where n is the reconstruction iteration number, ̄yi is the
estimated photon count, s is the index of the subset and S(s)
is a well defined function that generates for each selected
group of projections the subsets of rays Matenine (2011);
Di Schiavi Trotta et al. (2022). A high number of subsets is used to
accelerate the reconstruction, whereas this value should be reduced
at every iteration in order to decrease bias Beekman and Kamphuis
(2001); Sidky et al. (2006).
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A full OSC iteration step is completed when all the projections
have been used to update the expected value of the attenuation
μ(n). Once this step finishes, the image is regularized within the
image space by the total variation minimization technique (TV)
Matenine et al. (2011).

2.2 Forward- and backprojection
techniques

In the OSC-TV algorithm, the estimated image is forward- and
backprojected several times, depending on the number of iterations
and subsets, which are determined empirically Matenine et al.
(2015b).

In this work, the estimated image is forward projected
using Siddon’s algorithm Siddon (1985), which is a ray-driven
(RD) technique that can be efficiently implemented on the
GPU Matenine et al. (2015b). Backprojection was performed in
this work with two techniques: (i) voxel-driven with bilinear
interpolation (VD) Zhuang et al. (1994) or (ii) ray-driven. For
the former, a mismatch occurs from mathematical perspective as
the backprojector is not the transpose operator of the forward
projector. Such mismatch pair combinations are known to cause
convergence issues and artifacts on the reconstructed image
Zeng and Gullberg (2000), but was explored nonetheless here
(Section 3.2).

In the voxel-driven backprojection with bilinear interpolation,
the center of each voxel is projected on the detector and the
reading corresponds to the weighted sum of the four neighboring
pixels (the position is calculated relative to the detector pixel
centers).

For a ray-based backprojection, the detector readings are
smeared back across the image. The voxels that are incremented
in this process depend on the ray path from the source to the
detector reading. Typically, a finite number of rays are defined
(e.g., one ray per detector element). In this approach, depending
on the angle between rays and the voxel size, some voxels might
not be traversed by a given ray at all, or they are under-utilized,
for the intersection length is negligible. This problem is not
unique to the backprojection; it is also present in the forward
projection in different techniques (e.g., Siddon, Joseph’s method,
and bilinear interpolation) Hahn et al. (2016). Hence, some voxels
of the reconstruction matrix grid might play no role in modeling
some projections, degrading the accuracy of the forward projection
model.

Amultiray ray-driven approach for forward- and backprojection
can be used to address the fundamental problem of unintersected
voxels with ray-based techniques Zhuang et al. (1994). For that,
the detector elements are evenly divided into smaller sub-pixels,
where each ray now intersect their respective centers. For a 1 ×
1 detector geometry, hence, one sub-pixel, there is one ray path
per element, for a 2 × 2 geometry, 4 ray paths per bin, and so
on. For the parallel implementation of the algorithm on the GPU
through CUDA (Compute Unified Device Architecture), with our
framework, the number of threads per block was defined by the
maximumnumber of voxels traversed by any ray, which assigns each
ray to a GPU thread. Multiple rays are obtained by a loop over the
subpixels in a thread.

3 Materials and methods

3.1 Working with proprietary format

For this work, a Siemens SOMATOM Definition AS+ 128
scanner was used. This CT scanner is capable of performing
acquisitions with up to 4,608 projections in a single rotation,
through the use of the flying focal spot (FFS) technology
(with four focal point locations). The detector grid is made
of 736 pixels x 64 pixels, with a detector size in the axial
direction of 0.6 mm (other configurations are possible, as for
example, a detector size in the longitudinal axis z of 1.2 mm
and a detector grid of 736 pixels x 32 pixels). The X-ray tube
can be operated in the range of 70–140 kVp. This platform
is used for several non-medical applications, including material
characterization with dual-energy techniques Fortin et al. (2013);
Larmagnat et al. (2019);Martini et al. (2021); Di Schiavi Trotta et al.
(2022).

The process of using raw data from this medical CT scanner
is illustrated in Supplementary Figure S1. A vendor-provided
calibration table is used for acquisitions to cancel any vendor-
specific beam hardening corrections (detector calibration is
still applied). The raw data is stored in the host system and
copied to a different machine for archiving purposes, along
with calibration data. These raw data, free of vendor-specific
beam hardening corrections, can be read with vendor-provided
binaries. These genuinely raw data (except for detector calibration),
can thereafter be used in custom reconstruction algorithms
designed to handle corrections from first principles, notably
through dual-energy approaches Di Schiavi Trotta et al. (2022)
(Supplementary Figure S1).

