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The accurate mapping of seafloor substrate types plays a major role in
understanding the distribution of benthic marine communities and planning
a sustainable exploitation of marine resources. Traditionally, this activity has
relied on the efforts of marine geology experts, who accomplish it manually
by examining information from acoustic data along with the available ground-
truth samples. However, this approach is challenging and time-consuming.
Hence, it is important to explore automatic methods to replace this manual
process. In this study, we investigated the potential of deep learning (U-Net) for
classifying the seabed as either “bedrock” or “non-bedrock” using bathymetry
and/or backscatter data, acquired with multibeam echosounders (MBES). Slope
and hillshade data, derived from the bathymetry, were also included in the
experiment. Several U-Net models, taking as input either one of these datasets
or a combination of them, were trained using an expert delineated map as
reference. The analysis revealed that U-Net has the ability to map bedrock and
non-bedrock areas reliably. On our test set, the models using either bathymetry
or slope data showed the highest performance metrics and the best visual
match with the reference map. We also observed that they often identified
topographically rough features as bedrock, which were not interpreted as such
by the human expert. While such discrepancy would typically be considered an
error of the model, the scale of the expert annotations as well as the different
methods used by the experts to manually generate maps must be considered
when evaluating the predictions quality.While encouraging resultswere obtained
here, further research is necessary to explore the potential of deep learning
in mapping other seabed types and evaluating the models’ generalization
capabilities on similar datasets but different geographical locations.

KEYWORDS

deep-learning, seabed, segmentation, multibeam, backscatter, bathymetry,
classification

1 Introduction

Seafloor sediment mapping is a requirement in various applications (e.g., defence/naval,
environmental, maritime industry) (Mayer et al., 2018). Specifically, the delineation of
seafloor sediment types is crucial to the definition of the spatial distribution of benthic
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marine communities (Siwabessy et al., 2018) and to the sustainable
exploitation of marine resources and infrastructures planning
(Li et al., 2016). Creating sediment maps relies on two types
of data: acoustic remote-sensing data (most often, bathymetry
and backscatter from multibeam echosounders, or MBES) and
in situ ground-truthing (photo, video, or physical sampling).
Traditionally, this task is performed by expert geologists, who use
their experience to interpret and combine information from the
available data. However, since seabed sediment mapping demands
a significant investment of time from highly specialised experts,
many methods have been proposed to automate this process.
Promising results have been reported using unsupervised methods
(e.g., clustering techniques) (Lathrop et al., 2006; Brown andCollier,
2008; Brown et al., 2012), and supervised methods (e.g., Bayesian
decision rules, k-Nearest neighbour, decision trees, Random Forest,
artificial Neural Networks) (Brown et al., 2011; Ierodiaconou et al.,
2011; Stephens and Diesing, 2014). In particular, the machine
learning algorithm Random Forest is widely used as it has often
been found to outperform other algorithms in comparative studies
(Li et al., 2016; Diesing et al., 2020). Despite this, the routine
production of seabed sediments maps is still often performed
manually by geosciences experts, indicating that there is still much
progress to be made to design alternative automated methods
(Diesing et al., 2014; Buhl-Mortensen et al., 2015).

Machine learning methods have evolved significantly in recent
years. In particular, deep learning networks such as convolutional
neural networks (CNNs), have proven to greatly outperform
traditional machine learning approaches in common computer
vision tasks, including the semantic segmentation of images (Lateef
and Ruichek, 2019). This has sparked interest in the marine
scientific community to explore the potential of CNNs for marine
habitat mapping (Cui et al., 2021; Qin et al., 2021; Anokye et al.,
2023). The most-commonly used CNN for semantic segmentation
in many fields is the U-Net network (Ronneberger et al., 2015;
Leclerc et al., 2019) and its modified versions. In the marine
environment it has been successfully applied to underwater images
for the study of the behaviour of marine sponges (Harrison et al.,
2021), for the segmentation of fish species (Nezla et al., 2021),
underwater mineral images (Wang et al., 2022) and underwater
litter (Wei et al., 2022). Notably, recent research has demonstrated
the potential of U-Net for deriving seabed morphological classes,
including a hard-substrate class comprising bedrock outcrops, using
high-resolution bathymetric data alone and a limited amount of
labelled data (Arosio et al., 2023). This network has also been
tested for onshore bedrock mapping using a digital elevation
model (DEM) and cloud-based Landsat 8 data (Ganerød et al.,
2023). Given the promising outcomes, it is logical to investigate
further the capability of U-Net for the task of seabed sediments
classification.

A crucial difference between traditional machine learning
algorithms (e.g., Random Forests), and deep learning networks
(e.g., U-Net) is that the former relies on a manual feature
engineering process to ensure the extraction of relevant features
from the data (Janiesch et al., 2021), while the latter does not. Deep
learning minimizes the need for extensive feature engineering by
automatically learning hierarchical representations from raw data.
The trade-off is that training a CNN will often require a much larger
dataset (typically of the order of 103 training instances or more)

compared to traditional machine learning methods (typically using
101–102 training instances). As a result, while traditional machine
learning methods can use in situ data as ground-truth, such an
amount of data may be insufficient for training a complex network
like U-Net. Given that the objective is to generate seafloor sediment
maps that closely resemble those produced by human experts, we
suggest that it is possible to use such expert-createdmaps as ground-
truth.This approach ensures that theDeep learningmodel has access
to a sufficiently large anddiverse training dataset.Despite thesemaps
are manually generated and might encompass inaccuracies arising
from the personal assessments of the experts, they still provide the
most accurate representation of the seabed sediments for specific
study areas.

