
Characterization methods for
current in-situ stress in oil and gas
reservoirs: a mini review

Tianbiao Zhao1,2* and Qirong Qin1

1School of Geoscience and Technology, Southwest Petroleum University, Chengdu, China, 2Sichuan
College of Architectural Technology, Chengdu, China

In-situ stress plays a crucial role in governing various parameters such as the
distribution of oil and gas accumulation zones, the fracture pattern of reservoirs,
formation fracture pressure, and collapse pressure. Understanding the distribution
characteristics of current in situ stress of reservoirs has significant implications for
exploration anddevelopment of oil and gas. This paper focuseson the characterization
methods for current in situ stress of oil and gas reservoirs, discussing the research
progress in testing methods, computational approaches, numerical simulations, and
seismic predictionmethods. The results indicate that the testingmethod including the
on-site testing method and the laboratory testing method offer the relatively high
accuracy, but this method only provides point-specific magnitude and direction of
current in situ stress. TheComputational approaches can obtain continuous profiles of
current in situ stress along individual wells. After using the testing method for
calibration, we can obtain relatively accurate calculation results. The numerical
method can predict current in situ stress over large areas, but it requires rigorous
model setup, boundary definition, and parameter selection. The seismic prediction
method also can predict broad distribution of current in situ stress, but this method is
influenced by many factors and we had better apply this method in conjunction with
other methods. In the future, engineers and researchers should innovate testing
technologies and instruments, and establish models and processes for joint use of
multiple methods, and explore the development of novel current in situ stress
prediction models based on artificial intelligence and big data.
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1 Introduction

In-situ stress primarily results from factors such as the gravity of overlying rock layers,
formation pressure (pore pressure), tectonic stress, and thermal effects (Banerjee and Chatterjee,
2021; Bouchachi et al., 2022). In-situ stress is typically represented by a vertical principal stress
(Sv) and two horizontal principal stresses (SHmax and Shmin) (Gowida et al., 2022). Current in situ
stress refers to the current stress state of rock formations in comparison to past stress conditions.
Current in situ stress plays a crucial role in the analysis of oil and gasmigration and accumulation
patterns, engineering design of well drilling, hydraulic fracturing design of reservoirs, and the
location of exploration and development well (Radwan et al., 2021; Wu et al., 2022a). Clarifying
the distribution characteristics of current in situ stress is an important aspect of oil and gas
exploration and development (Baouche et al., 2023). In this context, studying only localized,
single-well, and stratified micro-scale stress distribution and stress field states are insufficient. It’s
essential to conduct macroscopic, regional research on current in situ stress.
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At home and abroad, the exploration and development depth of oil
and gas reservoirs generally ranges from 1,000 to 10,000 m, and the
depth are deeper than the depth of current in situ stress research in
fields like mining, water resources, and tunnel engineering. Methods for
characterizing current in situ stress of oil and gas reservoirs differ
substantially from those used for characterizing current in situ stress of
shallow rock layers. Researchers have proposed numerous approaches
to characterize current in situ stress of oil and gas reservoirs (Hikweon
and See, 2018; Fang et al., 2022; Garavand and Hadavimoghaddam,
2022; Zhou et al., 2023).

2 Testing methods

The testing method is one of the earliest techniques used to
characterize current in situ stress of reservoirs (Yin et al., 2018).

Compared to other characterization methods, this approach provides
the most direct and accurate information regarding the direction and
magnitude of current in situ stress (Aadnoy et al., 2013; Kim et al., 2017;
Subrahmanyam, 2019; Krietsch et al., 2022). According to Table 1, the
testing method can be divided into two categorys: the on-site testing
method for well drilling and the laboratory testingmethod for rock core
samples (Kruszewski et al., 2022).

