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Floods pose a significant threat to the safety of countries with severe societal,
economic, and environmental consequences, especially the flash floods in
mountainous regions. Previous studies have shown that many floods were
caused by intense rainfall with highly saturated soil. In this study, we applied a
physically-based distributed hydrological model (Integrated Hydrology Model,
InHM) to a warm humid mountainous catchment in Southwest China, the Shouxi
River. The main objective of our research is to investigate the relative importance
of rainfall and antecedent soil moisture on flood generation in our study region.
Our results show that an increase in rainfall return period and antecedent soil
saturation ratio significantly increased peak flow and shortened peak time. There is
a correlation between the ratio of antecedent soil saturation ratio to rainfall (SPR)
and peak flow. When SPR <1, there is a positive correlation; when SPR >1, there is a
negative correlation. Additionally, with the increase in drainage area, the relative
importance of rainfall tends to decrease, while the relative contribution of soil
saturation ratio tends to increase. The findings could provide support for the
determination of the dominant factors influencing runoff generation in humid
regions, offering scientific support for the timely and effective flood prevention
and mitigation measures in mountainous regions.
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1 Introduction

Floods are usually caused by sudden rainstorms or massive snowmelt and are one of the
most common natural disasters in the world (Zhong et al., 2021). As the issue of climate
change intensifies, flood risks have increased significantly in recent years, posing serious
threats to public safety and property. This ultimately results in severe economic and social
disruptions to countries (Soo et al., 2019). In mountainous catchments of a few hundred
square kilometers or less, flash floods with short response time and heavy rain is tended to be
aggravated due to natural and anthropogenic activities (Zhai et al., 2018). In China, the
mortality caused by flash flood reached 4540, occupying 80% of that caused by floods from
2010 to 2014 (http://www.mwr.gov.cn/zzsc/tjgb/zgshzhgb/2014/mobile/index.html),
according to the bulletin of flood and drought disaster in China of 2014. Flash flood,
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along with water-induced hazards, geological and hydrological
conditions, have become a global issue, particularly in the
mountainous regions of southwest China (Gan et al., 2018).

Generally, the causes of floods are complex and include both
anthropic and natural factor, such as climate change and landscape
change. Climate change is highly likely to alter flood hazards (Arnell
and Gosling, 2016). As the climate warms, occurrence of extreme
rainfall events is likely to increase (Min et al., 2011), elevating the
flood risk (Milly et al., 2002; Pall et al., 2011). Numerous studies have
shown that extreme precipitation has intensified across continents,
and extreme precipitation is a major cause of catastrophic flooding
(Guha-Sapir et al., 2013; Guha-Sapir et al., 2014). Bertola et al.
(2021) suggested that in northwestern Europe, extreme rainfall
contributed significantly to positive changes in floods, with an
increase of 2.8%–3.3% in flood frequency per decade of return
period. However, some studies have also shown that the trend of
increasing extreme precipitation does not directly translate into
positive trends in large catchments (Madsen et al., 2014; Sharma
et al., 2018). This suggests that there are other factors that modulate
the flood response, such as antecedent soil moisture.

It has been observed that flood variability can poorly explained
by rainfall characteristics alone (Berghuijs et al., 2016), and one of
the most likely culprits is the antecedent soil moisture of the
catchment (Pathiraja et al., 2012). Landscape change has a strong
impact on floods because of the severe human alteration of the
natural landscape. Deforestation can increase or decrease antecedent
soil moisture and trigger erosion (Rogger et al., 2017). Event runoff
coefficients tend to be higher when antecedent soil moisture reaches
a high level, increasing flood peak in dry catchments (Borga et al.,
2007; Vivoni et al., 2007). Grillakis et al. (2016) used the Kampus
model to estimate the sensitivity of flood discharge to antecedent soil
moisture and found that small-event floods show greater sensitivity
to antecedent soil moisture than large-event magnitude.
Sriwongsitanon and Taescombat (2011) found that for small
events, the hydrological response in forest area was lower in the
non-forested by comparing forested and non-forested areas.
However, for large events, the hydrological response in forest
area was greater.