In this article, we evaluate the potential of U-Net for the
purpose of mapping seabed sediments from MBES data, using
maps produced by geoscience experts as a reference. As a first
step we classify the seabed sediment types as either bedrock or
non-bedrock with the objective to assess the effectiveness of U-
Net in replicating the sediment classification performed by an
expert geologist. To our knowledge, the use of a human generated
map as a ground-truth for training DL models has only been
explored in remote sensing applications for onshore bedrock
mapping (Ganerød et al., 2023), therefore we present a potentially
novel method for sediment classification in offshore settings. With
this work we aim to support development of automated tools for
seafloor classification and ocean exploration which can provide
rapid, accurate and consistent maps of the seabed to be incorporated
into seabed mapping routines to support geology and geophysics
specialists.

2 Materials and methods

2.1 Area of study and source dataset

The study site is a 576 km2 area spanning over five nearshore
marine municipalities in the Søre Sunnmøre region of Norway:
Hareid, Ulstein, Herøy, Sande and Vanylven (Figure 1). The
experimental data consists of high-resolution bathymetry grids and
backscatter mosaics, obtained from multiple MBES surveys, as well
as a multi-class seabed sediment map of the area. The map used
for this project was created by the Geological Survey of Norway
(NGU) in 2019, and shows details at a 1:20,000 scale (Elvenes et al.,
2019). At the time of our study, this map was the most accurate one
published for the area. However, a revised version of it was published
in late 2021. The updated map, focusing mainly on improving the
representation of non-bedrock areas, can be freely downloaded or
viewed online1,2.

The MBES data was collected over 38 surveys taking place
between 2006 and 2012 using four different MBES systems
(Kongsberg Maritime models EM 710, EM1002, EM 3000 and EM
3002D), which covered a depth range of 0–636 m (Elvenes et al.,
2019). The acoustic data were processed and gridded into a
single digital bathymetry model (DBM) and a single backscatter

1 https://www.ngu.no/.

2 https://www.mareano.no/.
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FIGURE 1
Overview of the study site and experimental data in the Søre Sunnmøre region of Norway. (A) MBES backscatter mosaic, (B) MBES bathymetry grid.

mosaic, both of 1 m x 1 m horizontal resolution. A seabed
sediment-type map of 25 classes was generated by a marine
geology expert using manual digitization. The interpretation
was based on the bathymetry grid (with overlaid hillshade), a
slope raster (derived from the bathymetry grid), the backscatter
mosaic, and shapefiles representing the classified sediment samples
and towed video footage acquired over the area (Elvenes et al.,
2019).

2.2 Data pre-processing

Since the marine geology expert also used the hillshade and
slope for their interpretation, we also included these bathymetry
derivatives to quantify their relevance. Slope and hillshade are
related variables that emphasize the local morphology, while
bathymetry display only allows visualizing the general depth trend.
Slope is the measure (in degree units) of the maximum steepness
for each cell of the bathymetry raster relative to its neighbour
cells, while hillshade is a grayscale 3D representation of the
morphology resulting from the simulation of a light source located
at a given azimuth and direction relative to the site. We derived
these two layers from the bathymetry grid using the “Slope”3 and

3 https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/slope.
htm.

“Hillshade”4 tools available in ArcGIS Pro (Figure 2). We utilized
the “Hillshade” tool in ArcGIS Pro with its default parameters,
configuring the “azimuth” to 315° from the northwest and “the
altitude” to 45° above the horizon. The backscatter mosaic, the
bathymetry, hillshade and slope layers were normalized to the 0–1
range and used as input features to theU-Net (Figure 3).The original
25-classes seabed map was simplified into “bedrock” and “non-
bedrock” as described in Table 1 (Figure 4). This modified reference
map was used as the U-Net’s target variable.

For the generation of the training, validation and test datasets,
we sampled the entire source dataset ensuring to spatially cover
as much data as possible while also reducing the amount of no-
data locations. This process resulted in 24 manually generated
rectangular regions of variable dimensions (Figure 5). The regions
without rectangles indicate locations where either some of the
input data was missing, the expert map was unavailable, or the
quality of the input data was inadequate. Figure 6A shows an area
omitted from training due to local lack of data in the backscatter
mosaic. Artifacts appeared frequently in our backscatter data, and
although efforts were made to remove them from the training
and validation dataset, a few still remained within the rectangular
regions. Examples of typical artifacts characterizing our data are
visible in Figures 6B, C.