There are many on-site testing methods for well drilling.
Hydraulic fracturing is the most commonly used method for
measuring current in situ stress in oil and gas reservoirs (Yang
et al., 2021). This technique is characterized by its simplicity, broad
applicability, and independence from the elastic parameters of the
rock. It is also the most reliable testing method for current in situ
stress of reservoirs (Xiong and Hampton, 2021). Building upon
hydraulic fracturing, additional methods have been proposed,
including Micro-Hydraulic Fractures (M-HF), Sleeve Fracture

TABLE 1 Statistics of the testing method for current in situ stress of reservoirs.

Category Name Test content Advantage Disadvantage

(1) On-site testing
methods (well drilling)

1) Hydraulic Fractures Magnitude of horizontal
stress

Wide range of use; The result is
reliable and accurate

Costly; Complex operation; High technical
requirements for testing

2) Micro-Hydraulic Fractures

3) Sleeve Fracture

4) Hydraulic Test of Pre-
existing Fractures

5) Diagnostic Fracture
Injection Test

6) Micro-seismic Monitoring Direction of horizontal
stress

The result is reliable and accurate It cannot be used alone; High technical
requirements for testing

7) Borehole breakout Direction of horizontal
stress

Suitable for deep-hole; High accuracy Difficult to observe borehole breakout and
highly restrictive

8) Drilling Induced Fractures Direction of horizontal
stress

Suitable for deep-hole; High accuracy Difficult to observe drilling Induced
Fractures and highly restrictive

9) Borehole Deformation Direction of horizontal
stress

Suitable for deep-hole Difficult to observe borehole deformation
and highly restrictive

(2) laboratory testing
methods (rock core)

1) Acoustic Emission method Magnitude of stress Wide range of use; The result is
reliable and accurate

Kaiser point is difficult to determine; Costly;
High technical requirements for testing

2) Anelastic Strain Recovery Magnitude of stress Suitable for deep-hole and soft rock Multiple influencing factors; Relatively low
accuracy; Complex operation

3) Differential Strain Curve
Analysis

Magnitude of stress Relatively high test result; Regardless
of the placement time of the core

Multiple influencing factors

4) Differential Wave Velocity
Analysis

Direction of horizontal
stress

Simple; Regardless of the placement
time of the core

Relatively low accuracy

5) Circumferential Velocity
Anisotropy

Direction of horizontal
stress

Simple operation; Economical Relatively low accuracy

6) Drilling Induced Fracture
in Core/Core Discing

Direction of horizontal
stress

Simple operation; Economical Highly restrictive

7) Overcoring of Archived
Core

Magnitude and Direction
of Horizontal Stress

Simple operation; Economical Highly restrictive and Relatively low
accuracy

8) Petrographic Examination
of Microcracks

Direction of horizontal
stress

High reliability as a validation
method

Need professional equipment; Complex
operation

9) Axial Point Load Test Direction of horizontal
stress

Simple operation Difficulty in determining the cause of
anisotropy
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(SF), Hydraulic Test of Pre-existing Fractures (HTPF), and
Diagnostic Fracture Injection Test (DFIT). These methods extend
the scope of hydraulic fracturing. However, the use of hydraulic
fracturing alone can only determine the magnitude of current in situ
stress and can’t determine the direction. Usually, micro-seismic
monitoring is combined with hydraulic fracturing to define the
direction of current in situ stress (Agharazi, 2016; Li et al., 2019; Li
et al., 2020; Li et al., 2022a; Li et al., 2023a).

The analysis methods of borehole collapse, induced wellbore
cracks, and borehole deformation can determine the direction of
current in situ stress. However, these methods are significantly
influenced by factors such as formation stress state, rock
mechanics properties, drilling parameters, and testing instruments,
leading to considerable result variability. Additionally, these methods
struggle to determine themagnitude of in situ stress (Gao, 2021;Wang
et al., 2021; Ye et al., 2023). Core samples can measure both the
magnitude and direction of current in situ stress. Acquiring high-
quality oriented core samples is a fundamental and essential
requirement for conducting testing work. Alternatively, other
methods can be employed to determine the orientation of core
samples, such as measuring the geomagnetic information carried
by the core. However, the precision of these tests can impact the
accuracy of subsequent experimental result.

