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Improving efficiency and accuracy are critical issues in geophysical inversion.
In this study, a new algorithm is proposed for the joint inversion of gravity
and gravity gradient data. Based on the regularization theory, the objective
function is constructed using smoothed L0 norm (SL0), then the optimal solution
is obtained by the non-linear conjugate gradient method. Numerical modeling
shows that our algorithm ismuchmore efficient than the conventional SL0 based
on the sparse theory, especially when inverting large-scale data, and also has
better anti-noise performance while preserving its advantage of high accuracy.
Compressing the sensitivity matrices has further improved efficiency, and
introducing the data weighting and the self-adaptive regularization parameter
has improved the convergence rate of the inversion. Moreover, the impacts of
the depth weighting, model weighting, and density constraint are also analyzed.
Finally, our algorithm is applied to the gravity and gravity gradient measurements
at the Vinton salt dome. The inverted distribution range, thickness, and geometry
of the cap rock are in good agreement with previous studies based on geological
data, drilling data, seismic data, etc., validating the feasibility of this algorithm in
actual geological conditions.
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1 Introduction

Gravity and gravity gradient data are critical for investigation in geoscience. In
comparison, gravity data contain more low-frequency information about deep structures,
while gravity gradient data contain more high-frequency information and are sensitive
to density non-uniformity of shallow structures (Zhang et al., 2000; Beiki, 2010; Ma et al.,
2012). Consequently, joint inversion using gravity and gravity gradient data could improve
the reliability of the results and has been widely applied in recent years (e.g., Wu et al., 2012;
Capriotti and Li, 2014; Paoletti et al., 2016; Qin et al., 2016; Geng et al., 2017; Wang et al.,
2017; Zhao et al., 2018; Capriotti and Li, 2022; Wang et al., 2022; Liu et al., 2023).

Geophysical inversion is usually solved based on the regularization theory (Tikhonov
and Arsenin, 1977), such as the smoothest inversion with L2 norm minimization (Li and
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Oldenburg, 1998; Lelievre and Farquharson, 2013; Tu et al.,
2022), the focusing inversion with non-L2 norm minimization
(Portniaguine and Zhdanov, 1999; Zhdanov, 2009; Gebre and
Lewi, 2023; Rezaie, 2023), the combination of them using mixed
norm (Kowalski and Torrésani, 2009; Pérez et al., 2017; Zhao et al.,
2023), and the Markov random field (MRF) method (Bhatt et al.,
2014; Guo et al., 2017; 2020). Another method is the smoothed L0
norm (SL0) inversion (Mohimani et al., 2009), which approximates
the discontinuous L0 norm by a suitable continuous function and
performs minimization. Meng (2016) proposed the SL0 sparse
recovery inversion based on the sparse theory and concluded that
when compared with the smoothest and the focusing inversion
based on the regularization theory, this algorithm could obtainmore
accurate results with relatively sharp edge information.However, the
SL0 sparse recovery (from now on we refer to it as the conventional
SL0) involves the calculation of matrix inverse which limits its
capability of processing large-scale data. Additionally, it constructs
the joint inversion by overlaying gravity and gravity gradient data
and, therefore, is sensitive to noise. The challenging question is
whether and how joint inversion of gravity and gravity gradient data
could be conducted using SL0 based on the regularization theory to
lower its memory cost as well as improve its efficiency and anti-noise
performance while preserving its accuracy.

There aremany studies on improving the capability of processing
large-scale gravity and gravity gradient data in inversion (e.g.,
Chen et al., 2012; Jing et al., 2019; Yin et al., 2023). Yao et al. (2003)
proposed the geometric trellis theory, which only needs to calculate
one part of the trellises and then derive the others according
to the equivalence of shift and symmetry reciprocation. It is
shown to compress the sensitivity matrix to lower calculation and
memory cost of gravity and gravity gradient data joint inversion
(Qin and Huang, 2016; Zhang et al., 2021), and thus worthy to
be applied on the subsequent algorithm we proposed for further
improvement.