3.2 Convergence of OSC-TV for a virtual
phantom: matched and mismatched
projector/backprojector pair

A virtual phantom (Figure 1) was used to assess the algorithmic
convergence of our reconstruction methods in different situations,
including one with a mismatched projector/backprojector pair
(unmatched), namely, Siddon-based ray-driven/voxel-driven with
bilinear backprojection. The matched case uses a Siddon-based ray-
driven for both the forward- and the backprojection.The numerical
phantom represents a 25.2 cm water cylinder and 9 cylinder rods of
distinct materials, each one with a diameter of 2.4 cm. The virtual
phantom dimensions are: 512 pixels × 512 pixels, with a pixel size
in x- and y-direction of 0.6 mm (transaxial plane), and 1.0 mm
in the z-direction (longitudinal direction). The X-ray absorption
property of the phantom, defined by the linear attenuation
coefficient, was retrieved from the NIST XCOM database
Suplee (2009).

A noise-free monoenergetic step-and-shoot acquisition of
the virtual phantom at 83 keV was simulated by using the
geometry of the medical CT scanner Siemens SOMATOM
Definition AS+ 128: two flying focal spots, a detector grid
with dimensions 736 pixels × 32 pixels, with a detector
pixel size in z of 1.2 mm (longitudinal direction), and 2,304
projections.
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FIGURE 1
Virtual phantom representing a cylinder of water (diameter of 25.2 cm)
and 9 cylindrical rods (diameter of 2.4 cm).

The convergence trend of the reconstruction was tuned
by the reconstruction parameters: number of iterations,
number of subsets, final number of subsets, and initial
image; regularization parameters also play an important role
in decreasing the overall noise and controlling the spatial
resolution: number of gradient steps and strength of regularization
Matenine et al. (2015b).

A high number of subsets, equivalent to one quarter of the
number of projections, can be used to achieve faster calculations
Beekman and Kamphuis (2001). The number of subsets can be
progressively reduced in order to reduce the bias in the final
image.

Different combinations of reconstruction parameters were
used to assess the convergence for both the matched and the
unmatched cases: 9 iterations for all cases; 576 (1/4 projections)
and 1152 (1/2 projections) subsets. A total of 4 reconstructions
were performed (2× 2), to sample the convergence parameter
space, with the regularization constant and gradient steps fixed
at 0.02 and 20, respectively. This combination in OSC-TV is
known to enhance the spatial resolution of realistic features
Matenine et al. (2015b), when compared to smoother combinations,
such as setting the regularization constant to 0.2 Matenine et al.
(2011).

In order to assess the convergence of the OSC-TV with a virtual
phantom, the map of the percent error for each pair of pixels was
used, defined by:

percenterror (%) = x
pred − xtrue

xtrue
× 100%, (4)

where xtrue is the ground truth image, which for the virtual
phantom is the tabulated (NIST) linear attenuation coefficient of
each material at 83 keV. This particular energy was chosen as it
coincides with the effective energy of the X-ray spectral response of

the system at a tube voltage of 140 kVpDi Schiavi Trotta et al. (2022).
Finally, xpred is the reconstructed image obtained with OSC-TV.

The root-mean-square deviation (RMSE), defined as:

RMSE = √
∑nvoxels−1

i=0
(xtruei − x

pred
i )

2

nvoxels
, (5)

where nvoxels is the number of voxels, was used to evaluate the
convergence of the reconstruction of the virtual phantom. For a
single slice, the RMSE is computed for each material of the virtual
phantom as well as for all the materials (including water). Voxels at
the edges are also included in the calculation, which may increase
the RMSE due to partial-volume averaging and blurring onmaterial
boundaries.

The mean absolute percent error (MAPE) from a certain region
of the image can be obtained from:

MAPE (%) = 1
N

N

∑
i=1

|xpredi − x
true
i |

xtruei
× 100%, (6)

where N is the number of pixels, and its used to evaluate how
close a reconstructed image of a homogeneous sample is to the
correspondent tabulated linear attenuation coefficient evaluated at
the effective energy of the associated X-ray spectrum.

The beam-hardening ratio (BHR), defined as Ying et al. (2006);
Di Schiavi Trotta et al. (2022):

BHR =
|Pedge − Pcenter|

Pedge
× 100%, (7)

is used to evaluate cupping artifacts on reconstructed images of
both preprocessed, and neutral projections.

3.3 Scanning protocols

In order to compare the Siemens reconstruction algorithm
with our in-house code, 6 samples were scanned (see Figure 2):
a water phantom, (a) an aluminum cylinder, (b) a jar of water
with an oblique aluminum bar, two mineral samples, namely,
(c) chalcopyrite, and (d) almandine, and one rock sample, a
homogeneous medium to coarse-grained sandstone, henceforth
referred to as sandstone (Table 2).

Different scan protocols were used depending on the sample size
and X-ray absorption properties. The sequential acquisition mode
was used due to its simplicity over the helicoidal mode for in-house
iterative reconstruction algorithms (see Table 1).

The water phantom was scanned with two different tube
voltages, 100 kVp and 140 kVp, with and without the proprietary
BHC preprocessing. The case without the proprietary BHC is
henceforth defined as neutralized projections (neutral). This allows
us to both calibrate the system (see Section 3.4) and to assess the
impact of the preprocessing on the reconstructed image.