Laboratory testing methods for rock cores can effectively
determine the value of current in situ stress. Core based current
in situ stress testing methods include Acoustic Emission method
(AE), Anelastic Strain Recovery (ASR), Differential Strain Curve
Analysis (DSCA), Differential Wave Velocity Analysis (DWVA),
Circumferential Velocity Anisotropy (CVA), Drilling Induced
Fracture in Core (DIFC)/Core Discing (CD), Overcoring of
Archived Core (OCAC), Petrographic Examination of Micro-
cracks and Axial Point Load Test.

The Acoustic Emission Method is related to the stress state of
rock and the generation and propagation of elastic waves. Therefore,
rocks with better elastic properties will exhibit a noticeable Kaiser
effect, resulting in relatively accurate test of current in situ stress
(Goodfellow and Young, 2014; Wu et al., 2022b). However, the
Kaiser effect may not be prominent for porous and loose rocks,
leading to relatively low accuracy of test result (Holcomb, 2013).
Additionally, determining the Kaiser point during the experimental
process can be challenging. To enhance the accuracy of current in
situ stress test, the acoustic emission test can be complemented with
other testing methods.

The Stress Relief Method based on viscoelastic strain recovery
demonstrates high effectiveness and cost-effectiveness. However, the
reliability of result from individual test is diminished due to
numerous influencing factors (Sugimoto et al., 2021). In practice,
supplementary prior information can be used to validate the
accuracy of this method. When combined with the Differential
Strain Curve Analysis method, better testing results can be achieved,
and the influence of core placement time on test results can be
minimized (Sanada et al., 2013).

The Differential Wave Velocity Analysis method and the
Circular Wave Velocity Anisotropy Analysis method can
determine the direction of current in situ stress based on the
speed of acoustic wave in core samples (Ren and Hudson, 1987).
These twomethods are significantly affected by rock properties, rock
structures, and micro-fractures, resulting in relatively lower

accuracy when used individually to determine the direction of
current in situ stress.

Analyzing cylindrical cores or core-induced cracks to determine
the direction of current in situ stress will yield highly accurate
results. However, the occurrence of cylindrical cores and core-
induced cracks is extremely rare, and orientation can be
challenging, limiting the applicability of this method (Li and
Schmitt, 1998).

The Secondary Stress Relief Method of cores can be used to
determine the direction and estimate the value of current in situ
stress (Hoskins and Russell, 1981). However, not all cores exhibit
distinct stress relief characteristics, and rock structure may
introduce significant errors during testing.

Microfracture lithofacies analysis and axial point load analysis
can also determine the direction of current in situ stress. However,
the accuracy of result obtained from these methods when used
individually is relatively low. They can serve as supplementary or
validation methods for other testing techniques (Liang et al., 1998).

Relative to other methods, result obtained through the testing
method is the most accurate. However, this method has challenges
like limited data volume, high cost, and complex testing procedures.

3 Computational approaches

In order to reduce the cost of exploration and development and
obtain more stress information, researchers employ well-logging
data to determine the direction and magnitude of current in situ
stress within reservoirs.

(Wang et al., 2022a). Well-logging data possesses characteristics
such as large testing depth, large amount of information, and
relatively continuous data, making characterization methods
based on well-logging data have unique advantages. This
approach can obtain a profile of continuous current in situ stress
from top to bottom along the well drilling (Urban and Aguilera,
2015; Zhang and Yin, 2019).

Currently, the calculation of vertical principal stress has little
dispute and its value is considered equal to the overlying rock mass’s
gravity and can be obtained by integrating density data from the
surface to the target depth (Radwan et al., 2021).