In this study, we construct the objective function with SL0 based
on the regularization theory to conduct joint inversion of gravity
and gravity gradient data and obtain the optimal solution using the
non-linear conjugate gradient method. Moreover, a method similar
to Qin and Huang (2016) is used to further compress the sensitivity
matrices. Numerical modeling is adopted to verify the stability and
efficiency of this algorithm by making a comparison between its
inversion results and other algorithms; the impacts of the involving
parameters, weighting, and constraint on the inversion results are
also analyzed. Finally, this algorithm is applied to the joint inversion
of the gravity and gravity gradient measurements at the Vinton
salt dome, Louisiana, to validate its feasibility in actual geological
conditions.

2 Materials and methods

2.1 Forward modeling and compression of
the sensitivity matrix

When deriving expressions for gravity and gravity gradient, the
subsurface three-dimensional domain is generally divided into a
finite number of rectangular prisms with the same volume and
constant density. In a Cartesian coordinate system with x-axis

northwards, y-axis eastwards, and z-axis vertically downwards, for a
prism with ρ as the residual density, its gravity and gravity gradient
anomalies at the observation point (x0,y0,z0) are given by Li and
Chouteau (1998)

gz = −G0ρ
2

∑
i=1

2

∑
j=1

2

∑
k=1

uijk

×[xi ln(yj + rijk) + yj ln(xi + rijk) + zk arctan
zkrijk
xiyj
] (1)

and

gαα = G0ρ
2

∑
i=1

2

∑
j=1

2

∑
k=1

uijk arctan
βjγk
αirijk

(2)

gαβ = −G0ρ
2

∑
i=1

2

∑
j=1

2

∑
k=1

uijk ln(γk + rijk) (3)

respectively, where ∀α,β,γ ∈ {x,y,z}; xi = x0 − ξi, yj = y0 − ηj,
zk = z0 − ζk, (ξi,ηj,ζk) is the coordinate of the vertices of the prism;
rijk = √x

2
i + y

2
j + z

2
k; uijk = (−1)

i+j+k.
Taking gαα as an example, Eq. 2 could be rewritten as follows:

gαα = Gααρ (4)

then the forward modeling operator for gravity or gravity gradient
anomaly in matrix form, when there are M rectangular prisms and
N observation points, is

d = Gm (5)

where d is the N× 1 anomaly matrix, G is the N×M sensitivity
matrix, and m is the M× 1 residual density matrix.

Assuming the subsurface domain is divided into nx × ny × nz
rectangular prisms with the size of dx× dy× dz, the nx × ny
observation points overlap the projections of prisms' center of mass
on the x-y plane, then the size of the sensitivity matrix G will be
(nx × ny) × (nx × ny × nz).

Considering an observation point and a prism, there
are four cases for their relative position (ξ,η,ζ): (|ξ|, |η|,ζ),
(|ξ|,−|η|,ζ), (−|ξ|, |η|,ζ) and (−|ξ|,−|η|,ζ). In these four
cases, Gz has different values; Gαα1 = Gαα2 = Gαα3 = Gαα4,
α ∈ {x,y,z};Gxy1 = Gxy4 = −Gxy2 = −Gxy3;Gxz1 = −Gxz3,Gxz2 = −Gxz4;
Gyz1 = −Gyz2, Gyz3 = −Gyz4. Under the circumstance described
in the previous paragraph, the number of (ξ,η,ζ) pairs is
(2nx − 1) × (2ny − 1) × nz, then there will be (2nx − 1) × (2ny − 1) × nz
independent elements for Gz, nx × ny × nz independent elements
for Gxx, Gyy, Gzz and Gxy, (2nx − 1) × ny × nz independent elements
for Gxz and Gyz. Especially when dx = dy, relative position (ξ,η,ζ)
and (η,ξ,ζ) result in the same Gz/Gzz/Gxy value, the corresponding
independent elements will further be nearly halved.

In this way, the sensitivity matrices of gravity and gravity
gradient anomalies are largely compressed, when compared with the
original ones with the size of (nx × ny) × (nx × ny × nz), which is very
helpful for processing large-scale data.
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2.2 Joint inversion using SL0 regularization

2.2.1 Construction of the objective function
using SL0

Based on the regularization theory, the objective function is
constructed as (Tikhonov and Arsenin, 1977)

φ = φd + μφm (6)

the first term is the data misfit term and the second term is the
regularization term; μ is the regularization parameter and will be
introduced in Section 2.2.3.

