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The compressed sensing (CS) method, commonly utilized for restructuring sparse
signals, has been extensively used to attenuate the random noise in seismic data.
An important basis of CS-based methods is the sparsity of sparse coefficients. In
this method, the sparse coefficient vector is acquired byminimizing the l1 norm as
a substitute for the l0 norm. Many efforts have beenmade tominimize the lp norm
(0 < p < 1) to obtain amore desirable sparse coefficient representation. Despite the
improved performance that is achieved by minimizing the lp norm with 0 < p < 1,
the related sparse coefficient vector is still suboptimal since the parameter p is
greater than 0 rather than infinitely approaching 0 (p → 0+). Therefore, the CS
method with the limit p → 0+ is proposed to enhance the sparse performance and
thus generate better denoised results in this paper. Our proposed method is
referred to as the CS-LHR method because the solving process for minimizing
p → 0+ is the log-sum heuristic recovery (LHR). Furthermore, to improve the
computational efficiency, we incorporate the majorization-minimization (MM)
algorithm in this CS-LHR method. Experimental results of synthetic and real
seismic records demonstrate the remarkable performance of CS-LHR in
random noise suppression.
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1 Introduction

Random noise is frequently present in raw seismic data, which disrupts the continuity of
seismic events and reduces the signal-to-noise ratio (SNR) of seismic data. Low SNR and
discontinuous seismic events can blur the stratigraphic information in seismic profiles,
reduce the interpretability of seismic data, and lead to incorrect identification of subsurface
targets. Hence, it is essential to perform seismic noise separation and attenuation during both
prestack and poststack seismic data processing (Wu et al., 2019; Dong et al., 2022a; 2022b;
Liu et al., 2022a; Liu et al., 2022b; Wu B Y et al., 2022; Zhong et al., 2022; Zhong et al., 2023).

In recent years, numerous signal processing methods have emerged for the separation
and suppression of seismic noise (Yuan et al., 2012; Li et al., 2014; 2022; Zhang et al., 2021; Ni
et al., 2022; Sun et al., 2022; Wu H et al., 2022). These methods include singular spectrum
analysis (Oropeza and Sacchi, 2011), empirical mode decomposition-based techniques
(Bekara and Baan, 2009), wavelet transform (Yang et al., 2018), and curvelet transform
(Qu et al., 2016). Most of these methods are typically developed based on the distinguishing

OPEN ACCESS

EDITED BY

Xintong Dong,
Jilin University, China

REVIEWED BY

Hao Wu,
China University of Geosciences Wuhan,
China
Yihuai Lou,
Zhejiang University, China

*CORRESPONDENCE

Fengyuan Sun,
fysun@guet.edu.cn

RECEIVED 30 August 2023
ACCEPTED 18 December 2023
PUBLISHED 09 January 2024

CITATION

Sun F, Zhang Q, Wang Z and Hou W
(2024), Compressed sensing with log-
sum heuristic recover for
seismic denoising.
Front. Earth Sci. 11:1285622.
doi: 10.3389/feart.2023.1285622

COPYRIGHT

© 2024 Sun, Zhang, Wang and Hou. This
is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Earth Science frontiersin.org01

TYPE Methods
PUBLISHED 09 January 2024
DOI 10.3389/feart.2023.1285622

https://www.frontiersin.org/articles/10.3389/feart.2023.1285622/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1285622/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1285622/full
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2023.1285622&domain=pdf&date_stamp=2024-01-09
mailto:fysun@guet.edu.cn
mailto:fysun@guet.edu.cn
https://doi.org/10.3389/feart.2023.1285622
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2023.1285622


characteristics of seismic signals and specific types of noise in
transform domains. Notably, sparse representation-based
techniques have gained significant popularity (Candès et al.,
2006; Chen et al., 2017; Wu B Y et al., 2022). While seismic data
is not inherently sparse, it can be effectively transformed into a
sparse signal by sparse transformation (Siahsar et al., 2016). Random
noise cannot be transformed into a sparse signal due to lacking
sparsity. Then, during sparse transformation, the noisy seismic
signal is separated into a sparse signal and random noise.
Subsequently, the denoised seismic signal is reconstructed using
the sparse signal, thereby the separation of the seismic signal and
random noise is achieved by sparse transformation and sparse signal
reconstruction. In practical applications, the denoising effectiveness
of sparse transformation is linked to the sparsity of the resulting
sparse signal. Greater sparsity leads to improved denoising
performance. Thus, enhancing the sparsity of sparse
transformation is crucial for its denoising applications (Wu H
et al., 2022).