4 https://pro.arcgis.com/en/pro-app/latest/help/analysis/raster-functions/
hillshade-function.htm.
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FIGURE 2
Illustration of the input features in our dateset: (A) Bathymetry grid (m) shown over the hillshade layer to highligth seabed topography, (B) Backscatter
mosaic (dB), (C) Slope layer, (D) Hillshade layer.

Each of the 24 rectangles was allocated either for training,
validation or testing, with the split realized to ensure that the
class frequencies across the three subsets were comparable and
representative of the entire dataset (Figure 7). Across all subsets,
the bedrock and the non-bedrock classes made up respectively
20%–25% and 55%–60% of all pixels, while the rest of the pixels
belonged to the no-data/background class, which was used as a third

class in models training but excluded from the network’s inferring
and evaluation.

To avoid artificially-improved classification performance,
poor model generalization, and biased predictions due to
spatial autocorrelation (Roberts et al., 2017; Schratz et al., 2019;
Karasiak et al., 2022), we calculated the covariance function for
both our testing and training data using ArcGIS Pro. By measuring
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FIGURE 3
Input data layers: backscatter mosaic, bathymetry grid, and the hillshade and slope layers derived from the bathymetry grid.

the strength of statistical correlation as a function of distance, the
covariance function quantifies the concept that close objects are
more similar compared to those at greater distances5. Hence, by
evaluating the covariance function we ensured a 1,000 m buffer
distance between the training and the testing rectangles. This
distance was selected according to the point at which the covariance
function approached a value of 0 for all our data.

2.3 Models training, inferring and
evaluation

Once the study area was sampled by extracting rectangles of
data (bathymetry, backscatter, hillshade and slope), each rectangle
was further divided into patches of 256 m x 256 m, with a 50%
overlap between consecutive patches both along the X-axis and Y-
axis. This resulted in approximately 22,000 patches of each MBES
data type for training. We used the modified light-weight U-Net
network described in Leclerc et al. (2019). U-Net is a convolutional
neural network architecture known for its U-shaped architecture
that combines contracting and expanding pathways by the mean
of skip connections, the key component of the network aimed to
merge encoder and decoder features (Ronneberger et al., 2015). The
encoder consists of a contracting patch compressing the input data
for feature extraction. The decoder involves an expanding path

5 https://pro.arcgis.com/en/pro-app/latest/help/analysis/geostatistical-analyst/
semivariogram-and-covariance-functions.htm.

which uses upsampling and convolutional layers that, by recovering
spatial details potentially lost during the downsampling, generate
the segmented output map (Ronneberger et al., 2015; Leclerc et al.,
2019).

We trained four models using a single data source in input
(single-input models): either backscatter (MB), depth (MD), slope
(MS), or hillshade (MH), and six models using two data sources
(multiple-input models): backscatter and depth (MBD), backscatter
and hillshade (MBH), backscatter and slope (MBS), depth and slope
(MDS), depth and hillshade (MDH), and slope and hillshade (MSH)
(Figure 8).

The trained models were used to infer predictions on the
50% overlapping consecutive 256 m x 256 m patches produced
from the testing rectangles. In order to obtain a cohesive and
smooth prediction for any given testing rectangle, the prediction
patches were merged back together using an algorithm6 that
blends overlapping data with a window function. This function
assigns different weights to the pixels according to their position
within each overlapping patch (pixels at the edge of a patch
are given less weight than the pixels located at the centre of a
patch).

The generalization performance of the trained models
was evaluated by calculating the Dice Score (DS) coefficient
(Milletari et al., 2016), the overall accuracy (Acc), the Kappa
coefficient (Kappa) and the user’s and the producer’s accuracy
for each class (class UAcc and PAcc) (Congalton, 1991). All these

6 https://github.com/Vooban/Smoothly-Blend-Image-Patches.
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TABLE 1 Sediment classes conversion from the original NGUmap for DL
network training purposes.

Original classes Converted classes

Thin or discontinuous sediment cover
on bedrock. Sediments with varying
grain size Bedrock

Exposed bedrock

Sand, gravel and cobbles

Non-bedrock

Gravel, cobbles and boulders

Mud and sand with gravel, cobbles
and boulders

Anthropogenic material

Cobbles and boulders

Mud/sand and cobbles/boulders

Sand and boulders

Cobbles/boulders covered by
mud/sand

Sand

Mud

Sandy mud

Muddy sand

Gravelly sandy mud

Gravelly muddy sand

Gravelly mud

Organic mud

Gravelly Sand

Gravel and cobbles

Sand, gravel, cobbles and boulders

Sandy gravel

Gravel

Muddy gravel

Muddy sandy gravel

metrics, derived from the models’ confusion matrices and available
as Supplemental Material, were calculated on the testing dataset for
the predicted classes bedrock/non-bedrock and excluding the no-
data class. The DS, is the most commonly used performance metric
for semantic segmentation using Deep Learning (Bertels et al.,
2019), the remaining metrics were added to encompass global and
class-specific accuracy measurements, as suggested by Strahler et