φd is the fitting error between the observed data and the
predicted data from forward modeling. A data weighting matrixWd
is constructed based on Li et al. (2017) and introduced here to deal
with the case that fitting degree for gravity and different components
of gravity gradient have large differences:

φd = ‖Wd (dobs −Gm)‖22 (7)

when inverting gravity and gxx|gxy|gxz|gyy|gyz|gzz components
of gravity gradient data, the observed data matrix
dobs = [gz; gxx; gxy; gxz; gyy; gyz; gzz], and the sensitivity matrix
G = [Gz; Gxx; Gxy; Gxz; Gyy; Gyz; Gzz],

Wd = diag(
√std(gxy)

√std(gz)
,…,
√std(gxy)

√std(gxx)
,…,1,…,

√std(gxy)

√std(gxz)
,…,

√std(gxy)

√std(gyy)
,…,
√std(gxy)

√std(gyz)
,…,
√std(gxy)

√std(gzz)
)

(8)

φm is constructed using SL0. Specifically,

φm =M− Fσ (m) (9)

M is the number of subsurface rectangular prisms, Fσ(m) is the sum
of the Gaussian function as below

fσ (mi) = e
−mi

2

2σ2 (10)

mi is the ith element of m, σ characterizes the quality of the
approximation. Note that

lim
σ→0

fσ (mi) = {
1, mi = 0

0, mi ≠ 0
(11)

it is clear from Eq. 9 to Eq. 11 that when σ→ 0, Fσ(m) counts the
number of zero elements in the density matrix m, consequently φm
represents the number of non-zero elements, or in other words,
φm ≈ ‖m‖0 where ‖m‖0 is the L0 norm ofm (Mohimani et al., 2009).

Two iterations are designed. Practically, it is unable to calculate
fσ(mi) with σ = 0, therefore a descending sequence is used as the
outer iteration

σ = σqa (12)

0 < q < 1 and is set to 0.7 as default according to Mohimani et al.
(2009), and a is the number of this iteration. The inner iteration
derives the maximum Fσ(m) and the correspondingm of each given
σ, and will be introduced in Section 2.2.3.

2.2.2 Weighting and constraint of the inversion
Aprism in deeper depth contributes less to observed gravity and

gravity gradient data and would have less weight in inversion. As
a result, the inverted density distribution usually concentrates near
the surface. To solve this problem, this study introduces the depth
weighting and the model weighting.

The depth weighting function Wz from Commer et al. (2011) is
used to assign different weights to prisms in different depths during
the inversion

{{{{{{{{{{
{{{{{{{{{{
{

f1 (z) =
τ+ exp[ r

dz
(z− z1)]

1+ exp[ r
dz
(z− z1)]

f2 (z) =
1+ τexp[ r

dz
(z− z2)]

1+ exp[ r
dz
(z− z2)]

Wz = diag[ f1 (z) f2 (z)]

(13)

r makes Wz(z = 0) ≈ τ and is set to 1 in this study; τ is an empirical
value and set to 0.001 according to Commer (2011); z1 and z2
are the depths of the upper and lower boundaries of the anomaly
body given by prior information. Wz assigns larger weights within
[z1,z2].

The model weighting function is given by Zhdanov
(2002).

Wm = diag(GTG)
1
2 (14)

Taking the joint inversion of gravity and gxx|gxy|gxz|gyy|gyz|gzz
components of gravity gradient as an example,

Wm = diag((Gz
TGz)

1
2 + (Gxx

TGxx)
1
2 + (Gxy

TGxy)
1
2

+ (Gxz
TGxz)

1
2 + (Gyy

TGyy)
1
2

+ (Gyz
TGyz)

1
2 + (Gzz

TGzz)
1
2 )

(15)

The objective function after the depth and model weighting is

φ = ‖dwobs −Gwmw‖22 + μ[M− Fσ (mw)] (16)

where dwobs =Wddobs, Gw =WdGW
−1
m W−1z , mw =WzWmm.