Therefore, understanding the relative importance of rainfall and
antecedent soil saturation ratio and their impacts on a range of
catchment scales and event magnitudes plays an important role in
flood forecasting. Pathiraja et al. (2012) used a continuous rainfall
runoff model to calibrate 45 catchments in the Murray-Darling
Basin, and found that correctly simulating antecedent soil moisture
can greatly improve simulation accuracy. Flood frequency curve was
steeper than rainfall frequency curve in dry catchments (Breinl et al.,
2021). Antecedent soil moisture was also found with a significant
effect on rainfall thresholds for flash flood warning (Zhai et al.,
2018). Wasko and Nathan (2019) identified a tipping point in
rainfall: beyond which watershed rainfall dominated flood
response and below this point, flood discharge decreased as the
soil moisture reduced. Although there are many researches about the
joint role of rainfall and antecedent soil moisture, few of them focus
on the relative contribution of rainfall and antecedent soil saturation
ratio.

The formation mechanisms of floods are different on different
scales (Blöschl, 2022). It is necessary to study the scale effects on
flood generation. In large catchments (>1000 km2), flood discharge

is more influenced by antecedent soil moisture, whereas in smaller
catchments (<1000 km2), flood discharge is more likely to be caused
by precipitation (Wasko and Sharma, 2017). Furthermore,
Nikolopoulos et al. (2011) studied on three watershed (24, 165,
and 329 km2) and also found that flood responses were more
sensitive to antecedent soil moisture for increasing catchment
scale. Many studies have identified the importance of rainfall and
antecedent soil moisture, yet not much specifically focused on the
quantitative evaluation of the relative contribution of rainfall and
antecedent soil moisture, and their variation with spatial scales,
especially in humid China where floods have been one of the major
natural hazards for centuries.

Here we conducted numerical analysis in a humid mountainous
catchment in Southwest China (Shouxi River), the goals of this study
are to: (1) examine the impact of rainfall and antecedent soil
saturation ratio on runoff generation, and the potential
mechanisms that cause these effects; (2) investigate the relative
importance of rainfall and soil saturation ratio in different
catchment scales; (3) explore scale effects on rainfall and soil
saturation ratio.

2 Material and methods

2.1 Study area

The Shouxi River catchment (SXRC), located in the southwest
mountainous area of China (103°02′-103°27′ E, 30°47′-31°02′ N)
(Figure 1A), is a small tributary of the Minjiang River. SXRC is
situated at the transitional zone between the Sichuan Basin and the
Qinghai-Tibet Plateau. The elevation gradually decreases from
southwest to northeast, ranging from approximately 5000 m in
the Qinghai-Tibet Plateau to 900 m in the Sichuan Basin. The
catchment covers an area of approximately 560 km2 and presents
a fan-shaped topography. The climate of the SXRC is subtropical
humid climate, with significant vertical temperature differences. The
average slope in the catchment is 32.5°, and the annual mean
temperature is 15.2°C (Liu, 2022). Average annual precipitation is
about 1134 mm, with most of it occurring between June and
September (Liu et al., 2021). The geological structure of the
catchment is complex, with developed folds and faults. The
upstream valley has a “V" shape, while the middle and
downstream valleys are slightly broader with a “U" shape. Some
sections of the river have developed joints and fissures, with strong
tectonic erosion and river cutting activities (Yuan et al., 2022).

The floods in the SXRC are mainly caused by heavy rainfall.
Correspondingly, the flood season in the study area is from June to
September. The annual maximum floods are particularly
concentrated between July and August. The slopes within the
river basin are steep, leading to rapid rise and fall of floods (Yin
et al., 2022). For example, Wenchuan County experienced severe
torrential rain in 20 August 2019, with the maximum cumulative
rainfall reaching 65 mm within 1 hour. The discharge in Shouxi
River reached 1840 m3/s within 3 h. The whole flood event lasted for
5 days, causing large-scale flooding and geological disasters, and
significant personnel and property losses (Yang et al., 2022). In
addition, the SXRC is located near the epicenter of the
2008 Mw=7.8 Wenchuan earthquake. After the earthquake, there
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are frequent occurrences of landslides, mudslides and other
geological disasters, with serious damage to vegetation and loose
sediments. As a result, the likelihood of mountain floods and debris
flows increased.

2.2 Model structure

This study uses the physically-based distributed hydrological
model InHM (Integrated Hydrology Model), which is originally
developed by Vanderkwaak of Waterloo University (1999).
InHM simulates water and solute in three-dimensional dual
continua subsurface as well as two-dimensional surface and
river flow.

The 3D variably saturated fluid motion and macroporous fluid
motion in subsurface pore media are described by Richard’s
equation, which degenerates to Darcy’s formula in the saturated
state:

fv∂φSw
∂t

� ∇·fa q
.
± qe ± qb (1)

Where q
.