Using acoustic well logging data, the magnitude of horizontal
stress can be estimated along the well drilling (Figure 1A). Due to
the formation and existence conditions of stress in the formation
are closer to the rock’s static testing environment, estimating
horizontal stress using static mechanical parameters is more
accurate (Musa et al., 2021). Therefore, it is necessary to
convert dynamic mechanical parameters to static mechanical
parameters using the attenuation coefficient calculated from
the acoustic well logging data and then compute the
horizontal principal stress within the formation. Various
models exist for the calculation of horizontal principal stress,
including uniaxial strain models, Mohr-Coulomb failure models,
Coulomb-Naive failure models, combined spring models,
Gassmann models, poroelastic strain models, biaxial strain
models, and Huang’s model (Fan et al., 2014; Rasouli and
Sutherland, 2014). While these models possess simple
mathematical formulations and relatively low calculation
precision, calculated result can be analyzed and corrected
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based on actual current in situ stress testing data to meet the
requirements of oil and gas reservoir exploration and
development. Additionally, selecting the appropriate
calculation model for horizontal stress according to the
research area’s characteristics and acquired data are crucial to
fully leverage the advantages of current in situ stress estimation
methods based on the date of acoustic well logging.

Acoustic well logging data can also be used to identify current in
situ stress direction and obtain continuous profiles of direction of
current in situ stress (Figure 1B). The principle involves utilizing the
characteristics of shear wave splitting in anisotropic formations,
extracting fast and slow shear wave velocities and orientations from
multipole acoustic well logging waveform data, and determining the
directions of maximum andminimum horizontal stress based on the
orientation of the fast shear wave. Additionally, micro-resistivity
imaging well logging or borehole acoustic imaging well logging can
identify the orientation of borehole collapse sections, induced
fracture zones, and stress release fractures, allowing for the
determination of horizontal principal stress direction (Willams

et al., 2015). Furthermore, the well deviation logging provides
borehole radius and dip angles of strata, aiding in determining
borehole collapse orientation and thus deducing horizontal
principal stress direction (Wang et al., 2022b).

Result obtained by calculating and analyzing current in situ
stress magnitude and direction based on well-logging data need
calibration through other testing methods to attain greater accuracy.
Furthermore, this method only provides continuous in situ stress
profiles along well depth and cannot predict in situ stress across the
entire field, particularly in areas that have not been drilled.

4 Numerical methods

Some scholars have employed large-scale numerical simulation
techniques for the inversion analysis of current in situ stress
(Radwan and Sen, 2021). Based on relevant geological data, a
three-dimensional geological computational model is established.
Using measured stress values from known locations and appropriate

FIGURE 1
Continuous distribution profile of current in situ stress based on logging data: (A) Themagnitude of current in situ stress; (B) The direction of current
in situ stress.
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statistical analysis methods, optimal factors for evaluating the stress
field are selected (Ning et al., 2021). The constitutive relationship of
rock mechanics is established, and a more realistic distribution
characteristic of current in situ stress is obtained through
numerical methods. By using numerical methods, we can predict
the magnitude and direction of current in situ stress.

Numerical methods can predict widely ranging and continuous
current in situ stress, yielding relatively accurate predictive results in
undrilled areas. The accuracy of numerical simulation is directly
related to the resemblance between the model and the actual
reservoir and the accuracy of the model’s boundary loads. In
practical applications, numerical methods are often combined
with other analytical methods to enhance the accuracy of
simulation results (Scelsi et al., 2019; Miao et al., 2022).

Common numerical methods include finite difference method,
variational method, discrete method, boundary method, and finite
element method (Sun, 2023; Sun et al., 2023). The finite difference
method has a more rigorous theoretical foundation, but it mainly
discretizes the fundamental governing equations and generally
applies to geometric shapes with simple outlines. The finite
element method discretizes the objects constituting the system
and this method can simplify the analyzed object’s complex
mechanical properties and boundary conditions, thus having a
broader scope of application. The finite element method also
features relatively simple calculation procedures, high
discretization accuracy, and easy convergence of computation
results, making it the primary numerical simulation method for
stress field studies (Sharafisafa et al., 2023). The application of
variable method, discrete method, and boundary method are
relatively limited.