Compressed sensing (CS) is a well-established method that
combines sparse transformation and signal reconstruction
(Donoho, 2006). In contrast to the conventional
Nyquist–Shannon sampling theory, the CS method can
reconstruct signals without higher sampling rates and has
received significant attention and been widely applied in
separating random noise. Regrettably, obtaining sparse signals
through the l0 norm minimization in the CS method is an NP-
hard problem (Candès andWakin, 2008; Yang et al., 2022). As such,
the minimization of l1 norm and lp norm (0<p<1) are often adopted
as replacements for the minimization of l0 norm in some improved
CS methods (Yang et al., 2009; Liu et al., 2023a). And the lp norm
(0<p<1) minimization has been demonstrated as having superior
sparsity capabilities compared to l1 norm minimization (Wu B Y
et al., 2022; Liu et al., 2023b). Although the aforementioned methods
for tackling NP-hard problems can enhance the convergence and
effectiveness of the solution process, they also diminish the sparsity
of the sparse signal; their sparse performance can still be further
enhanced by incorporating the limiting form p → 0+.

Thus, a novel algorithm leveraging norm minimization with
p → 0+ in the CS method is proposed in this paper; it can enhance
the sparsity of sparse signals, achieve proficient signal
reconstruction, and effectively suppress seismic noise. The
minimization utilizing the limiting form p → 0+ is referred to as
log-sum heuristic recovery (LHR) because the expansion of the
limiting form norm is a logarithmic sum (Zou and Hastie, 2015).
Therefore, we also call the proposed algorithm the CS-LHR method.
In our approach, the minimization with p → 0+ poses a non-convex
problem, making its solution process more intricate than that of
convex problems. Encouragingly, significant progress has been
achieved in addressing non-convex problems, and the
majorization-minimization (MM) iterative optimization
algorithm is one effective method for solving such problems. The
MM algorithm substitutes a complex optimization problem with a
series of simpler ones, thus approximating the objective function
that encompasses non-differentiable and non-convex traits with a
differentiable and convex surrogate function to facilitate optimal
solution retrieval (Fazel et al., 2003; Foo et al., 2009). To ensure good
convergence rates, our workflow incorporates the majorization-
minimization (MM) algorithm.

In the subsequent sections of this article, we provide a detailed
description of the proposed workflow. Subsequently, a synthetic
dataset and a field dataset containing noise are utilized to
demonstrate the effectiveness of the approach. The results show
that our method can suppress noise from seismic reflections
effectively and results in a seismic profile with good continuity of
seismic events and high resolution.

2 Compressed sensing with the limit
form p → 0+ (CS-LHR)

Compressed sensing (CS), which challenges the traditional
Nyquist–Shannon sampling theory, has emerged as a hot topic in
the field of signal processing (Donoho, 2006.). Although many
studies on the applications of CS have been conducted, there is
still value in exploring how to enhance its performance (Candès and
Wakin, 2008; Yang et al., 2009). In this paper, we will explore how to
enhance the sparsity of sparse signals in the CS method and apply
the related research to seismic signal denoising.

If a signal X ∈ RN can be sparsely represented, it can be
written as

X � Ψθ (1)
where the matrix Ψ consists of a set of sparse basis vectors, and the
vector θ represents a sparse signal within the space defined by these
basis vectors in matrix Ψ. In the CS method, the sparse signal θ can
be obtained by minimizing the norm as min

θ ‖θ‖0 and should satisfy
the constraint as

Y � ΦΨθ (2)
In Eq. 2 Φ is referred to as the sensing matrix, and Y is the

sampled data of X obtained by the sensing matrix Φ.
Then, the CS theory can be described by

min
θ θ‖ ‖0

s.t. Y � ΦΨθ
(3)

In practice, the matrix Ψ and the sensing matrix Φ are pre-
determined. As the description by Eq. 1 and Eq. 3, the sparse signal
θ, when acquired, allows for the reconstruction of X utilizing X �
Ψθ.