A homogeneous aluminum cylinder with a diameter of 75 mm
was also scanned at 100 kVp, with and without proprietary
BHC, to assess beam-hardening artifacts, where a custom beam-
hardening correction algorithm was also applied. A jar was
filled with water and a small aluminum cylinder was submerged
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FIGURE 2
Scanned samples: (A) aluminum cylinder, (B) jar of water with oblique aluminum cylinder (Water+Al), (C) chalcopyrite, (D) almandine. The water
phantom and the sandstone used can be seen in Figures 3A, D of our previous work Di Schiavi Trotta et al. (2022).

TABLE 1 Acquisition parameters for the samples using the Siemens SOMATOMDefinition AS+ 128, including the number of FFS used in the scanning process.
Neutral projections are obtained by neutralizing proprietary beam-hardening preprocessing.

Samples Tube voltage Exposition (mAs) FFS Number of projections Detector size Siemens rec. kernel

Virtual phantom 83 keV n/a 2 2,304 736 x 32 N/A1

Water phantom 100/140 kVp 400/210 2 4,608 736 x 64 N/A1

Water phantom (neutral) 100/140 kVp 210/210 4 2,304 736 x 64 N/A1

Aluminum 100 kVp 500 2 2,304 736x32 B30s

Aluminum (neutral) 100 kVp 300 2 2,304 736x64 N/A1

Water+Al 100/140 kVp 650/700 2 2,304 736x32 N/A1

Water+Al (neutral) 100/140 kVp 300/300 2 2,304 736x64 N/A1

sandstone (neutral) 100 kVp 300 2 2,304 736x64 N/A1

Chalcopyrite (neutral) 140 kVp 550 4 4,608 736x64 B30s

Almandine (neutral) 100 kVp 600 4 4,608 736x64 B30s

1no reconstruction performed with the Siemens algorithm.

obliquely and scans at 100 and 140 kVp were also performed,
with and without BHC preprocessing, to analyse the profile of the
projections at a specific angle, so the effect of beam-hardening
preprocessing on different materials can be appreciated on the
projection.

The three smaller samples, sandstone, almandine, and
chalcopyrite, were scanned with neutral BHC. Their size allows
us to explore truncation artifacts, which can be reduced through
the iterative reconstruction of a region-of-interest, and the effect
of different backprojection techniques. For chalcopyrite, ray-driven

Frontiers in Earth Science 05 frontiersin.org

https://doi.org/10.3389/feart.2023.1287059
https://https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Di Schiavi Trotta et al. 10.3389/feart.2023.1287059

TABLE 2 Reconstruction parameters for the samples with OSC-TV and its variations. All samples are reconstructed with 9 iterations.

Samples OSC-TV parameters
Number of subsets

TV parameters
Regularization constant

Sample
width/diameter

Water phantom 228 0.02 200 mm

Aluminum cylinder 228 0.02 75 mm

Sandstone 228 0.02 100 mm

Chalcopyrite 72 0.2 ∼ 25 mm

Almandine 72 0.2 ∼ 20 mm

TABLE 3 Reconstructionmatrix size and FOV defined for the OSC-TV algorithm.

Sample Matrix size Reconstruction FOV (mm)

Virtual phantom 512 × 512 × 24 307.2

Water phantom 512 × 512 × 14 207.0

†Water phantom (neutral) 1280 × 1280 × 18 517.1

Aluminum cylinder 2048 × 2048 × 16 423.9

*Aluminum cylinder (neutral) 2048 × 2048 × 16 423.9

†Sandstone (neutral) 512 × 512 × 20 120

*Chalcopyrite (neutral) 512 × 512 × 38 50

†Almandine (neutral) 512 × 512 × 38 50

*reconstruction performed with both OSC-TV and OSC-TV-poly (neutralized projections).
†reconstruction from neutralized projections. No proprietary beam-hardening correction.

backprojection with multiple rays per detector was also used, as well
as the custom beam-hardening correction algorithm. This highly
attenuating sample allow us to appreciate the correction of cupping
artifacts.

3.4 Conversion calibration

Tomographic reconstructions performed by the OSC-TV
algorithm are inherently in units of linear attenuation (cm−1), while
the ones obtained with the Siemens algorithm are in Hounsfield
units (HU). The relation between these quantities is given by:

μ = ( HU
1000
+ 1)× μwater (8)

hence, given the attenuation of water, one can easily calculate
the attenuation map from the images in HU units. Reconstructions
of the water phantom, at 100 kVp and 140 kVp, were performed
with OSC-TV, and the mean value in a 200 pixels × 200 pixels
square ROI of each case was calculated. The average of the results
obtained from the preprocessed projections provides an estimation
of the μwater value used in the proprietary conversion process.
This value is independent of the tube voltage, for the projections
are always normalized for water, so HU is always close to 0

(proprietary preprocessing of raw data). Thus, the images provided
by the Siemens system in HU units can now be easily converted
to attenuation values through Eq. 8. This conversion allows us to
compare the accuracy of the reconstructions obtained with each
method.

