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In response to the challenge of improving the performance of deep learning
models for earthquake detection in low signal-to-noise ratio environments, this
article introduces a new earthquake detection model called ECPickNet. Drawing
inspiration from the EQTransformer, this model leverages Convolution-Enhanced
Transformer technology, Conformer architecture, and incorporates the Residual
Stacking Block Unit with Channel-Skipping (RSBU-CS) module. The manuscript
provides a detailed overview of the model’s network architecture, parameter
settings used during the training process, and compares it with several similar
methods through a series of experiments. The experimental results highlight
ECPickNet’s well performance on both the STEAD and Gansu datasets,
particularly performing exceptionally well in the processing of low signal-to-
noise ratio data. Interested readers can access and download the proposed
method from the following website address: https://github.com/20041170036/
EcPick.
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1 Introduction

With the ever-increasing density of seismograph networks, there is a growing need for
automation in earthquake phase detection to reduce the reliance on human labor and
enhance the overall efficiency of seismic monitoring systems. In recent years, deep learning
methods have emerged as the state-of-the-art approaches for various tasks, including
automatic analysis of seismic signals, due to their ability to learn complex features and
patterns from large-scale data (Perol et al., 2018; Mousavi et al., 2019). Consequently, the
development of highly effective deep learning models for earthquake detection bears
significant implications for both seismic research and hazard mitigation efforts.

Automatic earthquake phase detection using deep learning techniques can alleviate the
burden on seismologists, enabling faster and more accurate event identification and location,
which are essential for real-time seismic hazard assessment and early warning systems (Ross
et al., 2018; Zhu and Beroza, 2019). Furthermore, these models can adapt to different
seismological settings and types of seismic data, ensuring their wide applicability across
various regions and seismograph networks.
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However, the performance of deep learning models for
earthquake detection depends on the quality and quantity of
available labeled data. Obtaining high-quality labeled data can be
challenging, especially in regions with complex tectonic
environments or limited historical seismic records. To address
this issue, recent studies have explored the use of synthetic data,
data augmentation techniques, and transfer learning to improve the
training and generalization capabilities of deep learning models for
earthquake detection (Ross et al., 2018; Li et al., 2020).

In this study, we present a advanced approach deep learning-
based model for earthquake phase detection, specifically designed
for the Gansu region in China, a region characterized by high
seismicity and complex tectonic settings. Our model
demonstrates outstanding performance, capitalizing on the latest
advancements in both seismology and deep learning to provide an
efficient and reliable tool for earthquake early warning and hazard
assessment. The main contributions of this study are as follows:

1) Earthquake detection, traditionally reliant on labor-intensive
manual analysis, is crucial for timely hazard mitigation. Our
advanced deep learning-based model presents a promising
opportunity to replace human labor, significantly reducing the
required manpower while maintaining high detection accuracy,
thus enhancing seismic monitoring and assessment efficiency.

2) This paper smartly incorporates a convolutional layer into the
original Transformer structure, thus forming an augmented
Conformer capable of robust local feature extraction. This
improvement enables ECPickNet to adeptly capture the
spatiotemporal correlations within earthquake signals,
consequently enhancing detection accuracy. By introducing
this cleverly designed structure, the advantages of the
Transformer architecture in natural language processing are
extended to earthquake signal detection tasks.

3) This article also uses a key module called RSBU-CS. This module
introduces a channel attention mechanism that adaptively
adjusts the weights of disparate channels, reinforcing
earthquake-related features while suppressing noise. This
innovation holds paramount significance for low signal-to-
noise ratio earthquake event detection, as noise substantially
influences detection outcomes in such scenarios.

4) The ECPickNet model amalgamates the enhanced convolutional
Transformer structure and the Residual Shrinkage Building Unit
with Channel-Shared thresholds (RSBU-CS) module, endowing
the model with remarkable robustness in low signal-to-noise ratio
situations. This enables the efficient identification and extraction
of earthquake signal features, avertingmis-detections or omissions
induced by noise interference. Furthermore, ECPickNet’s end-to-
end training strategy empowers the entire model to concurrently
learn earthquake signal representation and classification,
ultimately elevating detection accuracy. This approach provides
a worth thinking avenue for deep learning models in the realm of
earthquake detection.