Eq. 3 presented above is an NP-hard problem that is challenging to
solve. To overcome this NP-hard problem, the optimization of l0 norm
in Eq. 3 can be replaced with a convex optimization of l1 normwhich is
the convex approximation of the l0 norm, and easier to solve. Then, the
related CS method with the l1 norm is (Candès and Wakin, 2008)

min
θ θ‖ ‖11

s.t. Y � ΦΨθ
(4)

where ‖ · ‖11 represents the l1 norm.
Although the convex relaxation in Eq. 4 reduces the

complexity of the original NP-hard problem, it unfortunately
yields a solution θ with suboptimal sparsity due to the l1 norm
deviating significantly from the l0 norm. To address this issue, the
lp norm is introduced (Candès et al., 2006). Subsequently, the
optimization problem described by Eq. 4 with the lp norm can be
written as
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min
θ fp θ( )

s.t. Y � ΦΨθ
(5)

In which fp(θ) � ‖θ‖pp and p ∈ (0,1]. For ∀p> 0, min
θ

fp(θ) is
equivalent to

min
θ

1
p

fp θ( ) −N[ ] � min
θ

∑N

i�1
ϑi| | − 1
p

(6)

in Eq. 6 N is the length of the sparse signal θ and ϑi denotes the
element of θ (Caiafa and Cichocki, 2013).

Presented above corresponds to a non-convex optimization and
exhibits superior sparsity performance compared to the l1 norm
minimization. Although the advantages of CSmethod with the lp p ∈
(0,1] norm shown as Eq. 5 have been demonstrated, the CS method
with limit p → 0+ has not been studied. It is important that the lp
normminimization based on p → 0+ differs from other p values in p
∈ (0,1]; it possesses greater sparse capability (Deng et al., 2012).
Additionally, the lp normminimization based on p → 0+ also differs
from lp (p=0) that yields an NP-hard problem; it is solvable. Thus, in
order to acquire a sparse signal θ with high sparsity, we propose a
novel approach that combines the optimization of the limit norm
with the CS method to enhance the sparsity of θ, described as

min
θ

lim
p→0+

fp θ( )
s.t. Y � ΦΨθ

(7)

According to L’Hôspital’s rule (Caiafa and Cichocki, 2013),
lim
p→0+

fp(θ) in Eq. 7 can be expressed as

lim
p→0+

fp θ( ) � lim
p→0+

∑N

i�1
ϑi| | − 1
p

� ∑N

i�1log ϑi| | + δ( ) (8)

where δ> 0 is a small positive number to guarantee the stability of
the algorithm. In practice, δ should be set to a value slightly smaller
than the expected non-zero element ϑi. Typically, the solve process
of Eq. 8 is robust enough to tolerate different choices of δ. Therefore,
combined with Eq. 8, 7 can be rewritten as

min
θ

∑N
i�1log ϑi| | + δ( )

s.t. Y � ΦΨθ
{
∑N

i�1log ϑi| | + δ( ) � fL θ( )

⎧⎪⎪⎨⎪⎪⎩ (9)

in which the logarithmic sum ∑N
i�1log (|ϑi| + δ) is denoted as fL(θ),

and min
θ

∑N
i�1log (|ϑi| + δ) is the log-sum heuristic recovery (LHR)

model. Therefore, the improved method described by Eq. 9 is named
as the CS-LHR method by us because it is the composition of the CS
and the LHR. In contrast to the traditional CS methods, the CS-LHR
method can attain a best sparse signal θ that exhibits the
optimal sparsity.

Note that Eq. 9 is non-convex due to the non-convexity of its
log-sum. According to recent progress in non-convex
optimization, the non-convex problem can be solved efficiently.
In this paper, we incorporate the alternating direction method of
the majorization-minimization (MM) algorithm into our
workflow to ensure faster convergence (Fazel et al., 2003; Foo
et al., 2009). The MM algorithm transforms the original non-
differentiable, non-convex function into a differentiable and
convex surrogate function, facilitating the retrieval of optimal
solutions. Then, Eq. 9 can be equivalently expressed as Eq. 10
based on the MM algorithm as

min
θ W ⊙ θ‖ ‖l1
s.t. Y � Aθ

(10)

where A � ΦΨ, W represents the vector of weighted parameters
with each element wi � (|ϑi + δ|)−1. Eq. 10 demonstrates that the
log-sum penalty function performs the re-weighted l1 minimization,
which promotes sparsity more effectively compared to the lp norm
(0<p<1) minimization. Moreover, each iteration of the MM
algorithm for solving Eq. 10 corresponds to a convex
optimization that can be easily solved.

Eq. 10 can also be rewritten as

min
θ

Y − Aθ‖ ‖l2 + λ W ⊙ θ‖ ‖l1 (11)

in Eq. 11 λ is the positive weighting parameter. Once the solution θ*
of Eq. 10 is obtained, the signal X* � Ψ θ* can be recovered.