3.5 Reconstruction of raw data using
OSC-TV

Numerical experiments have guided the choice of the
reconstruction parameters used in the real samples. All sampleswere
reconstructedwith 9 iterations and 228 subsets, with 29 final number
of subsets (1/10th), except for the smaller samples, i.e., chalcopyrite
and almandine. These small samples were reconstructed with the
same number of iterations, but with 72 subsets and 8 final number
of subsets (see Table 2).

As we aim to compare the Siemens images with the images
obtained with our in-house code (OSC-TV), voxel sizes were set
to the same value in both cases. At the same time, truncation
artifacts are to be avoided, hence, a larger grid was used in some
cases (water phantom and aluminum cylinder) so all scanned
objects, including the CT table, are present in the reconstruction
matrix grid Ziegler et al. (2008) (see Table 3). A modified
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technique to reconstruct a region-of-interest through an iterative
reconstruction algorithm (IR ROI) was applied to mitigate artifacts
on reconstructions with small field-of-view (FOV) (see Section 3.6).

3.6 Small ROI reconstruction

The voxel size is ultimately constrained in our algorithms by the
fact that all objects that participate in the X-ray absorption process
should be included in the FOV to mitigate truncation artifacts.
Hence, even if small samples are scanned (e.g., 5 cm, 10 cm, etc.),
the entire FOV (50 cm) shall be reconstructed so that the CT table is
included in the reconstruction matrix. For that, either a larger voxel
size is used or a larger grid size (e.g., 1024 × 1024, 2048 × 2048,
etc.), where the latter increases substantially the reconstruction
time.

In order to remove the effect of the CT table in imaging small
samples (small FOV), a technique based on the work of Ziegler et al.
(2008) was implemented to mitigate truncation artifacts. The
modified technique works as follows: (i) a reconstruction using
the iterative code, OSC-TV, with a voxel size of 0.977 × 0.977 ×
1.2 mm3, with a reconstructionmatrix size of 512 pixels × 512 pixels
is performed. In this step, the voxel-driven backprojection with
bilinear interpolation was chosen.This reconstruction is henceforth
defined as OSC-TV low (low resolution).With such a configuration,
a reconstruction of the entire FOV is obtained (500 mm). In order to
accelerate this step, a fraction of the projections were used, either 1/4
or 1/8 depending on the scan configuration, totaling 576 projections;
(ii) a square ROI containing the object in the reconstructed image
is set to zero; (iii) this image is now forward projected (FP) with
GPU-acceleration using Siddon’s algorithmSiddon (1985); (iv) these
projections are then subtracted from the original sinogram; (v) the
region outside the ROI in this sinogram is set to zero to further
reduce truncation artifacts on the final reconstruction; (vi) the result
is finally reconstructed with the IR algorithm. Differently fromwhat
was proposed in Ziegler et al. (2008), no transition region was used,
as the main objective of the applications of such technique was to
remove the table interference, not to select a ROI within the scanned
sample itself.

3.7 Custom beam-hardening correction

With proprietary beam-hardening corrections neutralized, one
is able to apply custom methods to mitigate such artifacts and take
into account the properties of various materials for the correction
(such as dense minerals and metals). Here, the method developed
by Trotta et al. (2022) Di Schiavi Trotta et al. (2022), OSC-TV-poly,
was applied to show how images with reduced artifacts can be
obtained (see Table 4).The calibration curve, bowtie filter model, X-
ray spectra and detector response were the same as in the cited paper
for the case where the tube voltage was set at 140 kVp Di Schiavi
Trotta et al. (2022). For the 100 kVp case, a new calibration curve
was developed with the correspondent X-ray spectrum and detector
response (Supplementary Figure S2).

Table 4 summarizes acronyms used to refer to implementation
strategies and the different algorithm combinations (forward
projection, backprojection, IR ROI technique, BHC).

TABLE 4 Acronyms of the reconstruction strategies based on OSC-TV.
Siddon-based ray-driven forward projection (RD) is used in all algorithms,
while voxel-driven backprojection with bilinear interpolation (VD) is
employed in all algorithms except OSC-TV RD, and OSC-TV ROI RD.

Algorithm Backprojection ROI BHC

OSC-TV VD (OSC-TV) Bilinear (voxel-driven) No No

OSC-TV RD Siddon (ray-driven) No No

OSC-TV ROI VD Bilinear (voxel-driven) Yes No

OSC-TV ROI RD Siddon (ray-driven) Yes No

OSC-TV-poly ROI VD Bilinear (voxel-driven) Yes Yes

Iterative reconstruction algorithms are computationally
intensive Després and Jia (2017), hence, reconstructions with OSC-
TV were performed on a NVIDIA DGX™ A100, which is equipped
with 8 xNVIDIAA100 Tensor Core GPUswith 40 GB of RAM, with
6912 cores each. For benchmarking purposes, some reconstructions
were performed with 8 GPUs.