In recent decades, with the rapid development of computer
technology, more and more scholars have been dedicated to
numerical simulation research of current in situ stress of oil and
gas reservoirs. Commonly used finite element analysis software
includes NASTRAN, ANSYS, ABAQUS, COMSOL, ADINA, and
so on. These software packages can solve complex linear and
nonlinear problems, but each has relatively suitable domains.
ANSYS and ABAQUS have simpler modeling methods,
comprehensive pre-and post-processing, and higher accuracy in
computed result, making them widely applied tools (Li et al., 2022b;
Li et al., 2023b; Zhao et al., 2023).

5 Seismic prediction methods

In addition to numerical methods to predict regional current in
situ stress, seismic data volume can also be utilized to estimate
current in situ stress in a region (Yang et al., 2022). This method can
provide a continuous distribution of current in situ stress in the
study area, even in areas with few wells, and this method can
overcome the limitations of location constraints. It offers lateral
predictions of current in situ stress for the working area, providing
theoretical guidance for well deployment and hydraulic fracturing
development.

Common seismic prediction methods include the two-
dimensional stress analysis method based on thin plate theory
(Ma et al., 2020), the prediction of in situ stress magnitude based
on pre-stack elastic parameters (Wang et al., 2020), and the

prediction of in situ stress direction based on pre-stack azimuthal
differences (Goodway et al., 2012).

The process of two-dimensional in situ stress seismic prediction
based on thin plate theory (Figure 2A) involves analyzing the
relationship between rock elastic parameters such as
compressional wave velocity, shear wave velocity, density,
Young’s modulus, Poisson’s ratio, and in situ stress. Sensitivity
characterization parameters for in situ stress are selected (Gray
et al., 2012). Nonhomogeneous elastic parameter inversion based on
scattering theory is used to invert elastic parameters such as
compressional to shear wave velocity ratio, Poisson’s ratio, Lamé
constants, and shear modulus (Ma, 2023). Trend surface analysis is
employed to fit the surface using fault data as constraints. Based on
the calculated tectonic curvature distribution, a three-dimensional
finite difference numerical simulation method using an elastic thin
plate model is applied to simulate and estimate current in situ stress.
This method integrates pre-stack seismic elastic parameter inversion
technology to construct a refined nonhomogeneous mechanical
model. By combining stress field numerical simulation and
seismic inversion technology, the influences of factors such as
structure, faults, formation thickness, and lithology are more
reasonably considered, greatly improving the accuracy of
simulation result.

Predicting current in situ stress magnitude based on pre-stack
elastic parameters (Figure 2B) involves utilizing rock physics elastic
parameters as the foundation. Multivariate linear regression
establishes a stress calculation formula based on three elastic
parameters, and followed by a multi-factor correction. Finally,
pre-stack inversion technology is used to obtain elastic
parameters such as Young’s, bulk, and shear modulus for the
working area. The formula is used for fitting and correction to
calculate the maximum and minimum stresses.

Predicting current in situ stress direction based on pre-stack
azimuthal differences (Figure 2C) is built upon AVO forward
modeling. With the assistance of transverse isotropy theory, pre-
stack wide azimuthal seismic data is processed for azimuthal
angle extraction. Different azimuthal AVO attributes are
derived, and the relationship between seismic azimuthal and
current in situ stress direction is established using azimuthal
variation in transverse wave velocities due to in situ stress-
induced azimuthal anisotropy (Ma et al., 2017). Validation
and comparison are performed using FMI imaging and sonic
anisotropy logging data to determine the in situ stress direction
ultimately.