2 Related work

Earthquake detection and arrival time picking are themost critical
steps in the process, as their accuracy greatly impacts the validity of

the earthquake catalog (Liao et al., 2021; Su et al., 2021; Zhao et al.,
2021; Yin et al., 2022). Traditional phase detection methods (such as
Short Time Average over Long Time Average--STA/LTA, an
information criterion--AIC, improved Coppens method, higher-
order statistics) each have their advantages and drawbacks. Despite
the availability of numerous algorithms, accurately selecting arrival
times remains a challenge, primarily due to the singularity of
calculation methods (Allen, 1978; Takanami and Kitagawa, 1991;
Sabbione and Velis, 2010; Yung and Ikelle, 1997; Akram and Eaton,
2016). The advent of machine learning, a representative computer
technology, offers novel approaches to earthquake event detection and
classification (Yin et al., 2022). By applying rapidly developing audio
recognition and computer vision technologies, such as object
detection, to seismology, we can improve earthquake event
detection techniques. Unlike traditional methods, which require
setting a threshold for seismic waveform energy or amplitude
variations, most machine learning algorithms do not necessitate
human intervention and are better suited for big data processing,
enabling rapid processing of massive seismic data. Mousavi et al.
(2020) proposed the attention mechanism-based earthquake
detection and arrival time picking model EQTransformer
(hereafter referred to as EqT), which demonstrated outstanding
performance on the Stanford earthquake dataset STEAD (Mousavi
et al., 2019). EqT is a commonly used automatic detection model in
seismology, and several deep learning frameworks for processing
seismic signals, such as Siamese EqT (Xiao et al., 2021) and
ESPRH (Wu et al., 2022), have been developed based on it,
offering unique advantages in phase identification accuracy and
false detection rates (Jiang et al., 2021). Saad et al. (2023) proposed
the EQCCT model, which introduces a deep learning approach
centered on the Convolutional Compact Transformer for seismic
waveform analysis. It significantly improves feature extraction from
large training datasets, yielding lower error rates, higher precision,
recall, and F1 scores compared to traditional methods. EQCCT’s
successful application across diverse test datasets, including Japan,
Texas, and Instance, as well as in microseismic monitoring,
underscores its significance as a valuable tool in seismology.
However, seismic signals exhibit regional characteristics, with
significant waveform differences due to varying geological
conditions and instrumentation in different regions (Chai et al.,
2020). To evaluate those methods above applicability in Gansu
Province, we compiled a dataset of earthquake events in the
region. In comparison to STEAD, this dataset is smaller, with
fewer than 140,000 manually recorded earthquake events between
2009 and 2021,many of which lack P-wave or S-wave arrival times. To
maintain consistency, we only selected data with complete P and S
wave phases. After using those methods for initial detection, we found
a high rate of missed detections, indicating poor generalization
performance in Gansu Province. Because there are few seismic
monitoring networks in Gansu, China, there are few monitoring
options available. Robust models that can function well in low signal-
to-noise ratio (SNR) situations are urgently needed to overcome this
problem, improving the network’s seismic monitoring capabilities. It
is important to note that the models currently in use have mostly
shown excellent performance in datasets with greater SNR values
(Jiang et al., 2021). To address this issue, we developed a new model,
ECPickNet, based on Conformer technology (Gulati et al., 2020),
which outperforms EqT in low signal-to-noise ratio (SNR) data and
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achieves higher performance on the Gansu dataset. Conformer is a
self-attention mechanism-based sequence modeling neural network
architecture employed in natural language processing, speech
recognition, and computer vision. Similar to Transformers,
Conformer models utilize self-attention mechanisms to encode
input sequences. The key difference lies in Conformer’s adoption
of a novel multi-layer convolutional neural network structure called
Depthwise Separable Convolution (Chollet, 2017) in place of the fully
connected layers in Transformers, thereby reducing computational
complexity. Conformer also incorporates a novel module called the
Convolutional Block Attention Module (CBAM), which further
enhances the model’s representational capabilities (Gulati et al.,
2020). The Conformer model has achieved excellent results in
multiple natural language processing tasks, including language
modeling, text classification, machine translation, and speech
recognition, becoming one of the research hotspots in the field of
natural language processing (Guo et al., 2021). In this study, we
applied the Conformer Block to a deep neural network for earthquake
detection and phase picking tasks. We applied the new model to two
different seismic datasets and compared other detection models to
evaluate the detection ability of our proposed new method for seismic
signals.

3 Datasets introduction

Two earthquake datasets were used for model training and
validation: the Stanford University earthquake dataset (STEAD)
and the custom Gansu Province dataset (hereafter referred to as the
Gansu dataset). A brief introduction to these datasets is provided
below.