The density constraint is applied to ensure the validity of
the inversion results. Every element of the density matrix m is
judged in every step of the iteration. For those larger than the
maximum (smaller than theminimum) density value of the anomaly
body given by prior information, they are set to the maximum
(minimum).

2.2.3 Optimization of the inversion
The non-linear conjugate gradient method solves large-scale

non-linear optimization problems without matrix inversion and
decomposition (e.g., Dai and Yuan, 1999) through which the inner
iteration in this study is built

mk+1 =mk + αkdk (17)

dk = {
− gk, k = 1

− gk + βkdk−1, k ≥ 2
(18)

βk =
‖gk‖

2
2

dTk−1 (gk − gk−1)
(19)
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FIGURE 1
(A) The location of the two anomaly bodies. (B) Gravity and gravity gradient anomalies contaminated by 5% Gaussian random noise.

where αk is the step length of the kth iteration; dk is the
search direction of the kth iteration, βk is its controlling
factor; gk is the gradient direction of the objective
function

gk = ∇φ(mk) = 2[GT
w (Gwmw) −GT

wd
w
obs]

+
μ
σ2 [mw1e

− mw1
2

2σ2 ,…,mwMe
− mwM

2

2σ2 ]
T

(20)

αk is determined using a line searchmethod based on theArmijo
condition

φ(mk + γpdk) < φ(mk) + λγpgTkdk (21)

λ is a small positive constant and set to 10–4 in this study; γ ∈ (0,1)
and is set to 0.4; p is the smallest non-negative integer that meets the
above relationship. Then αk = γp.

A self-adaptive method is used to update the regularization
parameter in every step

μ =
‖dwobs −Gwmw‖22

M−
M

∑
i=1

fσ (mi)

(22)

In summary, the procedure of the algorithm proposed in this
study, i.e., SL0 regularization, is as follows:
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FIGURE 2
(A–C) Inversion results of Algorithms 1–3, respectively, using small-scale data without noise. The time cost t1 (s), RMS errors s1 (×0.01), and s2
(×0.01 g/cm3) are recorded on topside. The white solid lines mark the outlines of the anomaly bodies. (D–F) The variation of the relative RMS error s1
as a function of the total number of iterations for Algorithms 1–3, respectively.

1. Calculate the weighted observed data matrix dwobs, sensitivity
matrix Gw, and initial density matrix mw0. Calculate the initial
regularization parameter μ0. Set σ = 1, the number of the outer
iteration a = 0 and inner iteration k = 0.

2. Calculate the gradient direction of the objective function gk, and
set the initial search direction dk = −gk.

3. Calculate the step length αk = γp. Update mwk+1. Apply density
constraint.

4. Calculate the fitting residual r = dwobs −Gwmw. When
‖rk‖2/N < 0.01, stop the inner iteration and execute Step 6,
otherwise update k = k+ 1 and execute Step 5.

5. Update the regularization parameter μ. Update gk, βk and dk. Turn
to Step 3.

6. Update a = a+ 1. Update σ. When σ < 0.01, stop the outer
iteration, otherwise turn to Step 2.

3 Numerical modeling results and
discussion

In this section, numerical modeling is adopted to verify the
stability and efficiency of our proposed algorithm. Based on this,
we analyze the impacts of three aspects on the inversion results: the
involving parameters, weighting, and constraint.

3.1 Setup of the modeling

As shown in Figure 1A, the subsurface domain is set to
2,000× 2,000× 1,000 m, the two 400× 500× 300 m anomaly bodies
center at (1,000,550,350) m, and (1,000,1,350,450) m with the
residual density of 0.5 g/cm3 and 1 g/cm3, respectively. By default,
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FIGURE 3
(A–C) Inversion results of Algorithms 1–3, respectively, using small-scale data with 5% Gaussian random noise.

FIGURE 4
Similar to Figure 3 but using large-scale data.
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FIGURE 5
(A–C) The variation of the relative RMS error s1 of gravity or gravity gradient components and the combination of them, as a function of the total
number of iterations for Methods 1–3, respectively.