al. (2006). These represent the most common metrics used in the
seabed classification literature (Li et al., 2016; Siwabessy et al., 2018;
Turner et al., 2018), specifically, Liu et al. (2007) emphasize the
importance of UAcc, PAcc and Acc as primary accuracy measures.
The DS, Acc and Kappa are global metrics. The DS is a quantity
ranging between 0 and 1 which measures the overlap among the
models’ predictions and the reference annotations. The Acc metric
is the ratio between the number of pixels correctly classified and
the total number of classified pixels (Devaram et al., 2019). The
kappa metric quantifies the level of agreement between two sets of
categorical data by taking into account the agreement that could
arise by chance, beyond what would be expected due to random
concordance (Congalton, 1991; Warrens, 2015). PAcc and UAcc are
both class-specific metrics, the first provides a measure of the pixels
correctly classified in a particular category, as a percentage of the
total number of pixels actually belonging to that category, the second
informs that for all the areas classified as a certain category, a certain
percentage are actually correct (Congalton, 1991).

In a post-processing stage, we also tested various values for
the “decision threshold” parameter. Deep learning trained models
provide the user with a measure of the certainty or uncertainty
of the predictions in term of probabilities and sometimes the
default threshold parameter (0.5) might be not optimal to represent
correctly the distribution of the segmented classes of interest and the
model might commit an error of misclassification towards certain
classes (Fernández et al., 2018).

Finally, to gain insight in the sources of discrepancies between
the model predictions and the reference map in the testing dataset,
we calculated the percentage of pixels predicted as bedrock. This
analysis was conducted to evaluate the accuracy of the predictions
in relation to the original sediment classifications outlined in the
reference map.

3 Results

Based on their inference on the test set, the models scored DS
values ranging in 0.69–0.80 and Acc values ranging in 0.77–0.85
(Table 2). Among the single-input models, MD and MS consistently
displayed the highest values for the majority of the metrics,
while MB exhibited the lowest performance. The results for the
multiple-input models confirmed the higher predictive power of the
depth and slope over backscatter, as all the multiple-input models
incorporating backscatter data (MBD, MBH and MBS) consistently
showed lower performance metrics than the corresponding single-
input models without backscatter data (respectively, MD, MH, and
MS). Noticeably, no multiple-input models outperformed the best
single-input models.

Figure 9 illustrates the differences between the expert
annotations and the predictions of the models which consistently
scored high metrics (MD andMS) or low metrics values (MB,MBD),
over a portion of the test set representative of topographically
complex areas in our dataset. Overall, Figures 9B–E demonstrates
that predictions fromMD andMS more closely resemble the human
interpretations, while MB and MBD deviates more. Furthermore,
models trained using inputs from the same data source resulted
in similar predictions (e.g.,.MD and MS or MB and MBD). This can
be observed in Figure 10 where predictions from MD and MS are
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FIGURE 4
Extract of the original 25-classes seafloor sediment map, and the simplified binary bedrock/non-bedrock map. (A) Original multi-class sediment map,
(B) Simplified sediment map.

compared and almost perfectly overlap both for the bedrock class
(Figure 10A) and for the non-bedrock class (Figure 10B).This figure
shows that predictions from MD and MS overlap in almost every
region of the seabed. Only a few differences between the models
occur, and these are highlighted by the green areas, corresponding
to pixels predicted as bedrock by the MD model and by the orange
areas, corresponding to pixels predicted as bedrock by theMS model.

An in-depth comparison of the maps in Figures 9B–E shows
that all models tend to predict any seafloor area showing
a complex bathymetric relief as bedrock, whether or not it
was annotated as such by the expert. This observation is
confirmed by the results listed in Table 2 where the PAcc values
for the bedrock class for all the models are higher than the
corresponding UAcc ones. This indicates an over-prediction of the
bedrock class compared to the expert’s interpretation. Moreover,
Figures 9B–E shows that both MB and MBD appear to have a more
pronounced tendency to predict the bedrock class in flat areas
compared to MD and MS.

While the models generally over-predict the bedrock
class, as seen from the higher PAcc values compared to the
corresponding UAcc values (Table 2) and from Figure 9, instances
of underprediction are also evident. In Figure 11, model MD, taken
here as an example, fails to recognize expert-annotated bedrock
regions in flat seabed areas. The tendency of locally failing to predict

the bedrock class in flat seafloor areas, compared to the expert
annotations, is a trend observed not just inMD, but across allmodels.

To gain insight into the relationship between the DL bedrock
predictions and the original expert-annotated sediment classes
within the testing rectangles, we conducted an analysis focusing on
quantifying the degree of over-prediction for the bedrock class. The
over-prediction, expressed as percentage, was calculated by dividing
the number of pixels of each original class predicted as bedrock,
by the total number of pixels predicted as bedrock. The findings
are summarized in Table 3, which includes results from the models
that consistently achieved high metrics or low metric values (MD
and MS), MB, and MBD, and whose predictions were visualized in
Figure 9. This table presents the original expert-annotated sediment
classes, their corresponding converted classes used for the DL
network training, and a column that shows the percentage of pixels
for each of the original expert-annotated sediment classes in the
testing dataset. In addition, for each considered model, we included
a column showing the percentage of pixels from the original classes
that were predicted as bedrock, out of the total number of pixels
predicted as bedrock. As an example of the table interpretation,
for the original class “exposed bedrock” and for the model MD,
19.95% of the totality of pixels predicted as bedrock, corresponds
to the original class “exposed bedrock”. The largest group of pixels
misclassified as bedrock occurs for the original class “Sand, gravel,
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FIGURE 5
Location of the sampling rectangles over the study area overlaid on the backscatter mosaic. Rectangles labeled with “Test” were used as testing
rectangles, rectangles labeled as “Val” were used as validation rectangles.