In our MultiGPU approach, at each subset Matenine et al.
(2015b), the different projections are processed (estimated image is
forward- and backprojected) simultaneously by the different GPUs.
The result is then copied from all the GPUs to the main GPU, and
finally, the image is updated. After all subsets are processed, the
image is regularized using only the main GPU.

4 Results

4.1 Convergence of OSC-TV for a virtual
phantom: matched and mismatched
projector/backprojector pair

The visual representation of the convergence of the OSC-TV
algorithm for the virtual phantom in terms of the number of subsets
and for the matched/unmatched cases is depicted in Figure 3, while
the RMSE of each material as a function of these parameters are
shown in Figure 4.

RMSE is in the order of 10–3 for all materials in the virtual
phantom even when 576 subsets are used (9 iterations), except for
titanium, which presents an important density and atomic number.

4.2 Calibration: Water phantom

An average value μwater = 0.192 cm−1 was obtained from the
measurements in the central slice of the water phantom images,
reconstructed with OSC-TV, from preprocessed projections, at
100 kVp and 140 kVp. These measurements allow the scaling from
HU to linear attenuation coefficient (see Figure 5).

4.3 Proprietary preprocessing

The first projection of four different acquisitions of the jar of
water with an aluminum bar (Water+Al) are shown in Figure 6,
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FIGURE 3
Percent error maps of the reconstruction of the virtual phantom with OSC-TV in terms of the number of subsets. Two cases are shown: matched
(ray-driven/ray-driven) and unmatched projector/backprojector pair (ray-driven/voxel-driven), reconstructed with 9 iterations and initial number of
subsets of 576 and 1152.

FIGURE 4
Convergence of OSC-TV for each material in the virtual phantom in terms of the RMSE.
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FIGURE 5
Water phantom reconstructed with OSC-TV from different acquisition protocols: (A) 100 kVp with preprocessing, (B) 140 kVp with preprocessing, (C)
100 kVp neutral, (D) 140 kVp neutral, (E) plot of the line profile. Window: [0.17:0.22]. In (A) and (B) the proprietary preprocessing is present, so
attenuation values are the same. For (D) and (E), where the preprocessing was removed, attenuation values reflect the X-ray spectra, and capping
artifacts are observed due to the bowtie filter.

as well as the respective line profiles. In (a) and (b), it is shown
how the proprietary preprocessing for beam-hardening correction
normalized all projection values for water, despite the different
tube voltage. On the other hand, in (c) and (d), where also the
pairs 100 kVp and 140 kVp were used, projection values for water
are different, and so reflect more closely the X-ray spectrum
properties of each tube voltage. Furthermore, the projection values
for aluminum are also more distant, showing that such corrections
affect different materials.

4.4 Small ROI reconstruction: OSC-TV ROI

The importance of the backprojection technique for artifact
mitigation and the IR ROI technique for removing truncation
artifacts is shown in Figure 7. In (a) and (b), the CT table
was not included in the reconstruction matrix, hence, the IR
algorithm, through the forward- and backprojection, tries to
reproduce the raw projection by updating an image where no
table is being reconstructed. Artifacts appear in the reconstructed
image, identified as the four bright spots on the image and
2 lines joining them, reflecting the presence of the table in
projection data (but not in the reconstructed FOV). It is worth
noting that the setup uses a custom table capable of supporting
heavy samples but associated with a higher attenuation than
a medical one. Secondly, in (c), the image is reconstructed
using ray-driven backprojection (Siddon based) and the IR ROI
technique.

In Figure 8, the reconstruction of a small sample of
almandine (5 cm) is shown with different techniques: (a) Siemens
with the B30s kernel (smooth); (b) OSC-TV with ray-driven
backprojection; (c) OSC-TV with voxel-driven backprojection;
(d): OSC-TV with the ROI IR technique, and voxel-driven
backprojection. As a smooth kernel was selected for the
Siemens reconstruction, the OSC-TV images appear sharper
(better spatial resolution).

The effect of increasing the number of rays per detector bin with
a ray-driven approach regarding the artifacts in the images is visible
with the chalcopyrite samples (see Supplementary Figure S3). Voxel-
driven backprojection with no sub-voxels (1x1) is sufficient to avoid
the artifact present in the case of the ray-driven backprojection with
no sub-pixels (1x1), where it requires 16x16 rays per detector in
order to reduce the artifact.

4.5 Comparing Siemens and OSC-TV:
custom beam-hardening corrections

Images reconstructed with the Siemens algorithm (kernel B30s),
OSC-TV VD (OSC-TV), and OSC-TV-poly, is shown in Figure 9,
along with the plot of line profiles.