3.1 STEAD

With the rapid development of machine learning technology, its
application in seismology has become a popular research direction.
However, a large amount of high-quality labeled data is crucial for
building effective supervised learning models. In seismology, the
lack of high-quality, standardized labels and uncertainty in label
reliability have severely hindered the research progress in combining
seismology and machine learning. To address this issue, Mousavi
et al. (2019) proposed a high-quality, large-scale, and global
earthquake dataset. The dataset contains two types of waveform
samples: seismic waveforms and noise waveforms without
earthquake signals. The dataset comprises approximately
1.2 million time series, equivalent to over 19,000 h of recorded
earthquake signals. These records cover seismic waveforms within a
350 km range. The earthquake events in the dataset encompass
various scenarios, including urban, rural, underground, and
mountainous terrains. Each earthquake event contains a wealth
of seismic waveform data, including P-wave and S-wave types, with a
duration of approximately 60 s. The release of the STEAD dataset
provides a valuable data resource for researchers in seismology and
earthquake engineering. The introduction of this dataset contributes
to promoting the application of machine learning and artificial
intelligence technologies in the field of seismology. By using the
STEAD dataset, researchers can develop more accurate, faster, and

more reliable seismic waveform recognition algorithms, offering
enormous potential and value for the research and practice in the
field of seismology.

3.2 Gansu dataset

We have collected waveform data from 47 seismograph stations
in Gansu Province between 2009 and 2021, extracting earthquake
signals with manual annotations at a sampling rate of 100 Hz. The
distribution of the stations is shown in Figure 1. Each signal contains
data from three components: east-west (E-W), north-south (N-S),
and vertical (Z) directions.

The original format of the data was in mseed files. Based on the
seismic phase reports produced by the Gansu seismograph station
network, we selected records with both P-wave and S-wave arrivals,
extracted from mseed files with a starting point of 10 s before the
arrival of P-wave and 50 s after, totaling 60 s or 6,000 sampling
points. Combining the data from the three components, the final
data size is 1×3×6,000. However, not all data are as shown in
Figure 2; some stations may be subject to various interferences,
resulting in low signal-to-noise ratios and strong background noise.
This kind of data can cause low detection rates in deep learning
models, so it is necessary to filter out high-frequency and low-
frequency noise interference. In this paper, we use detrending and
bandpass filtering. Detrending centralizes the input data for all three
components to zero, making it easier to fit and reducing the
likelihood of gradient vanishing. We use a bandpass filter to filter
the seismic waves, with a low-frequency cutoff of 1.0 Hz and a high-
frequency cutoff of 45 Hz (Mousavi et al., 2020). In the end, we
obtained a total of 283,467 records from 47 stations in Gansu
Province between 2009 and 2021.

3.3 Dataset comparison

We calculated the signal-to-noise ratios of the two datasets using
a unified method, observing the distribution of signal-to-noise ratios
in different datasets and finding that the average signal-to-noise
ratio of the STEAD dataset is approximately four times that of the
Gansu dataset, as shown in Figure 2.

4 Methodology

4.1 Introduction to EQTransformer

EQTransformer, proposed by Mousavi et al. (2020), is a multi-
task neural network composed of a very deep encoder and three
independent decoders. The network is implemented through
structures such as 1D convolution, bidirectional and
unidirectional long short-term memory (LSTM) networks,
networks in networks (NiN), residual connections, feedforward
layers, Transformers, and self-attention layers. The encoder
processes the earthquake signals in the time domain, generating
high-level representations and contextual information of their
temporal dependencies. The decoders then use this information
to map the high-level features to three probability sequences related

Frontiers in Earth Science frontiersin.org03

Wang et al. 10.3389/feart.2023.1283857

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1283857


FIGURE 1
The geographical distribution map of the seismograph stations utilized in this study for the Gansu region delineates the specific locations of these
earthquake monitoring stations. All stations are equipped with broadband seismometers, which are capable of capturing seismic oscillations across
diverse frequency ranges, thereby facilitating effective monitoring and recording of seismic activity. The longitudinal span of the seismograph stations in
the Gansu region is approximately 15°, while the latitudinal span is around 10°. The southeastern portion of the region exhibits a higher concentration
of the region exhibits a higher concentration of stations due to demographic and economic factors. Subfigure (A) shows the spatial distribution of the
stations, while Subfigure (B) shows the location of the large area where the research area is located.

FIGURE 2
The signal-to-noise ratio distribution for the datasets employed in this study (on the left subfigure a is the statistical chart for the Gansu dataset, while
on the right subfigure (A,B) lies the chart for the STEAD dataset. As can be discerned from the graphical representation, the STEAD dataset boasts an
average signal-to-noise ratio of approximately 20, whereas the Gansu dataset exhibits a mean signal-to-noise ratio of around 5 dB).
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to the presence of earthquake signals, P-wave seismic phases, and
S-wave seismic phases at each time point.