cobbles and boulders”, which is also the non-bedrock class most
frequently mapped by the expert (11.66% of all pixels). Other pixels
misclassified as bedrock belong to the classes “Sand, gravel, and
cobbles” for MD, MS, and MBD (over 3.68% of pixels misclassified
as bedrock) and “Cobbles and boulders” for MBD (2.82% of pixels
misclassified as bedrock). These two classes are also among the most
frequent non-bedrock classes in the expert map (respectively 6.76%
and 6.66% of all pixels in the testing rectangles). While pixels from
finer-grained sediment classes are also predicted as bedrock across
the considered models, the percentage of such misclassified pixels
is relatively lower. For instance, “Sandy mud” (the second most
frequent non-bedrock class constituting 8.90%of all pixels) accounts
for the 0.72%–0.78% of pixels predicted as bedrock by models MD,
MS, andMBD, and the 0.98% of pixels predicted as bedrock bymodel
MB.

In an effort to mitigate the bedrock over-prediction, we tried
increasing the ‘decision threshold’ parameter from its default
value of 0.5. Threshold values between 0.7 and 0.8 yielded
predictions similar to the default threshold. Threshold value of

0.9 marginally improved bedrock delineation in specific areas.
Since we did not observe any consistent improvement with
higher threshold values, we decided to use the default one
of 0.5.

4 Discussion

The analysis conducted on the trained models reveals
valuable insights about the DL models’ ability to classify the
bedrock/non-bedrock classes from MBES data. The backscatter
model shows the lowest performance metrics compared to the rest
of the trained models. Conversely, all the models trained with
bathymetry/bathymetry-derived data demonstrate consistently
high comparable metrics. The visual assessment of the models’
predictions aligns with these findings. Predictions from MD and
MS tend to follow the rough bathymetric relief more closely
than MB and MBD. This is evident from the clear boundaries
and sharp edges observed in the topographically rough areas
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FIGURE 6
Examples of artifacts in the backscatter mosaic. (A) In the red rectangle is displayed an area of the mosaic excluded from training due to local lack of
data, (B) Example of backscatter artifacts indicated by the red arrows, (C) The yellow frame include linear artifacts visible across the backscatter data,
the orange frame shows the result of merging backscatter data acquired along different directions.

FIGURE 7
Class frequencies for the training, validation and test subsets.
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FIGURE 8
Summary of the U-Net models generated. Single feature models are models trained using single inputs (e.g., backscatter data, or slope data, or
bathymetry data, etc.). Two-layers models were generated by inputting the network with two layers at the same time (e.g., backscatter + slope data, or
depth data + hillshade data, etc.).

mapped as bedrock (red and yellow rectangles in Figures 9C, D).
In contrast, predictions from MB and MBD (Figure 9B, E) often
lacked precision in delineating with detail bedrock areas that often
appeared clustered together. The superior performance of models
trained using bathymetry data can be attributed to their ability
to recognize the locally complex morphology of the seabed as
a distinctive feature of bedrock areas. This mirrors the practice
of marine geology experts, who mainly rely on bathymetry data
when delineating bedrock outcrops, while they use backscatter
data primarily for distinguishing between several finer grained-
sediment types (Elvenes et al., 2019). A likely factor contributing
to the lower performance of backscatter models compared to
bathymetry models, is the heterogeneous nature of the MBES data
in our study, since it was collected across 38 surveys using 4 different
MBES systems. In this heterogeneous dataset, different acquisition
and processing parameters may have been applied, introducing
misfits when generating a composite backscatter mosaic (Figure 6).
These artifacts might have affected the recognizability of relevant
backscatter acoustic patterns, making it difficult for the network
to reliably predict the classes of interest. An attempt to re-process
the available data might help unveil whether the low performances

can be mainly attributed to the nature of the data. Another possible
reason for the weak performance of the models using backscatter is
that the backscatter strength from bedrock may vary considerable,
due to variations in roughness both on micro and macro scale.
Furthermore,MBES systemswith different frequenciesmay respond
differently. The MBES system EM710 uses frequencies between
70 and 100 kHz, while the EM 3000 and EM3002D systems use
frequencies in the 300 kHz band. These findings strongly indicate
that for this particular experiment, backscatter data might have
limited relevance, compared to the bathymetry data, for effectively
classifying bedrock/non-bedrock classes.

Our results also showed that the combination of two data
sources for training did not enhance the seabed classification
quality compared to the use of any single data source. In general,
combining different data sources is expected to enhance deep
learning models’ predictive capability by capturing complementary
information and patterns within the data. However, we found
that multiple-input models using depth and depth derived data
(MDH, MDS, MSH) did not achieve a higher performance than the
single-input models (Table 2). All these models share the common
characteristics of learning features from the same data source,
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TABLE 2 Overview of themetrics calculated for both the single-layer and two-layers models.