Applying OSC-TV-poly (modeling beam hardening in the
reconstruction algorithm), along with ROI reconstruction strategies
and the voxel-driven backprojection (VD), cupping artifacts, even
in a small and dense object, were reduced when compared to the
ordinary OSC-TV and Siemens images (see Figure 10). In (b) and
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FIGURE 6
Jar of water with oblique aluminum bar (Water+Al): (A, B) projection of Water+Al for the angle 270o at 100 kVp and 140 kVp, (C, D) projection of
Water+Al for the angle 270o at 100 kVp and 140 kVp, where a different detector grid is used and proprietary BHC is neutralized, (E) line profile of
Water+Al projections, 100 kVp and 140 kVp, (F) line profile of Water+Al projections, 100 and 140 kVp, with proprietary BHC neutralized. For (C) and (D),
where BHC preprocessing is removed, total attenuation reflects X-ray spectra, and the X-ray absorption properties of the scanned materials. Window
[0.00:5.00] (no unit).

FIGURE 7
Sandstone scanned at 100 kVp, reconstructed with OSC-TV: (A) ray-driven backprojection (RD), (B) voxel-driven backprojection with bilinear
backprojection (VD), (C) RD backprojection and ROI technique, (D) VD backprojection and ROI technique. Window [0.5:0.6] cm−1. In (A) and (B) the CT
couch outside the FOV produces artifacts in the reconstructed image (cross-like pattern), while in (C) and (D) such effect is removed, since the table
was removed from projection data.
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FIGURE 8
Almandine scanned at 100 kVp: (A) reconstruction with Siemens algorithm (kernel B30s), (B) reconstruction performed with OSC-TV and ray-driven
(RD) backprojection, (C) reconstruction performed with OSC-TV and voxel-driven (VD) backprojection, (D) reconstruction performed with OSC-TV,
voxel-driven (VD) backprojection and region-of-interest strategy, Window [1.0:1.8] cm−1.

(c), where IR ROI and voxel-driven technique were applied, the
reconstructed image is not deteriorated by truncation artifacts due
to the CT table and artifacts from the ray-driven backprojection
implementation.

4.6 Processing time

Reconstruction time may vary substantially depending on the
reconstruction algorithm (as well as reconstructions parameters)
and the forward- and backprojection methods Geyer et al. (2015),
even when using GPU acceleration Després and Jia (2017). The
iterative reconstruction of a region-of-interest requires an additional
reconstruction (OSC-TV low) and an additional forward projection
(FP) step before a final reconstruction of the ROI is performed
(OSC-TV RD ROI or OSC-TV VD ROI). These extra steps increase
the overall processing time (OSC-TV low + FP + OSC-TV ROI
RD/VD), as outlined below.

Two samples were used to compare reconstruction times,
sandstone (FOV=12 cm) and chalcopyrite (FOV=5 cm), where
the latter uses twice the number of projections, and an initial
number of subsets of 72, instead of 288. Reconstruction grid sizes
are 512 pixels × 512 pixels × 20 pixels for the sandstone and

512 pixels × 512 pixels × 38 pixels for chalcopyrite. The initial
reconstruction of the entire FOV (OSC-TV low) takes 6 s for all
the samples, while the forward projection time takes approximately
1 s for these two cases. Hence, less than 7 extra seconds are
required to perform the reconstruction of a ROI, as summarized in
Table 5.

5 Discussion

Regarding the assessment of the convergence of the OSC-
TV algorithm using the virtual phantom, depicted in Figure 3,
it becomes evident that 576 subsets is insufficient (1/4 of the
number of projections) even when 9 iterations are performed,
giving rise to beam-hardening-like artifacts, which are more
important in the matched case. As those images were reconstructed
from monochromatic projections (83 keV), such artifacts were
not expected. By increasing the number of subsets to 1152 (half
the number of projections), such artifacts are decreased, and the
convergence for the rods (denser materials) are more acceptable,
where RMSE is an order of magnitude lower for some materials (see
Figure 4), mainly for the matched case. Materials with high-density
and atomic number tend to present higher RMSE, and hence, slower
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FIGURE 9
Aluminum cylinder scanned at 100 kVp, from preprocessed and neutral projections: (A) reconstruction with the Siemens algorithm (preprocessed,
kernel B30s), (B) reconstruction performed with OSC-TV (preprocessed), (C) reconstruction performed with OSC-TV-poly (neutral), (D) plot of the line
profiles of Siemens, OSC-TV, and OSC-TV-poly. Window [0.60:0.70] cm−1.

convergence.TheRMSE of water on the other hand is highly affected
by the materials rods (transition zones between water and rods).