In the self-attention model, the amount of memory increases
with the length of the sequence. Therefore, they added a
downsampling section consisting of convolution and max-
pooling layers at the front end of the encoder. These
downsampled features are transformed into high-level
representations through a series of residual convolutions and
LSTM blocks. The global attention section at the end of the
encoder aims to guide the network to focus on parts related to
the earthquake signals. These high-level features are then
directly mapped to a probability vector representing the
probability of earthquake signal presence (detection) using a
decoder branch. The other two decoder branches are related to
the P-wave seismic phases and S-wave seismic phases, with an
LSTM/local attention unit placed at the beginning. This local
attention will further guide the network to focus on the local
features within the seismic phases related to each individual
earthquake waveform. Residual connections within each block
and techniques such as networks in networks help expand the
depth of the network while maintaining error rates and training
speeds under control.

The advantages of the network structure are mainly reflected in
the following aspects: multi-task learning improves the
generalization ability of the model; deep network structure
(56 layers) helps capture complex temporal information; global
and local attention mechanisms guide the network to focus on
key parts; using residual connections, NiN, and other techniques to
increase network depth without significantly increasing the number
of parameters; the network has only about 372K trainable
parameters, reducing the risk of overfitting.

4.2 Introduction to ECPickNet

Inspired by EQTransformer, the deep learning model network
architecture in this paper adopts the Encoder-Decoder pattern and
introduces the convolution-enhanced attention mechanism module
(Conformer Block) and the residual shrinkage module RSBU-CS.
The Conformer can better capture local relationships and long-
distance dependencies in time series signals, thus better adapting to
the characteristics of seismic wave signals. The deep residual
shrinkage network was initially proposed for image denoising
and image super-resolution tasks but was later applied to one-
dimensional sequence data, such as speech signal denoising and
electrocardiogram signal classification tasks (Guo et al., 2021).

The architecture of the model we designed (ECPickNet,
abbreviated as EcP) is shown in Figure 3. Drawing inspiration
from EQTransformer, we replace the stacked residual modules
with three RSBU-CSs following the one-dimensional convolution.
The output is then fed into two layers of bidirectional Long Short-
Term Memory (LSTM) networks and subsequently into the
Conformer block to obtain high-level information from the data.
At this point, the encoding phase of the data is completed. The
decoder section employs three decoding branches, similar to
EQTransformer. For the task branch that requires arrival time
picking, we add an additional LSTM (Hochreiter and
Schmidhuber, 1997) and a Self Attention mechanism specific to
arrival time picking (Vaswani et al., 2017), thus directing the
network’s attention to specific tasks (e.g., P-wave and S-wave
arrival time picking). The topmost branch in the three-branch
design decodes high-level information about seismic events,
outputting the probability of whether a seismic signal exists
within a waveform segment. The middle and bottom branches

FIGURE 3
The architecture of the proposed ECPickNet model, wherein 60-s triaxial waveform data is directly inputted and subsequently subjected to
encoding and decoding processes, ultimately yielding the classification of seismic events, along with the probabilistic arrival times of P-wave and S-wave
phases.
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are similar, with the decoder beginning with an LSTM and Self
Attention mechanism to focus the network’s attention on local
features related to the arrival time of seismic body waves,
ultimately outputting the probability of each time point in the
waveform being a P-wave or S-wave arrival time. This three-
branch design not only enhances the decoder’s performance but
also enables targeted secondary training for poorly performing
branches.

5 Model training

5.1 Data augmentation

To improve the performance and generalization capabilities of
the deep learning model, we use data augmentation methods to
expand the dataset and increase the sample size. Within a 60-s time
window, we increase the amount of data by randomly shifting valid
seismic signals. We also randomly add Gaussian noise to the seismic
signals at different ratios to increase the diversity of positive samples
(Figure 4). The formula for adding Gaussian noise to seismic signals
is as follows:

S y( ) � s y( ) + α*gauss μ, σ2( ) (1)

In the equation, s(y) represents the base seismic signal, α is the
ratio of added Gaussian noise, μ is the mean of the Gaussian
distribution, and σ is the standard deviation of the Gaussian
distribution.