(m/s) is Darcy flux, qe (s-1) is the water rate between
surface and subsurface soil, qb (s-1) is the input/output terms on the
boundary, fv (-) and fa (-) are volume and area fraction associated
with each continuum respectively, φ (-) is soil porosity, Sw (-) is
water saturation, t (s) is time. The Darcy flux is given by:

q
.� −krwρwg

μw
�k∇ ψ + Z( ) (2)

Where krw (-) is relative permeability, μw (kg/(m·s)) is viscosity of
water, �k (-) is intrinsic permeability vector, ψ (m)is pressure head , Z
(m) is elevation head. The surface water flow motion (both open
channel flow and slope flow) in InHM is described using the
diffusive wave approximation of the two-dimensional shallow
water equation. The surface water flow motion equation is
defined as:

∂ Swshs + ψstore
s( )

∂t
� ∇·ψmobile

s q
.

s ± asq
b ± asq

e (3)

Where Sws (-) is surface saturation, hs (m) is the average height of
surface microtopography, ψstore

s (-) is stored surface water depth,

ψmobile
s (-) is mobile surface water depth, q

.
s (m/s) is surface water

velocity, as (m) is surface coupling length scale, and the surface
water velocity in Eq. 3 can be given by:

q
.

s� − ψmobile
s( )2/3

nΦ1/2 ∇ ψs + z( ) (4)

Where n (s·m-1/3) is the Manning’s surface roughness tensor,Φ (-) is
the energy slope.

InHM uses the Finite Volume Element (FVE) method to
discretize the control equations and employs the Newton
iteration method to solve the nonlinear equations in an
implicit manner. More details about the governing equations
can be found in VanderKwaak (1999) and Loague and
VanderKwaak (2002). The model can provide hydrological
information at any time and location within the entire
drainage area (i.e., soil moisture, soil saturation ratio, water
depth, cross-sectional runoff process line) or the dynamic
changes in hydrological information during the operation of
any node, making it suitable for this theoretical analysis (Su,
2012). It has been applied to different catchments and terraces,
validated for runoff generation (Ran et al., 2019a; Ran et al.,
2019b; Ran et al., 2020), as well as sediment movement
simulation (Ran et al., 2012; Ran et al., 2018). It has also been
applied to nearby watershed of similar characteristics, and
proved its suitability on the study region (Liu et al., 2021).

2.3 Mesh configuration

The 2D surface mesh for the SXRC is shown in Figure 1B, and
the 3D mesh was constructed by adding layers. Given that soil
moisture fluctuates more strongly in the surface layer and most of
the water eventually converges in the river channel, the resolution of
the mesh was set to increase from the boundary to the river channel
and from upper soil layers to lower soil layers. The mesh boundary
resolution, channel resolution, and exit resolution of the SXRC are
about 1000 m, 50 m, and 20 m, respectively. The vertical profile was
generally divided into the surface layer (0–1 m), the middle layer
(1–3 m), and the deep layer (3–13 m) with the nodal spacing of
0.2 m, 0.5 m and 2.5 m.

FIGURE 1
(A) Location of the study area; (B) the configuration of the numerical mesh used in this study.
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2.4 Model set up

The objective of this study is to investigate how antecedent soil
saturation ratio and rainfall return period affect runoff generation in
humid mountainous catchment. The DEM data used in the study
was from the Geospatial Data Cloud (https://www.gscloud.cn/
sources/accessdata/310?pid=302), with a spatial resolution of
30 m. The rainfall and runoff data used for model calibration
and validation were obtained from the measured hourly rainfall
and runoff in the SXRC. Rainfall data was obtained from hourly
measurements between 4 June 2019 and 5 August 2020. Runoff data
was obtained from hourly measurements at the outlet of the
catchment during the main flood season (June to September) in
both 2019 and 2020. Since our study focused on event scale research,
three relatively large events with complete rainfall and runoff data
were selected for calibration and validation. The model was
calibrated with event during July 9–14, 2019; while events from
July 16–20, 2019 and June 23–29, 2020 were used for validation.