Single-layer models

Model name DStest
UAcc PAcc Acc Kappa

Non-bedrock Bedrock Non-bedrock Bedrock

Backscatter (MB) 0.69 0.86 0.63 0.77 0.76 0.77 0.51

Depth (MD) 0.79 0.93 0.72 0.83 0.88 0.84 0.67

Hillshade (MH) 0.76 0.93 0.66 0.76 0.89 0.81 0.60

Slope (MS) 0.80 0.92 0.75 0.85 0.85 0.85 0.68

Two-layers models

Backscatter and Depth (MBD) 0.71 0.90 0.62 0.74 0.83 0.77 0.54

Backscatter and Hillshade (MBH) 0.74 0.90 0.66 0.78 0.84 0.80 0.58

Backscatter and Slope (MBS) 0.78 0.92 0.72 0.83 0.86 0.84 0.66

Depth and Hillshade (MDH) 0.74 0.93 0.64 0.74 0.89 0.79 0.58

Depth and Slope (MDS) 0.77 0.89 0.75 0.86 0.80 0.84 0.66

Hillshade and Slope (MHS) 0.78 0.91 0.72 0.83 0.85 0.84 0.66

namely, the bathymetry. It can be thus inferred that U-Net can
effectively generate all the necessary data representations from the
bathymetry data alone. These findings differ from those presented
in the study conducted by (Arosio et al., 2023) where a combination
of bathymetry and hillshade data sources yielded DL models with
the best performance. This difference in results may stem from the
specific classification tasks of each study, in fact while Arosio et al.
(2023) aimed to identify various seabed morphological classes,
including distinct rock textures, we focused solely on bedrock/non-
bedrock separation. Furthermore, our study utilized a high-
resolution, expert-generated map for annotation, in contrast to the
limited annotated data employed by Arosio et al. (2023). Although
the disparities in our classification objectives and available data may
account for our differing results, further research is essential to fully
unravel the underlying causes of these discrepancies.

Despite the different nature of the backscatter and depth/depth
derivatives data, the combination of these data sources did not
improve our DL models’ performance either. MBD, MBH and MBS
showed a varied range of performance, but it was in each case
lower compared to the corresponding single-layer model without
the backscatter layer (Table 2). Apart from the already discussed
backscatter data limitations, the observed performance degradation
may indicate that the available data might not be sufficient for
effectively training the combined-layers models. Further research
aimed to test the use of augmentation techniques to artificially
increase the size of the training data, might enable the models
to learn more efficiently the backscatter acoustic patterns that
characterise bedrock/non-bedrock and improve their generalization
performance.

The over-prediction of the bedrock class plays an important
role in our experiment as it results in pixels predicted as bedrock
even if belonging to a different original sediment class. For all the

models, the largest group of pixels misclassified as bedrock occurs
for the original classes “Sand, gravel, cobbles and boulders”, “Sand,
gravel, and cobbles”, and “Cobbles and boulders” (Table 3). For
these classes, the seabed surface characteristics from bathymetry
data may resemble those of bedrock, making it difficult for the
network to differentiate between these sediments and the bedrock
classes. Similarly, the backscatter response of these sediments can,
under specific circumstances, show similarities to the backscatter
response of bedrock. One such scenario might occur when the
“Sand, gravel, and cobbles” class is found in close proximity to
bedrock outcrops, resulting in a highly complex seabed surface.
The presence of transitional features in the backscatter data can
lead to ambiguous acoustic patterns that can be challenging to
distinguish. Hence, this can lead to errors of misclassifications
or less accurate predictions for both the “Sand, gravel, and
cobbles” class and bedrock class in such areas. Finally, it can
be observed that pixels belonging to finer grained sediments
fractions are also misclassified as bedrock. Factors contributing to
pixels’ misclassifications for these classes might include variability
within the sediment classes (making it difficult for the network to
differentiate among similar classes), quality of the training samples,
and potential limitations in data resolution. The latter, in particular,
can affect the ability of the models to capture subtle differences
between sediment types. Overall, despite the error in overpredicting
the bedrock class, when occurring for well-performing models
such as MD and MS, the over-prediction could provide valuable
insights for advancing research in seabed classification using
deep learning. Indeed, areas where over-prediction occurs could
be considered indicators of geologically heterogeneous/complex
areas of the seabed that necessitate further investigations to
gain a deeper understanding of the factors contributing to
the models’ errors.
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FIGURE 9
Comparison among the DL outputs and the original expert annotation. The area chosen to visualize the predictions belongs to one of the test
rectangles used as test dataset. Red and yellow rectangles highlight areas of interest (see text). To better enhance the underling topography,
predictions/annotations are shown over the hillshade layer. (A) Expert annotations, (B) MB predictions, (C) MD predictions, (D) MS predictions, (E) MBD

predictions.