5.2 Loss function

For the output of each branch, we use the Binary Cross-Entropy
Loss function:

Loss � − 1
N

∑
N

i�1
yi*log p yi( )( ) + 1 − yi( )*log 1 − p yi( )( ) (2)

In this formula, p(yi) represents the probability that the signal is
a seismic event at the current sampling point, and N is the number
of data samples. Similarly, as different branches have varying task
complexities, we add weights to the cross-entropy loss for each
branch. Thus, our final loss function Lossdps is:

Lossdps � α*lossd + β* lossp + γ*losss (3)
lossd represents the loss rate for event detection, lossp for P-wave
detection, and losss for S-wave detection. The fine-tuning selection
of the weights remains fixed. Since the current network employs

FIGURE 4
The original time series data and the results obtained through various data augmentation techniques are exhibited. Subfigure (A) portrays the original
time series data, highlighting its intrinsic fluctuation patterns. Subfigure (B) demonstrates the enhanced data acquired by incorporating Gaussian noise
into the original data. By calculating the noise amplitude based on the original data’s maximum value and generating a Gaussian noise set of
commensurate amplitude and length, we were able to simulate real-world environmental factors that may impact the signal, thereby bolstering the
model’s robustness to such influences. Subfigure (C) reveals the augmented data produced by performing time shifts on the original data. By displacing
data points along the temporal axis, we emulated signal time offsets, enabling the model to discern analogous patterns at varying time instances. This
method can assist the model in adapting to temporal variations of signals within practical scenarios.
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randomly initialized weights for training, our values α、β、γ are
0.1, 0.4, and 0.5, respectively.

5.3 Optimizer

In this study, we use the Adam Optimizer to refine the model
parameters. Adam (Adaptive Moment Estimation) is an adaptive
learning rate optimization algorithm commonly utilized for training
neural networks. This approach combines the advantages of
Momentum optimization (Sutskever et al., 2013) and RMSProp
optimization (Hinton et al., 2012), exhibiting the following
characteristics:

Adaptive learning rate: The Adam algorithm employs an
adaptive learning rate, enabling the automatic adjustment of
learning rates according to each parameter’s gradient. This
accelerates convergence and mitigates overfitting.

Momentum optimization: The Adam algorithm utilizes
momentum to expedite the training process. Momentum aids the
algorithm in striking a balance between stable regions and steep
areas, reducing oscillations in gradient updates.

Adaptive regularization: The Adam algorithm estimates the
second-order moment (i.e., variance) of the parameters by
calculating the exponential moving average of the gradient
squares, adapting the regularization term accordingly. This
facilitates the handling of gradients at different scales, enhancing
the model’s generalization capabilities.

In this study, we set the exponential moving average
hyperparameter β1 for adjusting the first-order moment
(i.e., gradient) to 0.9, and the exponential moving average
hyperparameter β2 for adjusting the second-order moment
(i.e., gradient square) to 0.99. To prevent division by zero in
anti-shock calculations, ε is set to 10⁻⁸, and the initial learning
rate is set to 0.001. The learning rate is dynamically adjusted when
the model’s performance on the validation set plateaus or declines
(Kingma and Ba, 2014).

5.4 Other parameter settings

The other parameter settings in this study are shown in Table 1.
Based on the memory size of the device, we set the Batch Size to 128,
resulting in an input data size of 128 × 3 × 6000 for the model. For
the training data, in addition to standard filtering and mean removal
operations, we perform standard normalization (with the Signal
normalization mode set to ‘std’). For each channel’s data, we divide

by the standard deviation of the corresponding channel’s data.
Alternatively, one could use min-max normalization. However,
this method may yield inadequate training assistance for the
model when large amplitude seismic waves are contrasted with
low amplitude background noise, causing arrival time values to
approach 1 and the remaining sample data to approach 0.
Consequently, we ultimately use standard normalization. For the
P-wave and S-wave arrival time labels (Label type), we construct a
Gaussian distribution near the arrival time point.

5.5 Experimental configuration

In this study, we utilize Python 3.8 as the programming
environment and conduct our research on a high-performance
cluster server to ensure ample and reliable computing resources.
This cluster server boasts formidable computing power, equipped
with 64 processor cores and two NVIDIA A100 GPUs, allowing it to
concurrently execute a vast number of computing tasks. The
primary model development framework used for training is
PyTorch-gpu 1.8.0, while seismic data processing is performed
using the open-source Python library ObsPy (Beyreuther et al.,
2010) and the convenient data processing library NumPy.

5.6 Comparison model selection

In order to verify the performance of our designed model, we
have collected several other models and algorithms for earthquake
event prediction and arrival time picking, and compared them on
the STEAD dataset and Gansu dataset. These methods include:
EQTransformer, PhaseNet (Zhu and Beroza, 2019), PickNet (Wang
et al., 2019), Filter Picker (Baer and Kradolfer, 1987), GPD (Ross
et al., 2018), and STA/LTA.