Figure 2 illustrates the comparison between the observed and
simulated hydrograph used for model calibration and validation. As
we can see from Figure 2, the model captured the flow event
relatively well during both calibration and validation periods,
especially during the high flow period, which is the focus of this
study. The criterion used to measure model performance was Nash
coefficient (NS) (Nash and Sutcliffe, 1970) and R2. During the
calibration period, the NS and R2 values reached 0.65 and 0.76,
respectively. During the validation period, the NS and R2 values
averaged 0.715 and 0.83, respectively. Given the goal of this study,
we think the simulation results were acceptable for our theoretical
analyses of the large flow events in this study.

2.5 Scenarios

To fully understand the influence of runoff generation in
mountainous catchment, a series of scenarios were designed with
varying return periods and antecedent soil saturation ratio.
According to the Flood Manual in Small and Medium-sized
Watersheds of Sichuan Province (Department of Water
Resources of Sichuan Province, 1984), we applied 6 rainfall
return periods ranging from 5 years to 1000 years (5, 10, 50, 100,

500, 1000 years), lasting for 6 hours with constant rainfall intensity.
In addition, to examine the effects of antecedent soil moisture, the
saturation ratio level was set at 40%, 50%, 60%, 70%, 80%, and 90%.
Totally, there were 36 scenarios (i.e., 6 rainfall return periods ×
6 antecedent soil saturation ratio) in this study.

Given the impact of scale effects, 27 flowmonitoring points were
set up in different sections of the SXRC. The drainage areas ranged
from a few square kilometers to several hundred square kilometers,
covering small catchments to large catchments. The mean
topographic gradient varied from 29° to 37°, with a major
concentration in the 33°–35° range. Results from these
observation points were used to investigate the synergetic effects
on runoff generation for different rainfall, antecedent soil saturation
ratio and catchment scales.

We explored the relationship between rainfall return period
and antecedent soil saturation ratio to peak flow under
36 scenarios (6 rainfall return periods × 6 antecedent soil
saturation ratio) (Section 3.1). To investigate the scale effects
(Section 3.2), we calculated the relationship between rainfall
return period, antecedent soil saturation ratio and drainage
area at 27 flow monitoring spots across the catchment, using
50% saturation ratio and 100-year-event rainfall return period as
reference. To further explore the relative contribution of rainfall
and antecedent soil saturation ratio (Section 3.3), we combined
all drainage areas, rainfall return periods, and soil saturation
ratio for investigation, that is, a total of 972 relationships
(6 rainfall return periods × 6 antecedent soil saturation ratio ×
27 drainage areas).

2.6 Quantification the relative contribution
of soil saturation ratio and rainfall

To measure the effects of rainfall and soil saturation ratio on
flood generation, we introduced the ratio of saturation ratio to event
rainfall (SPR). We expressed the relative saturation of soil moisture
by normalizing the antecedent soil saturation ratio (S′) with the
maximum and the relative intensity of rainfall by normalizing the
event rainfall (P′) with the maximum. The impact of soil moisture
and rainfall is expressed through the ratio of these two
normalizations, i.e., SPR = S’/P’.

FIGURE 2
Comparison between observed and simulated discharge during the (A) calibrated event (July 9—14 July 2019) and two validated events (B) July
16—20, 2019), and (C) June 23–29, 2020. The black line represents the simulated hydrograph, and the blue points represent observed discharge.
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To investigate the impacts of rainfall and antecedent soil
saturation ratio for peak flow discharge, relative importance was
defined as the proportional contribution to the determination
coefficient (R2) of the regression between peak flow and rainfall
and soil saturation ratio. The method proposed by Lindeman,
Merenda and Gold (LMG) (Sen et al., 1981) in the R package
“reliaimpo” was used. This metric decomposes R2 into non-negative
contributions, summing up the total R2, considering the unique
contribution of the variable itself and the increased contribution
when combined with other variables (Johnson and Lebreton, 2004).
It is based on sequential R2, which handles dependencies on ranking
by taking an unweighted average over the rankings (Grömping,
2006). The R2 of a model with regression in set S is:

R2 S( ) � Model SS

Total SS
(5)

Where Model SS is the regression sum of squares that includes the
regressors, Total SS is the total sum of squares. The order of
regression variables is denoted by the permutation of regressors
x1, . . ., xp, with subscripts r = (r1, . . ., rp) in the form of a tuple. Sk(r)
represents the set of regression variables that enter the model at
order r before xk. The portion of R2 assigned to xk can be
expressed as:

seqR2 xk{ }|Sk r( )( ) � R2 xk{ } ∪ Sk r( )( ) − R2 Sk r( )( ) (6)
The metric LMG can be written as:

LMG xk( ) � 1
p!