Using seismic data for current in situ stress prediction often
requires establishing an in situ stress prediction model (Zhang
et al., 2015). First, the relationship between stress and rock elastic
and physical parameters (such as Young’s modulus, Poisson’s
ratio, density, compressional wave velocity, etc.) is clarified.
Then, seismic inversion methods extract relevant parameter
information from seismic data and indirectly predict current in
situ stress (Yang et al., 2023). This model-based current in situ
stress prediction method provides good spatial coverage but is
highly dependent on the accuracy of the current in situ stress
prediction model (Ma et al., 2018). All factors affecting current in
situ stress will significantly increase model complexity, reducing
the method’s applicability (Li, 2023). It’s best to use this method
with other methods to enhance prediction accuracy.
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6 Conclusion and recommendations

Due to the close relationship between current in situ stress and
various issues in the process of oil and gas exploration and

development, such as the migration and accumulation of oil and
gas, wellbore stability during drilling, design of horizontal wells,
reservoir modification, and well network arrangement in water
injection development, scholars at home and abroad have

FIGURE 2
Technical roadmap for seismic prediction of current in situ stress: (A) Based on the theory of thin plates; (B) Based on pre-stack elastic parameters;
(C) Based on pre-stack orientation differences.
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proposed various methods for characterizing the current in situ
stress of oil and gas reservoirs. We systematically review those
methods for characterizing the current in situ stress of oil and
gas reservoirs and arrive at the following conclusions.

(1) Testing methods encompass on-site testing and laboratory
testing. While testing methods can obtain accurate results,
the testing cost is relatively high, and the obtained stress data
are limited to specific points.

(2) Continuous stress profiles can be obtained through calculating
based on well-logging data. High accuracy magnitude and
orientation of current in situ stress can be achieved by
calibrating with testing method.

(3) Numerical methods can predict wide-ranging and continuous
current in situ stress. Utilizing accurate modeling, boundary
condition setting, parameter optimization, and known data of
current in situ stress, accurate prediction result in unexplored
areas can be achieved.

(4) Stress estimation using seismic data volume can also predict
continuous current in situ stress, even in areas with few wells.
However, it is influenced by multiple factors and should be used
in conjunction with other testing methods to obtain reliable
estimation result.

While various methods for characterizing current stress can
measure, estimate, and predict stress from single points to wellbore
profiles and even broader areas, a further in-depth research is still
required for characterization methods of current in situ stress.

(1) Advancements in testing techniques and instruments. Researchers
believe that the basic theory of stress testing has not undergone
significant changes. The development of future testingmethods will
primarily focus on innovation in testing techniques and
instruments (Wang, 2014). With the exploration and
development of deep and ultra-deep oil and gas reservoirs, there
is an increasing demand for testing deep-seated current in situ
stress, necessitating the study of techniques and instruments for
testing the current in situ stress in deep and ultra-deep reservoirs.

(2) Determination of combined application modes and procedures
for various methods. Testing methods, computational
approaches, numerical methods, and seismic prediction
methods all contribute to research of in situ current stress of
oil and gas reservoirs. However, each method has advantages,
disadvantages, and limitations. Determining combined
application modes and procedures for various methods based
on reservoir conditions, geological structures, lithological
characteristics, drilling designs, and fracturing methods is an

ongoing challenge for engineers and researchers. This challenge
aims to simultaneously satisfy the requirements of oil and gas
exploration and development while minimizing time and cost.

(3) Development of new models for stress prediction based on
artificial intelligence and big data. Uncertainties still exist even
after calibrating geological mechanical models with core test and
fracturing data. Artificial intelligence method can establish
reliable and accurate prediction model without presupposing
rocks’ in situ mechanical behavior and physical properties (Li,
2022; Mahmoodzadeh et al., 2023). Therefore, by combining rock
mechanics theory with big data methodologies, new methods for
stress prediction and uncertainty characterization are significant
trends in the future development of current in situ stress
prediction technology.
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