6 Experimental result

This study compares the performance of various models on
different datasets, recording their Precision (pr), Recall (re), and
Error on different datasets.

Precision refers to the proportion of actual positive cases among
all cases predicted as positive by the model, that is:

Precision � TP

TP + FP
(4)

Where TP represents true positive, FP represents false positive,
and FN represents false negative. Recall is an indicator of classifier
performance, typically used to evaluate the coverage capability of the
classifier. It refers to the ratio of the number of samples correctly
identified as positive by the classifier to the total number of actual
positive samples. Recall is also known as true positive rate or
sensitivity. The calculation method for recall is as follows:

Recall � TP

TP + FN
(5)

The calculation formula for the custom evaluation metric, Error,
is as follows:

TABLE 1 Parameter settings for the experiment (The parameter configurations
were established following numerous experimental iterations).

Parameter name Parameter value

Batch Size 128

Signal normalization mode std

Loss weights [0.1,0.4,0.5]

LR 0.001

Label type Gaussian
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Error � 1
N

∑
N

i�1
Xpred i( ) −Xtrue i( ) (6)

In the formula, X represents the signal vector, andN represents
the number of data points. The Error is calculated as the predicted
arrival time minus the actual label arrival time, in units of one
sampling point.

6.1 Comparison of experimental results on
the STEAD dataset

According to Table 2, the performance of EqT and EcP on the
STEAD dataset is close, both better than other network models. We
compared the experimental results of this study with the original
experimental results of EqT, and although there are slight
differences in various data, considering that our training set and
test set are randomly divided and we use a custom evaluation
function, there may be some errors.

From the experimental results, it can be concluded that EqT and
EcP both show good performance on the STEAD dataset, higher
than other methods. However, according to the traditional STA/
LTA detection results, the earthquake signal characteristics of the
STEAD dataset are relatively obvious, with a high signal-to-noise
ratio, so most deep learning models have achieved good results on
this dataset. The EcP model proposed in this paper is basically
consistent with EqT in terms of precision and recall, but has a lower
Error value compared to EqT. Since the STEAD dataset can only
reflect part of the model’s capabilities, in order to verify the
applicability of the EcP model on other datasets, we also
conducted the same test experiment on the Gansu dataset.

6.2 Gansu dataset experimental result
comparison

In Table 3, the accuracy of traditional STA/LTA method for
detecting earthquake events significantly decreases compared to the

STEAD dataset, indicating the complexity and difficulty in
discerning the Gansu dataset. As can be seen from Table 3, EcP
applied to the Gansu dataset outperforms other models in terms of
earthquake detection and arrival time picking capabilities. In
earthquake detection, the precision of EcP is on par with EqT,
but it is 3% higher in identifying earthquake events. In picking
P-wave arrival times, the accuracy of EcP is comparable to other
methods, with a recall rate 1% higher than EQCCT and PhaseNet,
and the lowest prediction Error of -9.11 sample points. In picking
S-wave arrival times, EcP has a recall rate 3% higher than EQCCT,
14% higher than EqT and 4% higher than PhaseNet, with the lowest
average Error of 18.7 for EQCCT and -29.6 for EcP, just behind EqT
with has an error of 23.4. It is worth noting that PhaseNet has great
potential in picking P-wave and S-wave arrival times. Its pre-trained
model can still perform well when directly detecting the Gansu
dataset test set, which may be related to the network model structure
and the dataset used for training. Since this paper mainly discusses
the performance comparison between EqT and EcP, we will not
discuss the gap between PhaseNet and EcP models in detail here.

6.3 Signal SNR stress test

Our results have shed light on the performance of our model
under various circumstances, allowing us to further investigate the
application of our model. To do this, we classified data sets
according to SNR in increments of 5, ranging from 0 to 5 SNR
to 5–10 SNR. Using the average precision of P-phase and S-phase
predictions, we evaluate and contrast. Our model’s accuracy in the
first 0–5 SNR range was 0.75, showing that there is still potential for
improvement in handling circumstances with extremely low signal
clarity. Then, with an accuracy of 0.92, we noticed a substantial
improvement in the 5–10 SNR range. Despite these improvements,
there is still room for improvement in how well our model performs
when the SNR is below 10.

The performance of our model in comparison to other models,
especially the EQCCT model, provided insightful information.
While our model demonstrated a similar performance with an

TABLE 2 Performance of various model approaches on the STEAD test dataset
(A negative value of Error indicates that the predicted seismic phase arrival
time is later than the actual arrival time).