∑
r permutation

seqR2 xk{ }|r( ) (7)

3 Results

3.1 Floods response to rainfall and
antecedent soil saturation ratio

Figure 3A presents the peak flow under different antecedent soil
saturation ratio and return period. As we can see, the peak flow

under all six return periods increased with soil saturation ratio. The
peak flow with high soil saturation ratio was much greater than the
scenario with low saturation ratio. The increment in peak flow was
gradual when the antecedent saturation ratio was low (40%–60%),
and increased rapidly when the antecedent saturation ratio was
higher (70%–90%). The change with antecedent saturation ratio was
more significant in the 1000 years return periods. Although larger
rainfall leads to larger peak flow, the variability of peak flow with
different rainfall return periods was minimal at 40% soil saturation
ratio. The peak flow increased with rainfall return period, and
reached its highest point at 90% soil saturation ratio: the
difference in peak flow between 5-year-event and 1000-year-event
was 4100 m3/s. This is due to the fact that when the antecedent soil
saturation is low, soil water storage consumes the majority of the
rainfall, with only a small portion of it actually generates runoff. It is
evident from Supplementary Figure S1 that the peak flow increased
with return period rapidly first and the increment slowed down
afterwards.

Figure 3B illustrates the variation of peak time with antecedent soil
saturation ratio and rainfall return period. As we can see, the peak time
declined with antecedent soil saturation ratio and return period.
Simultaneously, the peak time tended to stabilize, especially when
the return period was large (100–1000 years). In contrast to the
peak flow, which was more sensitive to large rainfall and higher
saturation ratio, peak time was more sensitive at small return period
and low antecedent soil saturation ratio. For 5-year-event and 1000-
year-event, a half rise in soil saturation led to 4/5 and 1/2 decrease in
peak time, respectively; while for the 40% and 90% soil saturation ratio
scenario, peak time decreased by 0.6 and 0.15 as the return period raised
from 5 years to 1000 years. Antecedent soil saturation ratio and rainfall
return period affect runoff generation together. As shown in Figure 4A
the peak flow was small regardless of the rainfall amount when the soil
was relatively dry. When the soil saturation ratio exceeded 70%, even
small return period could result in large peak flow.With the increase of
rainfall return period, the impact of soil saturation ratio on peak flow
gradually increased. The peak time was very large (up to 32 h) with low
soil saturation ratio and small rainfall return period (Figure 4B), which
may be due to the fact that the soil is not fully saturated at this time.

FIGURE 3
The (A) peak flow and (B) peak time at different antecedent soil saturation ratio and rainfall return periods. The color represents the rainfall return
period.
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FIGURE 4
Contour map of antecedent soil saturation ratio and rainfall return period. (A) peak flow, (B) peak time.

FIGURE 5
Scatter plots between peak flow and drainage area under different (A) rainfall return period, and (C) antecedent soil saturation ratio; and scatter plots
between peak time and drainage area under different (B) rainfall return period and (D) antecedent soil saturation ratio.
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3.2 Scale effects on runoff generation

Scale effect has been identified in flood generation (Blöschl, 2022).
Here we explored how the impacts of antecedent saturation ratio and
rainfall magnitudes vary with scales by taking 50% antecedent soil
saturation ratio and 100-year rainfall return period as base case. Figure 5
presents the peak flow and peak time under different rainfall return
periods and antecedent soil saturation ratio with various drainage area.
We can see that the peak flow and peak time were positively correlated
with the drainage area, but there was great variation for small and
medium catchments (100—300 km2) (Figure 5A). The reason for this
was that small and medium catchments were located at various
tributaries and influenced by local topography (e.g., slopes), whereas
large catchments (the last four points) were at the main steam of the
catchment. The scale effect of peak flow was more significant under
higher rainfall return period and antecedent soil saturation ratio. In
contrast, with the increase of return period and antecedent soil
saturation ratio, the variation in peak time gradually decreased with
the change of drainage area.

To further clarify the effects of antecedent soil saturation ratio,
rainfall return period and drainage area on runoff generation, we have
plotted contour maps depicting these variables (Figure 6). From

Figure 6A, it can be seen that peak flow increased with drainage
area and antecedent soil saturation ratio, though the increase rate
was not consistent. As soil saturation ratio exceeded 70%, there was
significant variation in peak flow with changes in drainage area. On the
contrary, noticeable changes were found in peak flow when rainfall
return period was low, with a surge in the range of 100–200 km2

(Figure 6C). This may be related to the topography of the sub-
catchment. This shows that peak flow was not sensitive to low
antecedent soil moisture, while small increase in rainfall would result
in greater runoff in each catchment, which is consistent with Figure 4A.