FIGURE 6
The variation of the relative RMS error s1 as a function of the total
number of iterations when using the L-curve μ (blue line) and the
self-adaptive μ (orange line).

the subsurface domain is divided into 40× 40× 10 prisms with the
size of 50× 50× 100 m, the observation points distribute on z = 0
plane and overlap the projection of prisms' center of mass on the
plane. The forward modeling results of gravity and gravity gradient
anomalies are contaminated by 5% Gaussian random noise, that
is to say, the noise with Gaussian distribution and zero mean,
whose standard deviation is equal to 5% of the anomalies' standard
deviation (see Figure 1B). In the inversion, z1 and z2 of the depth
weighting function are set to 200 m and 600 m; the minimum and
maximum density values of the density constraint are set to 0 g/cm3

and 1 g/cm3.
To quantitatively evaluate the inversion results, the relative root

mean square (RMS) error s1 between the predicted anomalies by
the inversion results in dpred and the observed anomalies dobs, and
the RMS error s2 between the inverted density mcal and the actual
densitymreal is calculated according to Eq. 23 (Wu, 2016) and Eq. 24,

respectively

s1 =
√∑N

i=1
(dipred − d

i
obs)

2

√∑N
i=1

diobs
2

(23)

s2 = √
∑M

i=1
(mi

cal −m
i
real)

2

M
(24)

3.2 Comparison between inversion results
of different algorithms

Three algorithms are used for the joint inversion and the
results are compared. Algorithm 1 uses the conventional SL0 (the
SL0 sparse recovery) from Meng (2016). Algorithm 2 constructs
the objective function with L2 norm based on the regularization
theory. Algorithm 3 is the one proposed in this study, that is, SL0
regularization. The same weighting and constraint are applied to
them.

Starting from a case of small-scale data, the subsurface domain
is divided sparser than the default, into 20× 20× 10 prisms with
the size of 100× 100× 100 m, the observation points also distribute
on z = 0 plane and overlap the projection of prisms' center of mass
on the plane. Firstly, no noise is added to forward modeling. The
inversion results are shown in Figure 2. Algorithm 3 (Figure 2C)
has much less time cost t1 than Algorithm 1 (Figure 2A) and much
better model fitting than Algorithm 2 (Figure 2B) which is the
most obvious at z = 550 m plane and also reflected by the less RMS
errors s1 and s2. These results indicate that compared with using
the conventional SL0 in joint inversion, using SL0 regularization
has successfully improved its efficiency while also preserving its
advantage of high accuracy.

Then 5% Gaussian random noise is added on the forward
modeling of the above case to repeat the experiment. As shown
in Figure 3, Algorithm 1 (Figure 3A) is very sensitive to noise; the
major reason is that it overlays gravity and gravity gradient data
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FIGURE 7
Inversion results of (A,C) only using the model weighting and (B,D) using both the depth and the model weighting. The black solid lines mark the
outlines of the anomaly bodies.

in the calculation. In comparison, the behaviors of Algorithm 2
(Figure 3B) and Algorithm 3 (Figure 3C) are both similar to those
without noise, which means that our algorithm has better anti-noise
performance than the conventional SL0.

Finally, the default division, that is, into 40× 40× 10 prisms, is
applied in the case of large-scale data, and the inversion results are
depicted in Figure 4. The t1 for Algorithm 3 (Figure 4C) is only 1/6
of that for Algorithm 1 (Figure 4A). That is to say, the improvement
of our algorithm on efficiency, compared with the conventional
SL0, is more obvious when inverting large-scale data. Additionally,
compression of the sensitivity matrix is performed on Algorithm
3, then t1 is further shortened to 270.99 s, which confirms the
effectiveness of this method.

3.3 The impacts of the data weighting
matrix and the self-adaptive regularization
parameter

To validate the data weighting matrix Wd, three methods are
used in our algorithm separately. Method 1 is not usingWd, Method
2 is using the Wd according to Li et al. (2017), and Method 3 is
using the Wd proposed in this study. Figure 5 displays the variation
of s1 as a function of the total number of iterations when using
these methods in the default experiment (denser division with 5%

Gaussian random noise). Method 3 (Figure 5C) results in a closer
fitting degree of different components and also a fewer number of
iterations, which have confirmed the validity of the data weighting
matrix in this study.