Moreover, the percent error for these materials is lower than
0.05% in these cases, which can be considered high accuracy
in many applications, such as in material characterization
and identification Landry et al. (2013); Bourque et al. (2014);
Azevedo et al. (2016); Paziresh et al. (2016); Martini et al. (2021),
where errors are much higher due to beam-hardening artifacts.
Hence, this set of parameters could be employed for reconstructing
homogeneous samples; it was observed that a high number of
subsets is required when reconstructing highly attenuating samples.
Otherwise, the convergence rate is low and many iterations are
required.

Even though a mismatched projector/backprojector pair was
used in this work, no convergence problem was observed in any
studied case (RMSE decreases as the number of iterations increases),
except for acrylic in the unmatched case, which presents higher
RMSEwhen a higher number of initial subsets is used.Moreover, the
use of such combinations in iterative reconstruction algorithms (e.g.,
ASIRT, additive simultaneous iterative reconstruction techniques),
has been shown to present more accurate reconstructed images
when compared to the ones produced with matched operators
Guedouar and Zarrad (2010). Other works have demonstrated
otherwise, where the coupling between such operators is crucial
for achieving more accuracy for this class of algorithms Zeng
and Gullberg (2000). Meanwhile, other suggests that the use of
mismatched projector/backprojector pairs can achieve solutions

closer to the true image, when compared to the matched case Zeng
(2019).

Regarding the measurements conducted in the water phantom
for the conversion calibration, as beam-hardening preprocessing
was not neutralized, the mean value is independent of the tube
voltage (soHU=0 for all tube voltages), and so can be used to convert
HU to cm−1 regardless of the tube voltage and either or not the beam-
hardening preprocessing was used on the target projection (see
Supplementary Table S1, where tabulated linear attenuation values
of water for the effective energy of the X-ray spectra correspondents
to the tube voltages of 100 kVp and 140 kVp are also shown).
In summary, with beam-hardening preprocessing, pixel values for
water are always the same, so the same μwater is used by the
manufacturer to perform the conversion from linear attenuation
coefficient to HU for all tube voltages.

For the case where neutralized projections were used, and
reconstruction performed with OSC-TV, distinct mean attenuation
values were obtained, with a higher value for the 100 kVp setting,
hence, reflecting the X-ray absorption properties of the water
phantom (Supplementary Table S1 reports tabulated vs. measured
μ values). A capping artifact is observed on neutralized images
(Figure 5), which is caused by the bowtie filterDi Schiavi Trotta et al.
(2022).

The neutralization of the preprocessing step, depicted
in Figures 5, 6, therefore allows the application of custom
energy-dependent beam-hardening correction techniques, since
data directly reflect the X-ray spectrum and the absorption
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FIGURE 10
Chalcopyrite scanned at 140 kVp: reconstructions with (A) Siemens algorithm (kernel B30s), (B) OSC-TV ROI algorithm, (C) OSC-TV-poly ROI, (D)
corresponding line profiles. Window [1.1:1.7] cm−1.

TABLE 5 Comparison of reconstruction time using a NVIDIA A100Tensor Core GPU 40 GB (1 and 8 GPUs). Sandstone and chalcopyrite samples are reconstructed
with 9 iterations, an initial number of subsets of 288 and 72, with a grid size of 512 × 512 × 20 and 512 × 512 × 38, respectively.

Sample Total GPUs OSC-TV ROI Algorithms [s] OSC-TV Algorithms [s]

low FP RD VD poly VD RD VD

Sandstone
1 6 < 1 205 25 †N/A 205 26

8 18 *N/A 103 70 †N/A 103 70

Chalcopyrite
1 6 1 169 58 464 166 55

8 18 *N/A 55 42 93 55 42

*not implemented.
†reconstruction not performed.

properties of the scanned materials Alvarez and Macovski (1976);
Man et al. (2001); Ying et al. (2006); Champley and Bremer (2014);
Azevedo et al. (2016); Paziresh et al. (2016); Di Schiavi Trotta et al.
(2022).

Due to the small size of the sandstone and the small voxel
sizes used in the respective tomographic reconstructions (Figure 7),
the separation of adjacent rays is large compared to the voxel size
Hahn et al. (2016), so some voxels are missed during the raytracing
in the backprojection. As not all voxels are incremented by the
correspondent detector read, more artifacts arise, producing a poor
quality image, however, with no truncation artifacts Trotta et al.
(2022), whereas (b) suffers from both artifacts. Finally, in (d), both

IR ROI and voxel-driven with bilinear interpolation are combined.
These two techniques are capable of mitigating both artifacts:
truncation and streaks caused by an insufficient number of rays used
during backprojection.

For the tomographic reconstructions of almandine (Figure 8),
image (b) suffers from the inherent problem of the ray-driven
backprojection, where some voxels are not properly incremented
by the backprojection and Moiré patterns arise at the center of the
image.The contrast in image (c) is degraded compared to image (d),
the result of the CT couch being smeared across the reconstructed
volume. From a qualitative point of view, such effect can be observed
on the black spots of image (d), which aremore contrasted.Thewhite
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line observed at the edges of the sample in (a) is less important on
the OSC-TV reconstructions in general (b,c, and d), indicating less
beam-hardening artifacts.