The peak time increased from the upper left to the lower right,
with larger drainage areas, lower soil saturation ratio, and smaller
rainfall return periods (Figures 6C, D). When soil saturation ratio
was above 80%, runoff occurred almost instantaneously after the end
of the rainfall event. This is because all sub-catchments in the region
were saturated before the end of the rainfall event. This indicates that
the dominant runoff generation mechanism of SXRC is saturation
excess. This is also matching the results of our previous findings in
the southwest humid China (Liu et al., 2021). For catchments with
an area less than 150 km2, peak time was generally consistent with
rainfall time due to the short length of the stream channel in the
study catchments.

FIGURE 6
The scale effects of runoff on antecedent soil saturation ratio and rainfall return period. (A) Scale effect of peak flow on antecedent soil saturation
ratio at 100-year-event; (B) scale effect of peak time on antecedent soil saturation ratio at 100-year-event; (C) scale effect of peak flow on return period
at 50% soil saturation ratio; (D) scale effect of peak time on return period at 50% soil saturation ratio.
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3.3 Relative contribution of rainfall and
antecedent soil saturation ratio

To quantify the impact of soil moisture and rainfall on flood
generation, we calculated the ratio of antecedent soil saturation ratio
and rainfall (SPR) (Ran et al., 2022). Figure 7 compares the peak flow
from different sub-catchments with various SPR values.When SPRwas
in the first four groups (SPR <1), the peak flow increased with SPR.
When SPR was in the last four groups (SPR >1), there was a negative
correlation between SPR and peak flow. That is, when the relative
magnitude of soil moisture in the input data is greater, magnitude of
floods decreased with the decrease of rainfall dominance. On the other
hand, when the relative magnitude of rainfall was greater, this situation
was reversed. The maximum flood peak flow occurred when SPR was
around one. That is, the flood peak reached the maximum when the
contribution of rainfall and antecedent soil saturation ratio was close,

both rainfall and antecedent soil saturation ratio were relatively large.
The peak flow was more sensitive to scenarios with larger rainfall and
higher soil moisture saturation ratio. Note that the error in each group
followed the same trend as the peak flow due to the larger variance in
larger catchments (Supplementary Figure S2). While in small
catchments, the change of flood peak flow with SPR was not obvious.

To further explore the relative contribution of rainfall and
antecedent soil saturation ratio individually, we calculated the
relative importance of rainfall and soil saturation ratio to flood
peak. As can be seen from Figure 8, there were apparent trend in the
contribution rates of both rainfall and soil saturation ratio. With the
increase in catchment drainage area, the relative contribution rates
of rainfall gradually decreased while the antecedent soil saturation
ratio increased. In themain stream areas near the outlet (the last four
points), the changes in these two indicators are particularly
prominent. Note that in this algorithm, the value of antecedent
soil moisture importance has always been greater. Similar
importance has also been found in Vreugdenhil et al. (2022) on
overland flow and tile drainage in a Hydrological Open Air
Laboratory, Austria. Given the calculation of this method, this
may be attributed to the relatively larger value and smaller
variance of soil saturation ratio. Different methods could derive
various values of the relative importance, yet their trends with
drainage area are similar: with the increase in catchment size, the
impact of antecedent soil moisture decreases and that of rainfall
increases, which is consistent with the previous findings.

4 Discussion

4.1 Impact of antecedent soil moisture and
rainfall on flood generation

Obviously, the peak flow increased with rainfall return period
and antecedent soil saturation ratio, while the peak time decreased
with them. Meanwhile, the growth rate of peak flow increased with
soil moisture but decreased with rainfall return period. The increase

FIGURE 7
Bar plot of the peak flow under different SPR (ratio of antecedent
soil saturation and precipitation). The error bars indicate variance
among catchments and scenarios.