To demonstrate the advantage of using the self-adaptive
regularization parameter μ, another inversion is conducted using μ
from the L-curve method, which is widely used for μ determination
(Hansen, 1992). As shown in Figure 6, using the L-curve and the
self-adaptive μ results in a similar fitting degree, but the latter needs
much fewer iterations than the former, which means that using the
self-adaptive μ could improve the convergence rate of the inversion.

3.4 The impacts of the model weighting,
depth weighting, and density constraint

To demonstrate the effects of themodel weighting and the depth
weighting, another inversion is conducted only using the model
weighting and the results are compared with those of the default
inversion using both of them, as depicted in Figure 7. It is shown that
only using the model weighting in the inversion could still reflect
the horizontal locations of the anomaly bodies well (Figure 7A). In
the vertical plane (Figure 7C), however, the inverted anomaly bodies
have deeper depth and are more divergent than the actual ones.
Adding the depth weighting function could obtain a more accurate
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FIGURE 8
Inversion results under the density constraint of (A,D) [0,2], (B,E) [0,0.5], and (C,F) [0,1] (default). The black solid lines mark the outlines of the anomaly
bodies.

and convergent result, as shown in Figure 7D.The above comparison
suggests that when prior information is insufficient, it is feasible
and reasonable to only use the model weighting in the inversion;
otherwise, the depth weighting should be added to further optimize
the results in the vertical direction.

To investigate our algorithm's dependence on the range of the
density constraint, another two constraints with a larger range of
[0,2] and a smaller range of [0,0.5] are applied to the inversion
separately; the results are compared with that using the accurate
(default) range of [0,1] and plotted in Figure 8. It is clearly shown
that using an inaccurate density range could also roughly determine
the locations of the anomaly bodies. A much smaller range would
result in much lower inverted densities than the actual ones (see
Figure 8B, E); by contrast, a much larger range has less impact (see
Figure 8A, D). Therefore, it is better to choose a larger range for the
density constraint when prior information is insufficient.

4 Application to real data

The real data used in this study were measured over the
Vinton salt dome. The Vinton salt dome is located in southwestern
Louisiana, United States. It consists of a core of massive salt and a

well-defined cap rock which successively grades from limestone at
the top to gypsum and anhydrite at the bottom (Coker et al., 2007).
The density of the cap rock is 2.75 g/cm3 (Ennen, 2012).

Gravity data were measured on the ground, and airborne
full tensor gravity gradient data were measured at an average
altitude of 80 m. We select a subset of the area for investigation,
which covers 3332550–3336450 m in x-direction (northwards) and
440550–444450 m in y-direction (eastwards) under the WGS84,
UTM15N coordinate system. The z-axis is set vertically downwards.
For the gravity data, a second-order polynomial fitting is applied
to remove the regional field and obtain the residual anomaly at
z = 0 m (Figure 9G). For the gravity gradient data, the terrain effect
is removed with a density of 1.9 g/cm3 (Ennen, 2012), then a band-
pass filtering of 200− 5,000 m spatial wavelength (Geng et al., 2014)
is used to obtain the residual anomalies for different components at
z = −80 m (Figures 9A–F).

The inversion domain is divided into 40× 40× 20 prisms with
the size of 100× 100× 50 m, so the depth range in this inversion is
z = 0–1,000 m. The observation points of gravity (gravity gradient)
anomaly distribute on z = 0 m (z = −80 m) plane and overlap
the projections of prisms' center of mass on the plane. The
density structure is inverted using gz, gzz, gxx|gxy|gxz|gyy|gyz|gzz,
the combination of gz and gxx|gxy|gxz|gyy|gyz|gzz, separately. The
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FIGURE 9
(G) Gravity residual anomaly at z = 0 m and (A–F) gravity gradient residual anomalies at z = −80 m, over the Vinton salt dome.

TABLE 1 The standard deviations of the residuals between the observed and predicted gravity/gravity gradient data for the four cases discussed.