Method Event P-wave S-wave

pr re pr re Error pr re Error

EqT 0.99 0.99 0.99 0.99 -0.28 0.99 0.99 -1.04

EQCCT - - 1.00 0.99 0.17 1.00 0.97 -0.93

PhaseNet - - 0.98 0.97 -2.38 0.96 0.93 -3.73

PickNet - - 0.84 0.50 -6.1 0.79 0.75 14.3

FilterPicker - - 0.95 0.82 -3.32 0.61 0.41 9.7

GPD - - 0.85 0.80 8.5 0.87 0.83 10.3

STA/LTA 0.89 0.99 - - - - - -

EcP 0.99 0.99 0.99 0.99 -0.12 0.99 0.99 -0.87

The bold value represents the best value for that particular rating criterion.

TABLE 3 Performance of various earthquake detection model approaches on
the Gansu region test dataset (A negative value of Error indicates that the
predicted seismic phase arrival time is later than the actual arrival time).

Method Event P-wave S-wave

pr re pr re Error pr re Error

STA/LTA 0.73 0.65 - - - - - -

FilterPicker - - 0.84 0.69 578.6 0.46 0.22 -475.2

PhaseNet - - 0.91 0.88 -121.2 0.87 0.84 -137

PickNet - - 0.72 0.32 -654.2 0.58 0.43 810.5

GPD - - 0.70 0.66 -752.4 0.63 0.59 -855.7

EQCCT - - 0.99 0.88 -12.3 0.99 0.85 18.7

EqT 0.99 0.82 0.99 0.78 -192.8 0.99 0.74 23.4

EcP 0.99 0.85 0.99 0.89 -9.11 0.99 0.88 -29.6

The bold value represents the best value for that particular rating criterion.
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accuracy of 0.75 in the 0–5 SNR range, the EQCCT model displayed
a similar performance with an accuracy of 0.71. However, our model
beat the EQCCTmodel with an accuracy of 0.92 compared to 0.88 in
the 5–10 SNR range. These findings highlight the need for additional
model improvement, especially in tackling the difficult situations
brought on by SNR levels below 10. To increase the model’s
robustness in low SNR settings, methods like improved feature
extraction, sophisticated noise reduction techniques, or model
parameter modification may be investigated. As a result, this
analysis highlights the model’s potential for development in
managing lower SNR situations as well as its competitive
performance when compared to other models, opening the door
for more successful earthquake detection in difficult environments.

7 Discussion

The processing and identification of seismic data and phases
are focal points in the field of seismological research. Generally,
the seismic data processing workflow consists of earthquake
detection, arrival time picking, phase correlation, earthquake
localization, and magnitude calculation, ultimately generating
an earthquake catalog.

In this study, we compared the detection results of the
earthquake signal detection model EcP on different datasets with
other models. Overall, our proposed model has certain advantages,
especially in low signal-to-noise ratio events similar to those in
Gansu region, where our model achieved superior results. We
believe this is mainly due to the Conformer and RSBU-CS
modules used in the network. The Transformer structure itself
has achieved remarkable results in the field of natural language
processing, and its self-attention mechanism can capture long-
distance dependencies in sequences. The convolution-enhanced
Conformer, on the other hand, adds a convolutional layer to the
original Transformer. Convolutional layers exhibit superior
performance in local feature extraction (Gulati et al., 2020),
enabling ECPickNet to fully capture the spatiotemporal
correlation in earthquake signals, thereby improving detection
accuracy. The RSBU-CS module is an important component of
ECPickNet. By introducing channel attention mechanism, this
module can adaptively adjust the weights of different channels,
thereby strengthening earthquake-related features and suppressing
noise. This is of great significance for low signal-to-noise ratio
earthquake event detection, as noise has a particularly significant
impact on detection results in such cases. The ECPickNet model
combines the convolution-enhanced Transformer structure and
RSBU-CS module, giving the model good robustness. Even in
low signal-to-noise ratio situations, the model can still effectively
identify and extract earthquake signal features, avoiding
misdetection or omission caused by noise interference.
ECPickNet adopts an end-to-end training strategy, allowing the
entire model to learn earthquake signal representation and
classification in one go. This enables the model to better capture
the relationship between earthquake signals and phases, thus
improving detection accuracy.