While the over-prediction of bedrock is a significant factor, it
is important to note that under-prediction of the bedrock class also
plays a crucial role in our experiment. We observed instances where
the expert-annotated bedrock extended beyond areas characterized

by topographic roughness, as shown in Figure 11. Conversely, the
DL network predominantly predicted bedrock in seabed areas with
distinct rough topographic features. While it may be challenging
to definitively determine whether the DL model or the annotator’s
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FIGURE 10
Comparison among the best performing DL outputs: the depth and the slope models. Both predictions are superimposed on the hillshade layer, which
was selected for its ability to accentuate the topography. The area chosen to visualize the predictions belongs to one of the test rectangles used as test
dataset. (A) The figure shows the slope and depth models’ predictions for the bedrock class. Here the background class encompasses the no-data and
the non-bedrock areas. (B) The figure shows the slope and depth models’ predictions for the non-bedrock class. Here the background class
encompasses the no-data and the bedrock areas.

interpretation is correct for the areas in which under-prediction
occurs, several factors such as the scale at which the interpretation
is performed and the subjective nature of manual mapping
could contribute to the differences between expert annotations
and DL predictions. To address these disparities, for example,
collaborative efforts involving expert geologists in establishing

annotation guidelines for sediment classes, including bedrock, could
lead to the creation of standardized criteria for identifying bedrock,
potentially improving the accuracy of DL predictions.

The decision threshold experiment, aimed to minimize the
bedrock’s over-prediction, showed no consistently improved
performance metrics over the test set. Future research might reveal
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FIGURE 11
Example of under-prediction of the bedrock class for the model MD. The predictions from the DL model MD, are overlaid onto the expert annotations
for a selected test rectangle. This illustration emphasizes the discrepancy between the expert annotations and the model predictions. While the expert
includes flat areas of the seabed in their definition of bedrock, the DL model predominantly identifies bedrock in regions of the seafloor characterized
by rough topographic features.

if the manual tuning of this parameter could be a valuable technique
for expert users that could leverage their interpretative skills and
understanding of the data to arbitrarily match predictions with the
seabed topography when desired. This prospect of combining DL
predictions and human input, as the research in this field progresses,
could enable a faster andmore efficient approach to seabed sediment
mapping than simply relying on either one.

Overall, the misclassification error should also be analysed by
considering the inherent nature of manual and automatic methods
for seabedmapping.Whenmanually generatingmaps of the seabed,
the experts leverage their experience of sediment characteristics
for identifying and extracting relevant seabed features to be
used for seabed classification (Diesing et al., 2014; Janiesch et al.,
2021). Therefore, experts generated maps provide us with a wide
comprehension of the spatial distribution of sediments and the best
representation of the seabed sediments distribution. This stands
in contrast to situations where sediments information is only
limited to sparse ground-truth locations, resulting in an incomplete
representation of the sediment distribution across the seabed.
However, different experts may interpret the data in different ways
and factors such as sparse ground-truth samples locations might
affect the quality of the interpreted map. As a consequence, the
process ofmanualmapping unavoidably introduces a certain level of
uncertainty. In comparison, DL algorithms, if trained with sufficient
amount of data and reliable annotations, can automatically learn
relevant seabed features from the data. This reduces subjectivity in
feature engineering and can yield predictions that are potentially
more reliable and consistent than those generated by humans.

As briefly introduced when discussing the under-prediction of
the bedrock class, the scale of interpretation at which themapping is
conducted, is another factor posing a challenge for the DL models.

During the manual generation of seabed sediments maps, expert
geologists can contextualize any pixel using its neighboring region,
at any desirable scale. In comparison, ourmodels operated on a fixed
scale, 256 m x 256 m patches of data, which limits the geological
and geographical context of the pixels. Further investigations
aimed to explore the limitations of the geographical scale and
methods to incorporate information among overlapping patches
would contribute to improving the reliability and performance
of our models. In addition, the scale also contributes to the
misclassification error. The reference map was generated at a
1:20,000 scale (Elvenes et al., 2019). Consequently, given the MBES
data resolution of 1 m x 1 m, the DL models could have generated
predictions with a higher level of detail compared to the reference
map. As a result, the mismatch between the predictions and the
ground truth led to a misclassification error.

Finally, it is important to consider that our DL models
were both trained and assessed using a manually delineated
map as the ground-truth. However, using experts’ generated
maps as a reference for training, even though they provide the
most accurate representation of seabed sediments, introduces the
risk of inheriting limitations and biases present in the manual
interpretation process. As a consequence, the quality of the models’
predictions might be affected. All the metrics were evaluated based
on the comparison between the DL and the human generated
maps disregarding any potential sources of error or subjectivity
that could be inherent to the latter. This is also true for the
visual assessment of our DL predictions. In summary, we used
an evaluation approach that focused on assessing how closely
our DL models resembled the expert-generated map, rather than
directly measuring the models accuracy in predicting seafloor
types.
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TABLE 3 The table analyzes the over-prediction of the bedrock class resulting in pixels predicted as bedrock even if belonging to a different original sediment
class. The over-prediction of the bedrock was quantified by dividing the number of pixels of each original class predicted as bedrock, by the total number of
pixels predicted as bedrock. These results are displayed respectively for the backscatter, depth, slope and the backscatter and depthmodels in the column
“Fraction of original class in the bedrock prediction (%)”. A column showing the fraction of original sediment classes in the test dataset (%) has also been added.
To be noted that the sum of percentages in this column adds up to 80.37%, the remaining 19.63% belongs the background class, not included in the calculation.