When comparing properties of images obtained with
proprietary (Siemens) and in-house (OSC-TV) algorithms
(Figure 9), one can note that in the aluminum cylinder, even though
proprietary beam-hardening correction is applied to all projections,
cupping artifacts are still present, because such corrections are
optimized for water. However, such artifacts are less important
in the OSC-TV image, with lower pixel values at the edges. This
effect is further reduced with OSC-TV-poly, that reconstructs the
aluminum cylinder from neutral projections. The BHR is reduced
from 14%, obtained with Siemens, to 8% with OSC-TV, and then to
only 3% with OSC-TV-poly.

Reference attenuation values for aluminum, evaluated at the
estimated effective energy of the 100 kVp beam, are represented by
the dotted line in Figure 9, which are closer to the ones reconstructed
byOSC-TV-poly.Themean absolute percent error evaluated for this
line profile for the proprietary (Siemens) reconstruction is 6.2%,
for OSC-TV is 6.0%, and for OSC-TV poly is 3.7%. Hence, this
algorithm has the potential to reconstruct images closer to the
effective energy of the beam.

Given the variety of geological samples and associated properties
(e.g., shape, porosity, density, mixtures of materials with low/high
atomic numbers), it is not trivial to find generic regularization
parameters. From our observations, we found the a value 0.2
(20 gradient steps) yields high-quality images in terms of spatial
resolution and noise for small FOV (small samples). On the other
hand, samples that are highly heterogeneous yield better images
with lower regularization parameters, hence the choice of 0.02 (and
20 gradient steps). It is difficult to define a quantitative quality
metrics and some experiments with reconstruction parameters are
recommended.

In regard to the evaluation of the processing times for the
two presented cases, sandstone (FOV=12 cm) and chalcopyrite
(FOV=5 cm), the reconstruction with the ray-based technique took
longer than the voxel-driven one, mainly for the sandstone, which
was approximately 8x slower. That can be explained by the higher
number of subsets used in the reconstruction, which implies more
memory transfers between CPU and GPU, and between GPUs, and
more calls to the CUDA kernels responsible for the forward- and the
backprojection.

By using multiple GPUs in parallel, similar computation time
was observed for these techniques. It is clear with the voxel-driven
technique that the poor speed gain is related to the limitation
of memory bandwidth, as the data of all the GPUs have to be
transferred to the main GPU after a subset is processed, increasing
processing time.

In some cases, as for the OSC-TV low, the use of multiple GPUs
actually increases the computation time. This counter-intuitive
result is due to the problem being limited by memory bandwidth
capacity, not by computing power capacity (time taken to copy data
to GPU devices longer than actual calculations).

The use of more rays per detector bin has the potential
to decrease streak artifacts typical of ray-driven projectors.
However, adequate strategies must be employed to reap the full
potential of GPUs, for example, by coalescing operations so that
one thread block can be used to compute multiple adjacent

rays Chou et al. (2011). For our approach, which assigns one
ray (which is divided into sub-rays for defining sub-pixels)
for each CUDA thread, it took 670 min for 256 rays (16 x
16), against only 2 min and 46 s when compared to a single
ray.

Finally, for the chalcopyrite (512 pixels × 512 pixels × 38 pixels),
on which both ROI and BHC are applied, it takes 8 times longer to
perform the reconstruction when compared to the case where no
beam-hardening corrections are applied, totalling 8 min. However,
when a set of 8 GPUs are used, the difference drops to less than
1 min. This processing time could be much higher (e.g., a few
hours) if a larger grid (e.g., 2048 pixels × 2048 pixels) were used to
compensate for the voxel size and the truncation-induced artifacts
Di Schiavi Trotta et al. (2022), showing the importance of the IR
ROI technique for bothmitigating artifacts, and reducing processing
time.

6 Conclusion

Noise-free simulation results showed that, in our framework,
the use of a ray-driven matched projector/backprojector pair
outperforms the unmatched voxel-driven backprojector, with a ray-
driven forward-projector.

The framework presented in this work, relying on raw data
obtained through vendor-provided binaries, allows the development
of custom tomographic reconstruction approaches, adapted to
non-medical use of CT scanner (e.g., dense samples), capable
of producing images with better quantitative properties. This
framework was used here to evaluate a small ROI reconstruction
method where truncation artifacts are mitigated, and also to
assess the relative merit of two backprojection methods (ray-driven
and voxel-driven), with a ray-driven forward-projector. Faster
processing times were obtained for the unmatched case, which
provided sharper and artifact-free images of small samples, when
compared to the matched case.

These strategies, when combined with a custom BHC, yield
better images of high-density samples (with reduced cupping when
compared to the ones provided by themanufacturer and adapted for
human imaging). Further processing acceleration is obtained with
the ROI technique and the use of multiple GPUs, when compared to
former works.
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