In order to gain a more intuitive understanding of the model’s
detection performance, we visualize typical cases in the detection
results and then conduct detailed analysis and discussion on these

results. The visualization results are shown in Figure 5, where each
subplot shows the three-channel earthquake signals in the first
three waveform charts, and the probability curves for earthquake
detection (Event) and phase picking (P-wave and S-wave) in the
fourth chart. As shown in Figure 5, in Figures A and B, the model
identifies the earthquake events but fails to pick the arrival times
of P and S waves well (i.e., not exceeding our set threshold of 0.5),
representing types of earthquake signals with partially poor
recognition performance. In Figures C and D, the model
misses the two earthquake events, representing types of
earthquake signals with partial omissions; Figure C is a
relatively obvious earthquake event, but the interval between P
and S waves is very small, which may be due to the lack of similar
signals in the STEAD dataset, causing the model to miss the event
due to insufficient learned knowledge; Figure D represents a low
signal-to-noise ratio earthquake signal, with an inconspicuous
P-wave arrival time almost indistinguishable from background
noise, and a heavily noise-disturbed S-wave arrival time. In
Figures E and F, the model correctly identifies the two
earthquake signals, representing types of earthquake signals
with partially correct identification; Figure F is a near-
earthquake event, while Figure E is a slightly more distant
earthquake, as the arrival times of P and S waves differ more
in the waveform due to their different speeds, indicating a greater
distance between the source and the station. From the negative
detection results, there is still much room for improvement in the
model, which we believe is mainly due to the insufficient sample
size of the training data; earthquake signals are high-dimensional
non-linear data, and the sample size of the STEAD dataset has not
reached the level required to train a model that approaches or
even surpasses manual analysis.

In the future, several research directions can be pursued to address
the limitations and further improve the performance of deep learning
models for earthquake detection. Firstly, developing advanced data
augmentation techniques and generating synthetic seismic data will
help increase the quantity and diversity of training data, thereby
enhancing the robustness and generalization capabilities of deep
learning models. Secondly, investigating the use of transfer learning
and domain adaptation techniques can help build models that are more
adaptable to different regional seismic characteristics and variations in
waveform features caused by instrumental factors. Additionally,
incorporating data standardization methods will ensure that deep
learning models are trained on consistent, comparable data,
reducing the impact of variability in seismic data and improving
model performance. Finally, developing explainable Artificial
Intelligence (AI) methodologies and incorporating uncertainty
quantification techniques can help improve the interpretability and
reliability of deep learning models for earthquake detection, making
themmore acceptable to the seismology community. By pursuing these
research directions, we can continue to advance the capabilities of deep
learning models in the field of earthquake detection and hazard
assessment.

8 Conclusion

In this paper, we propose a new deep learning method,
ECPickNet, based on convolution-enhanced Conformer, to
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FIGURE 5
Detection and picking results of EcP on a subset of Gansu data (The vertical lines denoting the arrival times of P-waves and S-waves represent the
manually annotated results. Subfigures (A) and (B) depict scenarios inwhich the seismic event identification is accurate, but the P-wave and S-wave phase
recognition is not. Subfigures (C) and (D), on the other hand, represent cases where both the seismic event identification and the P-wave and S-wave
phase recognition are inaccurate. Lastly, subfigures (E) and (F) exemplify instances in which the identification of the seismic event and the
recognition of P-wave and S-wave phases are all precisely discerned).
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enhance earthquake detection and phase picking performance.
Additionally, we introduce various parameter configurations for
model training and conduct comparative experiments with several
similar methods, yielding the following key findings:

We refer to the EQTransformer model in the model
architecture and improve upon it by incorporating the
convolution-enhanced Transformer and introducing the
RSBU-CS module. And through extensive experimental
validation and screening, we were able to get optimum
parameter combinations, ensuring the precision of model
training. In order to fully assess the performance of our
model, we compare it to a number of sophisticated models,
displaying its potential. Additionally, the EcP suggested in this
research outperforms other deep learning model approaches in
terms of performance on the STEAD dataset, performing on par
with EqT.The EcP model exhibits significant benefits on the
Gansu dataset with a lower signal-to-noise ratio,
demonstrating its greater applicability in low signal-to-noise
ratio data. Through experiments conducted on two datasets, it
has been unequivocally demonstrated that our approach
outperforms others in terms of comprehensive performance in
earthquake detection and onset picking, and it has been verified
that our method ECPickNet possesses a higher capability to
handle low signal-to-noise ratio data compared to existing
methods. Albeit the proposed EcP model exhibits a certain
advantage in regions with low signal-to-noise ratios, there
remains a considerable gap between it and manual earthquake
signal detection, rendering it difficult to supplant human labor at
this stage. As computer hardware advances and the volume of
seismic data burgeons, the capacity of deep learning models will
continue to augment, paving the way for future exploration of
more precise deep learning detection models.
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