FIGURE 8
Scatter plot of the relative importance of rainfall (A) and soil moisture (B) to peak flow as the drainage area changes.
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rate was steeper under heavy rainfall return periods and high soil
saturation ratio. This result ties well with previous studies in Turkey
River in the midwestern United States (Zhu et al., 2018). The rapid
generation of surface runoff due to saturated soil can lead to greater
sensitivity of the flow to changes in rainfall. Conversely, when the
soil was dry, most of the rainfall would infiltrate into the soil, slowing
the surface runoff (Viglione et al., 2016). This suggests that the
dominant mode of runoff generation within the study catchment is
Dunne overland flow, which is consistent with previous research
findings (Ran et al., 2015).

Rainfall and antecedent soil saturation ratio level have been
identified as being main driving factors of runoff generation, and
they jointly influence flood (Berghuijs et al., 2016; Ye et al., 2017;
Wasko and Nathan, 2019; Breinl et al., 2021). Extreme floods were
found occurring under high return period and high antecedent soil
saturation ratio in many catchments (Zhu et al., 2018; Zhong et al.,
2021). As the rainfall increased, the response of peak flow to high soil
saturation ratio become stronger (Figure 4A). Comparing our results
with literature, it must be pointed out that some studies have
suggested that dry catchments are more sensitive to changes in
rainfall than wet ones (Yang and Yang, 2011; Tang et al., 2019). Our
results do not necessarily contradict these findings. This may be due
to the existence of a critical value for soil saturation. Above this
threshold, changes in soil moisture do not significantly affect peak
flow. However, when soil moisture is below the critical value, flood
size decreases with soil moisture (Wasko and Nathan, 2019).
Besides, runoff sensitivity to soil moisture is closely related to the
dominant runoff generation mechanisms (Castillo et al., 2003). In
arid regions where runoff mainly occurs as infiltration-excess, its
sensitivity is expected to show lower than basins where subsurface
mechanisms predominate (Cao et al., 2019). Moreover, the increase
in rainfall may not necessarily result in higher peak flow due to the
reduction of soil saturation ratio. The findings are in line with
previous findings (Wasko and Sharma, 2017; Sharma et al., 2018).

We examined the influence of soil saturation ratio and rainfall
by comparing their ratios. The results show that when SPR was less
than one, there was a positive correlation between SPR and peak
flow, while when it was greater than one, it was a negative correlation
(Figure 7). That is, the maximum peak flow occurred when both
rainfall and antecedent soil saturation ratio were relatively high and
contributed to runoff generation. Previous study in the Yangtze
River Basin has observed a negative correlation between the multi-
year averaged SPR and flood peak flow (Ran et al., 2022). Our result
further expanded the data set to event scale and found that there was
a more complex relationship between SPR and peak flow at event
scale. This finding that event flow peak was maximum when SPR
was close to one is consistent with the findings in many humid
catchments worldwide (Bennett et al., 2018; Bertola et al., 2021; Ran
et al., 2022).

4.2 Impact of scale effects on flood
generation

There was a clear correlation between peak flow and peak time
with drainage area (Figure 5). When the catchment drainage area
was small, there were fluctuations in peak flow and peak time, which
could be attributed to the variation of the topography of these small

catchments. Overall, it showed a positive correlation with drainage
area. This helps quantify the impact of catchment drainage area on
runoff generation in the existing work.

Furthermore, the impacts of influential factors on runoff
generation may vary for catchments with different drainage
areas. Soil saturation ratio condition of larger catchments played
a more significant role in regulating flood response compared to
smaller ones (Figure 8). Studies conducted in Australia also found
that the correlation between peak flow and soil moisture was higher
than that between rainfall (Wasko and Nathan, 2019). Additionally,
Cao et al. (2019) also reported that the effect of antecedent soil
moisture is stronger in larger catchments. These findings are
consistent with our results. This may be attributed to the longer
time for catchment drainage in larger catchments comparing to
smaller ones, which also have greater spatial heterogeneity including
geomorphological and topographic characteristics (Saharia et al.,
2017). For example, catchments with steep slope and high drainage
density will respond faster to rainfall (Saharia et al., 2017). Smith
et al. suggested that the impact of antecedent soil moisture on river
flow could be more significant in larger catchments (Smith et al.,
2013). Our study further quantifies the relative importance of
rainfall and antecedent soil conditions. With the increase of
catchment area, the relative importance of rainfall decreases
while the relative importance of antecedent soil moisture
increases (Figure 8).

Given the scale effects of the relative importance of soil moisture
and rainfall, this can be done by assimilating drainage area and soil
moisture into hydrological forecasting system to mitigate flood
hazards in mountainous areas.