Converted
classes

Original classes
Fraction

of
original
class in
the test
dataset
(%)

Fraction of original
class in the bedrock prediction (%)

MB MD MS MBS

Bedrock
Thin or discontinuous sediment cover on bedrock 20.27 45.13 52.85 53.91 44.76

Exposed bedrock 7.03 18.62 19.95 21.35 18.05

Non-bedrock

Sand, gravel and cobbles 6.76 8.62 3.90 3.68 7.95

Gravel, cobbles and boulders 2.18 0.43 0.21 0.17 0.84

Mud and sand with gravel, cobbles and boulders 2.32 1.09 0.98 0.44 1.14

Anthropogenic material 0 0 0 0 0

Cobbles and boulders 6.66 1.15 1.00 0.55 2.82

Mud/sand and cobbles/boulders 0.27 0.13 0.08 0.01 0.11

Sand and boulders 0 0 0 0 0

Cobbles/boulders covered by mud/sand 1.20 1.31 1.53 1.12 1.27

Sand 3.05 0.24 0.07 0.07 0.57

Mud 0.51 0.09 0 0.01 0

Sandy mud 8.90 0.98 0.77 0.72 0.78

Muddy sand 4.13 1.43 1.09 0.91 1.43

Gravelly sandy mud 1.05 0.37 0.25 0.40 0.33

Gravelly muddy sand 1.09 0.89 0.50 0.43 0.76

Gravelly mud 0 0 0 0 0

Organic mud 0 0 0 0 0

Gravelly Sand 1.26 0.84 0.53 0.43 0.89

Gravel and cobbles 2.01 0.49 0.15 0.17 0.92

Sand, gravel, cobbles and boulders 11.66 18.14 16.10 15.58 17.31

Sandy gravel 0.05 0.04 0.04 0.05 0.06

Gravel 0 0 0 0 0

Muddy gravel 0 0 0 0 0

Muddy sandy gravel 0 0 0 0 0

We currently cannot assess whether our models outperform
human interpreters and whether the predicted maps are more
accurate than the manually annotated ones. In fact, while we

can evaluate the goodness of our predictions by comparing
them to the human-generated map, this method leaves us
with uncertainties regarding the objective performance of our
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models. To gain a more comprehensive understanding of their
accuracy in predicting seafloor types, further investigations are
necessary. Further evaluations comparing predictions against
additional ground-truth data or maps produced by other experts
could be conducted. Additionally, seeking opinions from third-
party expert evaluators could provide valuable insights and
support in discerning the potential strengths and limitations
of both our approach and human interpretation. Such efforts
would contribute to a more robust assessment of our models’
performance and their capabilities in predicting seafloor types
accurately.

Utilizing a human-generated map as the ground truth for
training deep learning models represents a novel approach. To our
knowledge, this technique has solely been tested in remote-sensing
applications to map the bedrock in onshore areas (Ganerød et al.,
2023). Therefore, we could not directly compare the outcome of
our research to other studies. Nevertheless, the promising results
achieved through this technique underscore its potential to provide
a novel perspective for conducting seabed classification in both
onshore and offshore settings.

4.1 Final remarks and future directions

This study evaluated the potential of the Deep Learning
network U-Net in classifying the seabed sediments into either
bedrock and non-bedrock, using MBES bathymetry and backscatter
data. Deep learning models showed great promise in seabed
sediments classification. Results showed that the models utilizing
bathymetry and bathymetry-derived data achieved better separation
of the classes and were able to reliably generate predicted seabed
sediment maps comparable to a manually-generated seabed map.
Noticeably, all the generated models showed the tendency to
overpredict the bedrock class. As they were all trained and evaluated
using a manually generated map, it could not be determined
whether the models yielded more accurate predictions of the
seafloor sediments than the expert ones. Further work should
include an inter-observer analysis to shed light on the level
of subjectiveness of an expert map, and to evaluate the maps
produced by the models against the ground-truth (e.g., video
footage). Until then, the models with the highest accuracy could
represent a valuable aid to the human experts who could use the
predicted maps and modify them according to their discretion and
expertise.

Although a widely-accepted standard of automatic method for
seabed classification has not been established yet, the findings in this
paper offer assistance in expediting the process. In future research, it
would be valuable to producemodels trained overmore than the two
classes used in the current study. In addition, as a requirement for
establishing a model for actual use, it would be necessary to test the
best-performing models on a new, independent set of MBES data,
acquired in a distinct geographical area, yet characterized by similar
geological properties. A positive outcome from these analyses would
help to understand if U-Net models have the ability to leverage
the acquired knowledge to predict comparable datasets with limited
or no re-training. This finding has the potential to be a significant
advancement that could also make the way for real-time mapping
applications.
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