3 Seismic denoising by the CS-LHR

Section 2 suggests that the CS-LHR can achieve the optimal
sparse signal through the limit norm minimization. The resulting
optimal sparse signal complies with the constraints and is well-
suited for signal reconstruction. This paper focuses on the
application of the CS-LHR method to seismic signal denoising. A
general form of an observed seismic signal Y(n) that is
contaminated by noise can be expressed as

Y n( ) � Aθ n( ) + E n( )
A � ΦΨ
X n( ) � Ψθ n( )

⎧⎪⎨⎪⎩ (12)

in Eq. 12 θ(n) is a sparse signal, E(n) represents the noise term that
can either be stochastic or deterministic, and n ∈ [1,N] represents
the index of time sampling point. Assuming that Φ and Ψ represent
the sensing and sparse basis matrices, and are independent as the CS
theory, it becomes feasible to separate the noise E(n) from the
observed seismic signal Y(n). Subsequently, the denoised result
X(n) can be reconstructed by θ(n). Moreover, the effectiveness of
denoising is associated with the sparsity of θ(n). Greater sparsity
leads to improved noise separation. Based on the foregoing analysis,
the CS-LHR, utilizing limit norm optimization, yields an optimally
sparse signal θ(n).

According to the CS theory, the sparse basis matrix Ψ and the
sensing matrix Φ should be irrelevant (Donoho, 2006). However,
achieving complete independence between Ψ and Φ in practical
applications is challenging. Then, some special matrices are chosen
asΦ to ensure a certain degree of independence with the sparse basis
matrix Ψ. In this study, a Gaussian random matrix is chosen as
sensing matrix Φ due to its excellent characteristic of having
minimal correlation with other matrices. Additionally, since a
seismic signal is non-stationary, the sparse basis matrix Ψ should
be provided by an algorithm which facilitates the analysis of non-
stationary signals. To obtain a sparse basis matrix Ψ for non-
stationary signals, the sparse S-transform is introduced (Wang
et al., 2016). Furthermore, as the log-sum penalty term in Eq. 8
is non-convex, a suitable starting point for iterative computation is
necessary. Consequently, we initialize θ with the solution of Eq. 3
with the l1 normminimization. The proposed workflow is
summarized in Algorithm 1 (Table 1):
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4 Synthetic and real data examples

In order to illustrate the effectiveness of the proposed CS-LHR
method, we initially apply it to synthetic seismic data with different
levels of signal noise ratios (SNRs). Then, the proposed method is
utilized for field data denoising. Figure 1 displays a 2-D synthetic
seismic trace without noise. Figure 2 shows the 2-D synthetic trace

with different SNRs (5dB, 5dB, -3dB, and 3 dB). Figure 3 exhibits a
3-D noisy field data acquired over the Scotian shelf, offshore
Canada, and termed Penobscot. For comparison, the traditional
CS method based on lp norm (0<p<1) is utilized as an
alternative method.

4.1 Seismic signal enhancement with
different SNRs

The denoising results for noisy 2-D synthetic data using the
traditional CS method are depicted in Figures 4A,B, while those
obtained from the CS-LHR method are presented in Figures
5A,B. It is clear that the traditional CS method can effectively
attenuate noise in smooth areas of noisy synthetic data; however,
it introduces artifacts and exhibits a poor denoising effect in the
oscillatory areas marked by black ellipses. Although the
traditional CS method based on lp norm (0<p<1) exhibits
greater effect on noise attenuation compared to that based on
l1 norm, its sparse signal θ(n) exhibits varying reconstruction
capabilities across different regions of the signals. During noise
separation using sparse transformation in the traditional CS
method, the suboptimal sparsity of the sparse signal leads to
the inclusion of some noise characteristics in the sparse signal,
which become apparent in the reconstructed original signal.
While the sparse signal θ(n) effectively captures the primary
information within smooth areas of the signal, it also
incorporates some noise features in oscillatory regions. To
enhance the denoising performance across all areas of the
noisy signal, it is crucial that the sparsity of the sparse signal
is increased to enhance the reconstruction effectiveness of the
original signal. Consequently, this paper introduces the CS-LHR
method which can achieve the best sparse reconstruction ability
due to the norm minimization based on p → 0+. The denoising
results shown in Figure 5 illustrate the random noises are
successfully removed while the seismic events are preserved
well. Notably, the proposed method demonstrates exceptional
noise filtering capabilities, even under low signal-to-noise ratio
(SNR) conditions.

FIGURE 1
A 2-D synthetic seismic trace without noise.

FIGURE 2
(A) The 2-D synthetic seismic trace with SNRs −3dB, 3dB. (B) The 2-D synthetic seismic trace with SNRs −5dB, 5dB.

TABLE 1 The workflow of seismic denoising by CS-LHR.