The peak time is also an important indicator of runoff
generation, which is of great significance to the early warning of
flash flood. In small catchments (i.e., <100 km2), the peak time was
insensitive to both antecedent soil saturation ratio and rainfall
magnitude. This is because the confluence distance is very short
in the range of several to tens of square kilometers. On the other
hand, even in large catchments, extremely short peak time can be
observed when antecedent soil saturation ratio was high (Figure 6B).
This means that the peak flow occurs immediately at the end of the
rainfall. Events with high antecedent soil moisture were likely to
convert more precipitation to discharge, and took a shorter time to
reach peak flow (Thomas et al., 2021). Simulating the runoff
generation process accurately is crucial for reliable flash flood
warnings in mountainous catchments. For example, when the
soil is close to saturation, the peak time will advance by
approximately 300%. Moreover, this effect is more significant
under rainfall of shorter return period. Therefore, attention also
should be paid to the peak time for small rainfall events coming after
series of previous events that have substantially saturated the soil
(high soil saturation ratio).

4.3 Limitations and implications

In this study, the InHM model was used to simulate the process
of runoff generation in a humid mountainous catchment, aiming to
understand the impact and the relative importance of rainfall and
antecedent soil saturation ratio on runoff generation. However, our
research also has some limitations.

Frontiers in Earth Science frontiersin.org09

Yu et al. 10.3389/feart.2023.1285766

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1285766


In this analysis, the rainfall was set as the mean maximum 6-h
rainstorm from historical records with the homogeneous assumption.
That is to say, the rainfall was uniform across the whole catchment.
Studies have suggested that spatial rainfall structure has an important
impact on river basin runoff in large scale (Zhu et al., 2018). But
Lobligeois et al. (2014) found that the spatially uniform rainfall inputs
in catchments smaller than 500 km2 performed better by simulating
3620 flood events observed in 181 catchments. As nearly 95% of our
catchments are smaller than 500 km2, it is reasonable to adopt
spatially uniform rainfall in our research.

This work is a theoretical analysis based on simulations from a
physically-based distributed hydrological model InHM. Although the
model has been successfully employed for many event-based rainfall-
runoff simulations in different catchments (Mirus et al., 2007; Ebel et al.,
2008), and calibrated in our study region, more accurate measured data
on rainfall, soil moisture and runoff are needed to further validate our
findings. In addition, studies are needed to be applied to catchments in
more climate regions, which will further expand our findings and lead
to more general conclusions about the impacts of rainfall and soil
moisture.

Studies have shown that extreme precipitation has intensified
globally (Do et al., 2017). The increase of rainfall intensity can lead to
major floods, especially in humid regions (Milly et al., 2002; Sharma
et al., 2018). Better understandings of the contribution of rainfall and
antecedent soil moisture at catchments with different drainage area
can be crucial for improving flood risk predictions. By investigating
the impacts of dominant factors of runoff generation across scales,
we can provide guidance on the causes of runoff generation at
different scales.

5 Conclusion

In this paper, we apply the physically-based distributed
hydrological model InHM to Shouxi River Catchment in
Southwest China to analyze the relative contribution of rainfall
return period and antecedent soil saturation ratio on runoff
generation. By simulating runoff generation processes in different
sub-catchments, we explored how rainfall and soil moisture
influenced runoff at different scales.

Our results showed that both antecedent soil saturation ratio
and rainfall return period had significant impacts on runoff
generation. Increasing return period and soil saturation ratio can
greatly increase peak flow and shorten peak time. When a high
return period was matched with a high antecedent soil saturation
ratio, rare extreme flood peak flow would occur rapidly. Our analysis
further showed that there was a certain correlation between the
antecedent soil saturation ratio to rainfall (SPR) and peak flow.
When SPR <1, there was a positive correlation between SPR and
peak flow; while when SPR >1, it shifted to a negative correlation.
This indicated that the maximum floods usually occurred when
rainfall was relatively large and soil water close to saturation;
maximum rainfall falling on dry soil could not necessarily
generate annual maximum floods.

Furthermore, we found that there were also scale effects on flood
generation. Both peak flow and peak time increased linearly with the
drainage area. The scale effect was more pronounced when there was
high antecedent soil saturation ratio and rainfall return period.

Based on the analysis in Shouxi River Catchment, we found that
with the increase in catchment drainage area, the relative
contribution of rainfall gradually decreased while the antecedent
soil saturation ratio increased.
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