# gz (mGal) gxx (E) gxy (E) gxz (E) gyy (E) gyz (E) gzz (E)

gz 0.024 3.212 2.625 4.170 5.203 5.803 7.132

gzz 0.282 1.110 0.937 1.488 1.330 1.576 1.574

gxx|gxy|gxz|gyy|gyz|gzz 0.291 1.021 0.813 1.214 1.139 1.268 1.374

gz|gxx|gxy|gxz|gyy|gyz|gzz 0.287 0.933 0.736 1.060 0.952 1.045 1.138

minimum and maximum values of the density constraint are set
to 0 g/cm3 and 0.6 g/cm3. The standard deviations (std) of the
residuals between the observed gravity/gravity gradient data and the
predicted ones by the inversion results are shown in Table 1. The
inversion using gz has the least std of gravity but a much larger std of
gravity gradient than the other three cases. Using six components of
gravity gradient (gxx|gxy|gxz|gyy|gyz|gzz) results in a lower stdof gravity
gradient than using gzz. Additionally, the joint inversion of gz and
six components of gravity gradient further lowers the std, indicating
that the joint inversion could obtain the most reasonable results.

Figure 10 displays the joint inversion results using gz and
gxx|gxy|gxz|gyy|gyz|gzz. In the horizontal plane, the length of the
inverted anomaly body with high density is approximately 1,500 m
in the east-west direction and 1,200 m in the north-south direction,
consistent with the values of 1,520 m and 1,280 m from geological
data (Ennen, 2012). It is wedge-shaped with a fracture in the
northwestern direction, which has been revealed by the geological
model obtained through drilling and seismic data (Coker et al.,
2007). In the vertical plane, the fracture divides the topside of
the anomaly body. The northwestern part has a deeper upper
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FIGURE 10
Joint inversion results over the Vinton salt dome using gz and gxx|gxy|gxz|gyy|gyz|gzz. (A) Horizontal slices at different depths. (B) zoy slice at x =
3,334.3 km. (C) zox slice at y = 442.5 km.

boundary of about 300 m and a thinner thickness of about 150 m;
for the southeastern part, these two values are 250 m and 200 m.
In comparison, drilling data (Thompson and Eichelberger, 1928)
reveal that the depth of the upper boundary is 315 m in the
north and 200 m in the south, and the average thickness is 150 m;
geophysical inversion using gravity gradient data (Gao and Huang,
2017) reports that the depth of the upper boundary is 300 m in the
northwest and 200 m in the southeast, and the average thickness
is 250 m. The main features of our results are generally consistent
with those of previous studies, which confirms the feasibility of our
algorithm.

5 Conclusion

In this study, we propose a new algorithm for joint inversion
of gravity and gravity gradient data. The objective function is
constructed using SL0 based on the regularization theory, then the
optimal solution is derived with the non-linear conjugate gradient
method. Additionally, a method of compressing the sensitivity
matrix is also applied.

The numericalmodeling shows that our algorithm ismuchmore
efficient than using the conventional SL0, especially when inverting
large-scale data, and also has better anti-noise performance. On
the other hand, our algorithm preserves the advantage of high

accuracy, when compared with using L2 norm as the objective
function. Compression of the sensitivity matrices could further
improve the efficiency of the inversion. Sensitivity analysis indicates
that introducing the data weighting and self-adaptive regularization
parameter has improved the convergence rate of the inversion.
Additionally, it suggests using the model weighting and a larger
range for the density constraint when prior information is
insufficient; otherwise, the depth weighting should be added to
further optimize the results in the vertical direction.

Finally, our algorithm is applied to the gravity and gravity
gradient measurements at the Vinton salt dome. It is shown that
the joint inversion using gz and six components of gravity gradient
gxx|gxy|gxz|gyy|gyz|gzz could obtainmore reasonable results than using
gravity or gravity gradient independently. The agreement of the
inverted distribution range, thickness, and geometry of the cap rock
with previous studies based on geological data, drilling data, seismic
data, etc. has validated the feasibility of this algorithm in actual
geological conditions.
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