Algorithm 1 Workflow of seismic denoising by CS-LHR

Input: Observed seismic data Y ∈ RN , the sensing matrix Φ, the sparse basis Ψ, the
positive parameter λ;

Initialization: Initialize θ(0) from Eq. 3. Determine each wi � (|ϑi + δ|)−1
through θ(0) ;

Repeat: Update θ(k) and determine each wi by θ(k) until convergence;

Output: The sparse coefficient vector θ*;

End: Recover the free-noise X* � Ψθ*.
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4.2 Field data applications

To verify the effectiveness of the proposed method, 3-D noise-
contaminated field data obtained from the Scotian shelf, offshore
Canada, referred to as Penobscot, are shown in Figure 3. The 3-D
field data comprise 401 inlines and 401 crosslines, with a time
sampling interval of 4 ms.

In Figure 3, black arrows indicate discontinuous seismic events,
while green arrows represent seismic artifacts caused by random noise.
The green lines correspond to the location of X-line 1273, as depicted in
Figure 6A. Obviously, this seismic volume contains significant random
noises which hinder subsequent seismic data processing and
interpretation. Our method’s denoising result is shown in Figure 6B,
where the improved resolution and well-preserved reflection events are
evident. Regions marked by the black ellipses demonstrate efficient
attenuation of random noise, enhanced continuity, and resolution of
seismic events. Additionally, the seismic fault structures indicated by
black arrows are preserved well. Further, Figure 6C shows no useful
information in the difference profile.

FIGURE 3
A 3-D noise-contaminated field data acquired over the Scotian
shelf, offshore Canada, comprised 401 inlines and 401 crosslines, with
a time sampling interval of 4 ms. Discontinuous seismic events are
indicated by black arrows, seismic artifacts caused by random
noises are represented by green arrows. The green lines correspond to
the location of X-line 1273.

FIGURE 4
The denoising results of 2-D synthetic seismic traces by the traditional CS model with 0<p<1. (A) The denoising results for SNRs −3dB and 3dB. (B)
The denoising results for SNRs −5dB and 5dB. From these results, we can see that the traditional CS model with 0<p<1 effectively attenuates noise in
smooth areas of noisy synthetic data; however, it introduces artifacts and exhibits a poor denoising effect in oscillatory areas marked by black ellipses.

FIGURE 5
The denoising results of 2-D synthetic seismic trace by the CS-LHR method. (A) The denoising results for SNRs −3dB and 3dB. (B) The denoising
results for SNRs −5dB and 5dB. Compared to Figure 4, Figure 5 illustrates the random noises are successfully removed while the seismic events are
preserved well.
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To further demonstrate the effectiveness of our method, we
compare it with the traditional CS method with 0<p<1 on the same
field data. The corresponding results are presented in Figure 7.
Figure 7A shows the denoising result, and Figure 7B represents the

related difference profile. We can observe that valid seismic events are
generally preserved in Figure 7A. However, compared to the CS-LHR
result, the fault structures and seismic events, indicated by black arrows
and black ellipses in Figure 7A, respectively, are less subtle. Additionally,

FIGURE 6
(A) The noise-contaminated field section, which is marked by green lines in 3-D field data, contains significant random noises. (B) From the
denoising result by CS-LHR, we can see that the improved resolution andwell-preserved reflection events are evident. (C) The difference profile between
Figures 6A, B; there is no useful information in this difference profile.

FIGURE 7
(A) Denoising result of Figure 6A by CS with lp norm (0<p<1); the fault structures and seismic events, indicated by black arrows and black ellipses,
respectively, are less subtle. (B) The difference profile between Figure 6A; Figure 7A; it contains some valuable information.
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some valuable information that can improve the resolution of the
denoising result is contained in the difference profile Figure 7B.

5 Conclusion

This paper proposes the CS-LHR method, a novel method for
seismic noise attenuation. Compared to the traditional CS methods
with 0<p ≤ 1, the CS-LHR method with the limit p → 0+ provides
enhanced sparse representation ability and denoising performance.
Testing results on field data demonstrate that our workflow
efficiently recovers noise-free signals. Additionally, we implement
the MM algorithm to improve calculation efficiency.

The CS method can be used for denoising, but its primary
contribution to the scientific domain lies in accomplishing the
compression and reconstruction of original signals via sparse signal
representation. This process facilitates the reduction of data acquisition
and transmission costs while preserving data quality, essential for
diverse applications including medical imaging, remote diagnosis,
earth observation, and wireless transmission. The CS-LHR method
introduced in this paper can achieve the optimal sparsity of the sparse
signal, leading to additional reductions in storage and transmission
costs. This holds particular significance for industrial applications
driven by cost considerations.
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